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On the a.e. convergence of multiple orthogonal series. I 
(Square and spherical partial sums) 

F. MÓRICZ 

1. Notations. Let Zd be the set of ¿-tuples fc=(/^, ..., kd) with nonnegative 
integral coordinates. Let cp = {<pk(x): k£Zd) be an orthonormal system (in ab-
breviation: ONS) on the unit cube x = ( x l 5 ..., xd)£Id, where /= [0 , 1]. Consider 
the ¿/-multiple orthogonal series 

(1) 2 ak<pk(x) = 2 ... 2 akt ka(xi, -,xd), 

k£ Z*> T1 = 0 kd = 0 

where a={ak: k£Zd) is a system of coefficients, for which 

(2) 

Fixing a sequence Q={Qr' r—0, 1, ...} of finite sets in Zd with properties 

ö o c ö x c e . c . . . and Q ö r = Z d , 
r = 0 

our main goal is to study the convergence behaviour of the sums 

(3) sr(x) = 2 ak(Pk(x) (r = 0, 1, ...), 
which can be regarded as a certain kind of partial sums of series (1). The case 

Ql = {k€Zd: max k, r} 
1 I S j S d 1 ' 
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provides the square partial sums ^ (x ) , while 

1/2 

provides the spherical partial sums ^ ( x ) of (1). 

2. A.e. convergence of {sr(x): r = 0, 1, ...}. Denote by M(d, Q) the class of 
those systems a = {ak: k£Zd} of coefficients for which the sequence {jr(x)} defined 
by (3) converges a.e. for every ONS <p = {<pk(x) : k£Zd} on Id. The set of measure 
zero of the divergence points may vary with each cp. 

One can easily see that if a Ç. M(d, Q), then (2) is necessarily satisfied. This follows 
from the obvious fact that the ¿/-multiple Rademacher system 

consists of stochastically independent functions and thus, for every choice of the 
sequence Q = {Qr: r=0,1, ...} of finite sets in Zd, the sequence {¿r(X)} defined 
by (3) for (p = {/*(*)} converges a.e. or diverges a.e. according as (2) is satisfied or not. 

For a given system a= {ak: k£Zd} of coefficients we set 

where the supremum is taken over all ONS <p = {(pk(x): k£Zd} on ld and dx = 
=dx1...dxi, further, 

This limit exists since J ( a - , d , Q , g ) is nondecreasing in Q. 

T h e o r e m 1. (i) a£M(d,Q) if and only if ||a; d, Q\\ < 
(ii) M(d, Q) endowed with the norm || • \d, Q\\ is a separable Banach space. 

This theorem is essentially a reformulation of an earlier result of TANDORI [11]. 
To this effect, let \]/ = {ij/ki(x1): k=0,1, ...} be a single ONS on 1. Consider 

the ordinary orthogonal series 

and 

; d, Q, g) = sup |s,(x)|)2 dx, 

(4) 2 
where c={c k : ^ = 0 , 1, ...} is a sequence of coefficients for which 

(5) 2 C Î ^ o o . 
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Fixing a sequence v = {vr: r=0, 1 , . . .} of integers with the property 0 ^ v 0< v ^ 
< v 2 < . . . , denote by M(v) the class of those sequences c={ck } for which the 
vrth partial sums of series (4) converge a.e. for every ONS /̂ — {il'ki(x1)} on I. 

For a given sequence c = { c t } of coefficients we set 

(6) ./"(c; v, g) = sup / max Лmax 
osrme 

2 dx-L, 

where the supremum is taken over all ONS \jj = {<A* (*i)} on I, and 

||c; v|| = lim v, g) Q CO 

It is not hard to see that 
A r Ï2 

dxlf 2 Cmi y/
mi(x1) 

m , = 0 

J(c; v, g) — sup f max y (osrse 
where 

V1 /8 

(m = 0, 1, . . . ; v_ j = — 1) 

and the supremum is taken over all ONS {f /
m i(x1)} on I. 

After these preliminaries the above-mentioned theorem of Tandori reads as 
follows. 

T h e o r e m A [11, Satz II]. (i) cCM(v) if and only if\\c; v | |<°°; 
(ii) M(v) endowed with the norm || • ; v|| is a separable Banach space. 

Now, it is a trivial observation that Theorem A remains valid if instead of the 
single ONS </' = {i/'Ji1(x1): / ^ = 0 , 1, ...} on I we consider the ¿/-multiple ONS q> — 
= {(pk(x): kez"} on Id and take the integrals over ld instead o f / i n (6). In fact, the 
sufficiency part in (i) is true over any measure space X (instead of X=I or Id), 
while the necessity part in (i) can be shown by the following simple observation: 
let vr— |g r | , the number of the lattice points of Zd contained in the set Qr, and let 
<¡9*0*!, ..., xd) = \j/mi(x1), where the mapping k=k(m1) is one-to-one for each pair 
v r - 1 ^ m 1 S v r and A : € 2 , \ 0 , _ i (/"=0, 1, ...; v _ x = — 1 and Q-1=0). Consequently, 
Theorem 1 is really a reformulation of Theorem A. 

In the light of what has been said above, the result of [11, Satz III] can be re-
formulated as follows. 

T h e o r e m 2. If two systems a={ak: k£Zd} and b= {bk: k£Zd} of coefficients 
are such that 

Br = { 2 H}1/2^{ 2 al}1" = Ar (r= 0 ,1 , . . . ) , 
k£Qr\Qr-1 kiQr\Qr_1 
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then 

||b; d,Q\\^\\a;d, Q\\; 

consequently, if a£M(d, Q) then b£M(d, Q). 
It is of interest to give an upper estimate for the norm || • ; d, 211 which turns out 

to be exact in certain cases. 

T h e o r e m 3. In each case we have 

(7) 11«; d, Q\\ ^ C, { i ( 2 log2(r + 2)} ' , 

and in the special case when 

Ar = { 2 2 al}1/2 = Ar+1 (r = 0 , 1 , . . . ) 
*€Gr\Qr-1 ki<2r+1\Qr 

an inequality opposite to (7) holds also true: 
f - 11/2 

l |a;d,fil l S C2 2 ( 2 ^ ) l o g 2 ( r + 2 ) . 
tr=o k€Qr\Q,-i ' 

Here Cj and C2 are positive constants depending only on d. 

To prove Theorem 3 one has to start with the results of [7, Theorems 1 and 2] 
and to argue in a similar manner as it is done during the proof of [11, Satz VII], 

We note that in the cases of the square and the spherical partial sums the right-
hand sides in inequality (7) coincide, up to a constant: 

Ha; d, Q% ^ C,{ 2 »1WW +2)}1 '2 (i = 1, 2). 

In spite of this fact, the norms ||a; d, Q1\\ and ||a; d, Q2\\ are not equivalent to 
each other in case d ^ 2 . 

T h e o r e m 4. If d^2, then there exists a system a={ak:k£Zd} of coefficients 
for which 

||o; d,Q*\\ < - and ||a; d, Q*\\ = 

and vice versa, there exists a system a={ak: k^Zd) of coefficients for which 

lla; rf.e1!! = - and ||a; d,Q*\\ < «,. 

This is an easy consequence of Theorem 1 and [7, Theorem 3]. 
We note that the result stated in [7, Theorem 3] can be strengthened in the fol-

lowing way: 

Let T be a regular method of summation (see. e.g., [14, p. 74]). Then there exists 
a double orthogonal series (1) such that (2) is satisfied, its square partial sums converge 
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a.e., but its spherical partial sums are not summable by the method T a.e. on 12; and 
vice versa. 

In the proof of the latter assertion one has to use a result of [4, p. 183]: 

For every regular method T of summation there exists a strictly increasing sequence 
{jur: r=0,1, ...} of positive integers such that the a.e. T-summability of series (4) 
under condition (5) involves the a.e. convergence of the firth partial sums of (4). 

Keeping in mind the proof of [7, Theorem 3] one's task is essentially reduced 
to the construction of a single orthogonal series (4) with condition (5), the /irth 
partial sums of which diverge a.e., while the /i2rth partial sums of Which converge 
a.e. on I. This construction can be certainly done if the ratio nr+1lfir is large enough 
( r=0 ,1 , ...), and the last condition may be assumed without loss of generality. 

3. A.e. (C, 3 > 0)-summability of the spherical partial sums. Up to this point we 
studied the convergence properties of series (1) in the setting when a={ak: k£Zd} 
is a fixed system of coefficients, while (p — {(pk(x): k£Zd} runs over all the ONS on 
Id. From now on we consider an individual ONS (p = {<pk} on Id with some nice 
properties and let a={a k [ run over all the systems of coefficients satisfying condi-
tion (2). 

To this aim, we assume that cp = (<pfc(x): k£Zd} is a product ONS on Id in 
the sense that there exists a single ONS ilf={i/fk (x1):kl=0, 1, . . .} on / such that 

furthermore, we assume that the system = (J^)} is such that for every se-
quence c={ck ik^0,1,...} of coefficients we have 

where C is a positive constant. Inequality (9) implies, among others, that series (4) 
converges a.e. under condition (5). The fact that inequality (9) is satisfied for the ordi-
nary trigonometric system \l/ = {l,cos2nk1x1,sin2nk1x1: kx=l,2, ...} is due to 
HUNT [ 3 ] , while for the Walsh system ij/= k1=0, 1 , . . . } is due to SJOLIN [8]. 

It is not hard to conclude from (9) the following upper estimate for the maxi-
mum of the square partial sums of series (1): 

This means that the square partial sums s*(x) converge a.e. on I d provided (2) is 
satisfied. (For more details, see [12] and [6].) 

d 
(8) <pk(x) = JJ ^kj(Xj), k = (klt ...,kd) and x = (xly ..., xd); 

(Q = 0, 1, ...), 

/ ( m a x | s K * ) | ) 2 d x S 2DCD Z « I (<? = 0 . 1. •••)• •! v03rse KO. 

6 
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The question of a.e. convergence of the spherical partial sums ^ ( x ) of series (1) 
under condition (2) seems to us to be an open problem for As to the mul-
tiple trigonometric system, we cite here two papers by Russian mathematicians. On 
the one hand, TEVZADZE [13] published in 1 9 7 3 that he managed to prove that the 
spherical partial sums of the double Fourier expansion of a function / , x2) f rom 
LP(I2) with /?> 1 converge a.e. on 72, but the proof turned out to be false even in 
case p=2. On the other hand, BUADZE [2] announced in 1 9 7 6 the existence of a 
continuous func t ion / (*! , x2) on I2 such that the spherical partial sums of the double 
Fourier expansion of f(x1,x2) diverge everywhere, but the construction has not yet 
appeared. 

We are unable to decide this question. However, we can prove the a.e. (C, <5 >0)-
summability of the spherical partial sums s2

r(x) of series (1) under the only conditions 
that (p = {(pk(x)} is an ONS with properties (8) and (9), and a = {ak} is a system of 
coefficients satisfying (2). To this end, we recall that the (C, <5)-means in ques-
tion are defined as follows: 

•Ag r = 0 

1 « 
= 2 ak<Pk(x)), 

r = 0 r-lcllilsr 

where 

¿S = ( e + 5 ) ( e = 0 , 1, . . . ; < 5 > 0 ) . 
* Q ' 

For a positive integer <5 one can consider the following modified (C, <5)-means, too: 

5 e 2 Ai-ik\ak<pk(x), 
Ae Itlse 

in particular, for <5 = 1, 

| t | s e v 0 + 1 / 

Unfortunately, we can prove the statement that 

— 0 as Q — oo a.e. on / 

only in case 5 = 1 . In fact, writing 

= 2( 2 (r-\k\)ak<pk{x)), 
0 + J r = 0 r-lc|t|sr 

by virtue of the Kronecker lemma (see, e.g. [1, p. 72]) it is enough to show that the 
single orthogonal series 

¿TTT( 2 (r-\k\)akVk(x)) 
r = O r + i r-l<|*|Sr 
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converges a.e. on Id. But by the well-known Rademacher—Mensov theorem this is 
the case provided (2) is satisfied. 

After these preliminaries we state the following 

T h e o r e m 5. Assume that q> = {<pk(x)} is a product ONS on Id given by (8) and 
satisfying condition (9), a={ak} is a system of coefficients satisfying (2), and 8 is 
a positive number. Then the spherical partial sums s2

r(x) of series (1) are (C, S)-sum-
mable a.e. on Id. 

Taking into account of what has been said above on the trigonometric and 
Walsh systems, hence it follows immediately the following 

C o r o l l a r y . If (p = {(pk(x)} is the d-multiple trigonometric or Walsh system, 
then the spherical partial sums s2(x) of series (1) are (C, 5 >0)-summable a.e. on Id 

provided (2) is satisfied. 

R e m a r k s , (a) In the case when <p is the ¿/-multiple trigonometric system, 
STEIN [9] proved that the Bochner—Riesz means aa

Q(x) of series (1) defined by 

¿ i t o = 2 f i - ^ i - 1 (<?. 3^0) , 
Itl-ce^ 8 > 

converge to f ( x ) a.e. on ld provided series (1) is the ¿/-multiple Fourier expansion of 
a f u n c t i o n f ( x ) £ L " ( I d ) , where 

3 > d - T - { J - 1 ) a n d 

In particular, under condition (2) the means os
e(x) converge a.e. on ld again for 

every <5 >0. 
(b) As to the multiple Haar system, KEMHADZE [5] proved that the spherical 

partial sums of the expansion of a function f(x) with respect to the ¿/-multiple Haar 
system converge a.e. on Id provided / (x)££( Iog + L)d~l{Id). 

P r o o f of T h e o r e m 5. Our starting point is that under the conditions of 
the theorem the square partial sums sj(x) of series (1) converge a.e. on l d . We assume 
that d^2, since in case d= 1 we have ( r = 0 , 1 , ...). 

We will show that the subsequence {.^„.(x): m=0 , 1, ...} of the spherical par-
tial sums of (1) also converges a.e. on Id . This is an immediate consequence of 
Beppo Levi's theorem since 

2 I {sUx)-sUx))2dx = 2 ( 2 a f ) ^ 2 fll 

Here we took into account that {Ql^Q^m: m=0,1, ...} is a disjoint sequence of 

6• 
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sets. In fact, if for a certain m^ 1, then ^max^kj=dm and hence 

=S d1'2 max k: == dm+1'2, 
l s j s d 1 

i.e., for nSm + 1. On the other hand, 

max k: s d-1*\k\ > dm~1/2, lSJSd 1 

whence k$Q\J\Q\n follows for n^m—1. We note that we should have taken the 
"thicker" subsequence {j^m/sjix)} too, where [•] means the integral part. 

In order to make the proof complete, we apply a result of TANDORI [10] in a 
somewhat more general setting as stated originally and add some supplements. To 
this effect, let v = {vr: r=0, 1, . . .} be, as earlier, a sequence of integers, O s v 0 < 

..., and consider the vrth partial sums 

*vrOi) = 2 

of the orthogonal series (4) under condition (5). Now we form the (C, <5=-0)-means 
<Tp(v; Xj) of the subsequence {sv (Xj)}: 

(10) <Ta
c(v; x0 = 2 As

ez]SVr(xa) -
A n r = 0 

= 1 c M x j ) 

Ag ,=0 V t ^ v ^ . j + l / 

(<? = 0 , 1, ...; = - 1 ) . 
Then the above-mentioned theorem of Tandori can be stated in a more general 

form as follows. 
T h e o r e m B ([10, Hilfssatz I]). Let v={v r} be a strictly increasing sequence 

of nonnegative integers, and let ¿ > 0 and q> 1. Then, under condition (5), we have 

W \ m j (*i)-<V»](v; — 0 as m -•=>, and 

(ii) max ((Ti(v; x j - f f 1 (v; x j ) - 0 as m 

t9 J -«= r (9 J w • 

a.e. on I. 
This theorem is proved in [10] for the special case q=2, but the proof can be 

executed, without essential changes, for general too. 
Now, using the reasonings made in [4, pp. 186—187] for the special case vr=r, 

one can supplement (i)—(ii) as follows. 



85 F. Móricz: Convergence of multiple orthogonal series. I 

T h e o r e m C. Let v = {vr} be a strictly increasing sequence of nonnegative 
integers and let ¿>1/2. Then, under condition (5), we have 

(iii) - j ~ r 2 xj-a? (y; x j y - 0 as q 
Q+ i r= o 

a.e. on I. Consequently, if 

*i) -/(*i) as r <*= 
a.e. on I, then 

T ^ T 2 ( f fr _ 1(v; X l ) - f i x j y ^ 0 as e - ~ 
a.e. on I. 

Finally, we insert an elementary lemma which can be found e.g. in [4, p. 189]: 

(iv) If 5 > - 1 / 2 and 

-j-¿(<x?-s)2-0 as e — 
e + i r=o 

where the as
r are the (C, 8)-means of a numerical series, then, for every £>0, we have 

a3+1/2+. a s r ^ 0 o . 

Combining (i)—(iv) in such a manner as it is done in [4, pp. 189—190] for the 
case vr=r, one can conclude the following statement: 

Under condition (5), the a.e. convergence of the subsequence {sv^mj(xj): m = 
=0, 1, ...} of the partial sums of the orthogonal series (4) is equivalent to the a.e. 
convergence of the means x±): Q=0, 1, ...} defined by (10), where <5>0 and 
<7> 1 are fixed numbers. 

On closing, one more remark: the latter statement clearly holds true if the in-
terval I of orthogonality is replaced by any measure space X, in particular, by X=Id. 

This completes the proof of Theorem 5. 
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