On the a.e. convergence of multiple orthogonal series. I (Square and spherical partial sums)

F. MÓRICZ

1. Notations. Let Z^{d} be the set of d-tuples $k=\left(k_{1}, \ldots, k_{d}\right)$ with nonnegative integral coordinates. Let $\varphi=\left\{\varphi_{k}(x): k \in Z^{d}\right\}$ be an orthonormal system (in abbreviation: ONS) on the unit cube $x=\left(x_{1}, \ldots, x_{d}\right) \in I^{d}$, where $I=[0,1]$. Consider the d-multiple orthogonal series

$$
\begin{equation*}
\sum_{k \in Z^{d}} a_{k} \varphi_{k}(x)=\sum_{k_{1}=0}^{\infty} \ldots \sum_{k_{d}=0}^{\infty} a_{k_{1}, \ldots, k_{d}} \varphi_{k_{1}, \ldots, k_{d}}\left(x_{1}, \ldots, x_{d}\right), \tag{1}
\end{equation*}
$$

where $a=\left\{a_{k}: k \in Z^{d}\right\}$ is a system of coefficients, for which

$$
\begin{equation*}
\sum_{k \in Z^{d}} a_{k}^{2}<\infty \tag{2}
\end{equation*}
$$

Fixing a sequence $Q=\left\{Q_{r}: r=0,1, \ldots\right\}$ of finite sets in Z^{d} with properties

$$
Q_{0} \subset Q_{1} \subset Q_{2} \subset \ldots \quad \text { and } \quad \bigcup_{r=0}^{\infty} Q_{r}=Z^{d}
$$

our main goal is to study the convergence behaviour of the sums

$$
\begin{equation*}
s_{r}(x)=\sum_{k \in Q_{r}} a_{k} \varphi_{k}(x) \quad(r=0,1, \ldots) \tag{3}
\end{equation*}
$$

which can be regarded as a certain kind of partial sums of series (1). The case

$$
Q_{r}^{1}=\left\{k \in Z^{d}: \max _{1 \leqq j \leqq d} k_{j} \leqq r\right\}
$$

Received February 9, 1981.

Research completed while the author was on leave from Szeged University and a Visiting Professor at Ulm University, West Germany (supported by DAAD) and at The University of Western Ontario, Canada (supported by NSERC grant A-2983). The author gratefully acknowledges the support received at both places.
provides the square partial sums $s_{r}^{1}(x)$, while

$$
Q_{r}^{2}=\left\{k \in Z^{d}:|k|=\left(\sum_{j=1}^{d} k_{j}^{2}\right)^{1 / 2} \leqq r\right\}
$$

provides the spherical partial sums $s_{r}^{2}(x)$ of (1).
2. A.e. convergence of $\left\{s_{r}(x): r=0,1, \ldots\right\}$. Denote by $M(d, Q)$ the class of those systems $a=\left\{a_{k}: k \in Z^{d}\right\}$ of coefficients for which the sequence $\left\{s_{r}(x)\right\}$ defined by (3) converges a.e. for every ONS $\varphi=\left\{\varphi_{k}(x): k \in Z^{d}\right\}$ on I^{d}. The set of measure zero of the divergence points may vary with each φ.

One can easily see that if $a \in M(d, Q)$, then (2) is necessarily satisfied. This follows from the obvious fact that the d-multiple Rademacher system

$$
\left\{r_{k}(x)\right\}=\left\{\prod_{j=1}^{d} r_{k_{j}}\left(x_{j}\right): k=\left(k_{1} ; \ldots, k_{d}\right) \in Z^{d} \quad \text { and } \quad x=\left(x_{1}, \ldots ; x_{d}\right) \in I^{d}\right\}
$$

consists of stochastically independent functions and thus, for every choice of the sequence $Q=\left\{Q_{r}: r=0,1, \ldots\right\}$ of finite sets in Z^{d}, the sequence $\left\{s_{r}(x)\right\}$ defined by (3) for $\varphi=\left\{r_{k}(x)\right\}$ converges a.e. or diverges a.e. according as (2) is satisfied or not.

For a given system $a=\left\{a_{k}: k \in Z^{d}\right\}$ of coefficients we set

$$
\mathscr{I}(a ; d, Q, \varrho)=\sup \int_{I a}\left(\max _{0 \leq r \leq e}\left|s_{r}(x)\right|\right)^{2} d x
$$

where the supremum is taken over all ONS $\varphi=\left\{\varphi_{k}(x): k \in Z^{d}\right\}$ on I^{d} and $d x=$ $=d x_{1} \ldots d x_{d}$, further,

$$
\|a ; d, Q\|=\lim _{\varrho \rightarrow \infty} \mathscr{J}^{1 / 2}(a ; d, Q, \varrho) \leqq \infty .
$$

This limit exists since $\mathscr{I}(a ; d, Q, \varrho)$ is nondecreasing in ϱ.
Theorem 1. (i) $a \in M(d, Q)$ if and only if $\|a ; d, Q\|<\infty$;
(ii) $M(d, Q)$ endowed with the norm $\|\cdot ; d, Q\|$ is a separable Banach space.

This theorem is essentially a reformulation of an earlier result of Tandori [11].
To this effect, let $\psi=\left\{\psi_{k_{1}}\left(x_{1}\right): k=0,1, \ldots\right\}$ be a single ONS on 1 . Consider the ordinary orthogonal series

$$
\begin{equation*}
\sum_{k_{1}=0}^{\infty} c_{k_{1}} \psi_{k_{1}}\left(x_{1}\right) \tag{4}
\end{equation*}
$$

where $c=\left\{c_{k_{1}}: k_{\mathbf{1}}=0,1, \ldots\right\}$ is a sequence of coefficients for which

$$
\begin{equation*}
\sum_{k_{1}=0}^{\infty} c_{k_{1}}^{2}<\infty \tag{5}
\end{equation*}
$$

Fixing a sequence $v=\left\{v_{r}: r=0,1, \ldots\right\}$ of integers with the property $0 \leqq v_{0}<v_{1}<$ $<v_{2}<\ldots$, denote by $M(v)$ the class of those sequences $c=\left\{c_{k_{1}}\right\}$ for which the v_{r} th partial sums of series (4) converge a.e. for every ONS $\psi=\left\{\psi_{k_{1}}\left(x_{1}\right)\right\}$ on I.

For a given sequence $c=\left\{c_{k_{1}}\right\}$ of coefficients we set

$$
\begin{equation*}
\mathscr{I}(c ; v, \varrho)=\sup \int_{I}\left(\left.\max _{0 \leqq r \leq e}\right|_{k_{1}=0} ^{v_{r}} c_{k_{1}} \psi_{k_{1}}\left(x_{1}\right)\right)^{2} d x_{1}, \tag{6}
\end{equation*}
$$

where the supremum is taken over all ONS $\psi=\left\{\psi_{k_{1}}\left(x_{1}\right)\right\}$ on I, and

$$
\|c ; v\|=\lim _{e \rightarrow \infty} \mathscr{I}^{1 / 2}(c ; v, \varrho) \leqq \infty .
$$

It is not hard to see that

$$
\mathscr{I}(c ; v, \varrho)=\sup \int_{I}\left(\max _{0 \leq r \leq e}\left|\sum_{m_{1}=0}^{r} C_{m_{1}} \Psi_{m_{1}}\left(x_{1}\right)\right|\right)^{2} d x_{1}
$$

where

$$
C_{m}=\left(\sum_{k_{1}=v_{m-1}+1}^{v_{m}} c_{k_{1}}^{2}\right)^{1 / 2} \quad\left(m=0,1, \ldots ; v_{-1}=-1\right)
$$

and the supremum is taken over all ONS $\left\{\Psi_{m_{1}}\left(x_{1}\right)\right\}$ on I.
After these preliminaries the above-mentioned theorem of Tandori reads as follows.

Theorem A [11, Satz II]. (i) $c \in M(v)$ if and only if $\|c ; v\|<\infty$;
(ii) $M(v)$ endowed with the norm $\|\cdot ; v\|$ is a separable Banach space.

Now, it is a trivial observation that Theorem A remains valid if instead of the single ONS $\psi=\left\{\psi_{k_{1}}\left(x_{1}\right): k_{1}=0,1, \ldots\right\}$ on I we consider the d-multiple ONS $\varphi=$ $=\left\{\varphi_{k}(x): k \in Z^{d}\right\}$ on I^{d} and take the integrals over I^{d} instead of I in (6). In fact, the sufficiency part in (i) is true over any measure space X (instead of $X=I$ or I^{d}), while the necessity part in (i) can be shown by the following simple observation: let $v_{r}=\left|Q_{r}\right|$, the number of the lattice points of Z^{d} contained in the set Q_{r}, and let $\varphi_{k}\left(x_{1}, \ldots, x_{d}\right)=\psi_{m_{1}}\left(x_{1}\right)$, where the mapping $k=k\left(m_{1}\right)$ is one-to-one for each pair $v_{r-1}<m_{1} \leqq v_{r}$ and $k \in Q_{r} \backslash Q_{r-1}\left(r=0,1, \ldots ; v_{-1}=-1\right.$ and $\left.Q_{-1}=\emptyset\right)$. Consequently, Theorem 1 is really a reformulation of Theorem A.

In the light of what has been said above, the result of [11, Satz III] can be reformulated as follows.

Theorem 2. If two systems $a=\left\{a_{k}: k \in Z^{d}\right\}$ and $b=\left\{b_{k}: k \in Z^{d}\right\}$ of coefficients are such that

$$
B_{r}=\left\{\sum_{k \in Q_{r} \backslash Q_{r-1}} b_{k}^{2}\right\}^{1 / 2} \leqq\left\{\sum_{k \in Q_{r} \backslash Q_{r-1}} a_{k}^{2}\right\}^{1 / 2}=A_{r} \quad(r=0,1, \ldots),
$$

then

$$
\|b ; d, Q\| \leqq\|a ; d, Q\| ;
$$

consequently, if $a \in M(d, Q)$ then $b \in M(d, Q)$.
It is of interest to give an upper estimate for the norm $\|\cdot ; d, Q\|$ which turns out to be exact in certain cases.

Theorem 3. In each case we have

$$
\begin{equation*}
\|a ; d, Q\| \leqq C_{1}\left\{\sum_{r=0}^{\infty}\left(\sum_{k \in Q_{r} \backslash Q_{r-1}} a_{k}^{2}\right) \log ^{2}(r+2)\right\}^{1 / 2} \tag{7}
\end{equation*}
$$

and in the special case when

$$
A_{r}=\left\{\sum_{k \in Q_{r} \backslash Q_{r-1}} a_{k}^{2}\right\}^{1 / 2} \geqq\left\{\sum_{k \in Q_{r+1} \backslash Q_{r}} a_{k}^{2}\right\}^{1 / 2}=A_{r+1} \quad(r=0,1, \ldots)
$$

an inequality opposite to (7) holds also true:

$$
\|a ; d, Q\| \geqq C_{2}\left\{\sum_{r=0}^{\infty}\left(\sum_{k \in Q_{r} \backslash Q_{r-1}} a_{k}^{2}\right) \log ^{2}(r+2)\right\}^{1 / 2}
$$

Here C_{1} and C_{2} are positive constants depending only on d.
To prove Theorem 3 one has to start with the results of [7, Theorems 1 and 2] and to argue in a similar manner as it is done during the proof of [11, Satz VII].

We note that in the cases of the square and the spherical partial sums the righthand sides in inequality (7) coincide, up to a constant:

$$
\left\|a ; d, Q^{i}\right\| \leqq C_{1}\left\{\sum_{k \in Z^{d}} a_{k}^{2} \log ^{2}(|k|+2)\right\}^{1 / 2} \quad(i=1,2)
$$

In spite of this fact, the norms $\left\|a ; d, Q^{1}\right\|$ and $\left\|a ; d, Q^{2}\right\|$ are not equivalent to each other in case $d \geqq 2$.

Theorem 4. If $d \geqq 2$, then there exists a system $a=\left\{a_{k}: k \in Z^{d}\right\}$ of coefficients for which

$$
\left\|a ; d, Q^{1}\right\|<\infty \quad \text { and } \quad\left\|a ; d, Q^{2}\right\|=\infty
$$

and vice versa, there exists a system $a=\left\{a_{k}: k \in Z^{d}\right\}$ of coefficients for which

$$
\left\|a ; d, Q^{1}\right\|=\infty \quad \text { and } \quad\left\|a ; d, Q^{2}\right\|<\infty .
$$

This is an easy consequence of Theorem 1 and [7, Theorem 3].
We note that the result stated in [7, Theorem 3] can be strengthened in the following way:

Let T be a regular method of summation (see. e.g., [14; p. 74]). Then there exists a double orthogonal series (1) such that (2) is satisfied, its square partial sums converge
a.e., but its spherical partial sums are not summable by the method T a.e. on 1^{2}; and vice versa.

In the proof of the latter assertion one has to use a result of [4, p. 183]:
For every regular method T of summation there exists a strictly increasing sequence $\left\{\mu_{r}: r=0,1, \ldots\right\}$ of positive integers such that the a.e. T-summability of series (4) under condition (5) involves the a.e. convergence of the μ_{r} th partial sums of (4).

Keeping in mind the proof of [7, Theorem 3] one's task is essentially reduced to the construction of a single orthogonal series (4) with condition (5), the μ_{r} th partial sums of which diverge a.e., while the $\mu_{2 r}$ th partial sums of which converge a.e. on I. This construction can be certainly done if the ratio μ_{r+1} / μ_{r} is large enough ($r=0,1, \ldots$), and the last condition may be assumed without loss of generality.
3. A.e. $(C, \delta>0)$-summability of the spherical partial sums. Up to this point we studied the convergence properties of series (1) in the setting when $a=\left\{a_{k}: k \in Z^{d}\right\}$ is a fixed system of coefficients, while $\varphi=\left\{\varphi_{k}(x): k \in Z^{d}\right\}$ runs over all the ONS on I^{d}. From now on we consider an individual ONS $\varphi=\left\{\varphi_{k}\right\}$ on I^{d} with some nice properties and let $a=\left\{a_{k}\right\}$ run over all the systems of coefficients satisfying condition (2).

To this aim, we assume that $\varphi=\left\{\varphi_{k}(x): k \in Z^{d}\right\}$ is a product ONS on I^{d} in the sense that there exists a single ONS $\psi=\left\{\psi_{k_{1}}\left(x_{1}\right): k_{1}=0,1, \ldots\right\}$ on I such that

$$
\begin{equation*}
\varphi_{k}(x)=\prod_{j=1}^{d} \psi_{k_{j}}\left(x_{j}\right), \quad k=\left(k_{1}, \ldots, k_{d}\right) \text { and } x=\left(x_{1}, \ldots, x_{d}\right) ; \tag{8}
\end{equation*}
$$

furthermore, we assume that the system $\psi=\left\{\psi_{k_{1}}\left(x_{1}\right)\right\}$ is such that for every sequence $c=\left\{c_{k_{1}}: k_{1}=0,1, \ldots\right\}$ of coefficients we have

$$
\begin{equation*}
\int_{I}\left(\max _{0 \leqq r \leqq Q}\left|\sum_{k_{1}=0}^{r} c_{k_{1}} \psi_{k_{1}}\left(x_{1}\right)\right|\right)^{2} d x_{1} \leqq C \sum_{k_{1}=0}^{\varrho} c_{k_{1}}^{2} \quad(\varrho=0,1, \ldots) \tag{9}
\end{equation*}
$$

where C is a positive constant. Inequality (9) implies, among others, that series (4) converges a.e. under condition (5). The fact that inequality (9) is satisfied for the ordinary trigonometric system $\psi=\left\{1, \cos 2 \pi k_{1} x_{1}, \sin 2 \pi k_{1} x_{1}: k_{1}=1,2, \ldots\right\}$ is due to Hunt [3], while for the Walsh system $\psi=\left\{w_{k_{1}}\left(x_{1}\right): k_{1}=0,1, \ldots\right\}$ is due to Siölin [8].

It is not hard to conclude from (9) the following upper estimate for the maximum of the square partial sums $s_{r}^{1}(x)$ of series (1):

$$
\int_{I^{d}}\left(\max _{0 \leqq r \leq Q}\left|s_{r}^{1}(x)\right|\right)^{2} d x \leqq 2^{d} C^{d} \sum_{k \in Q_{Q}} a_{k}^{2} \quad(\varrho=0,1, \ldots) .
$$

This means that the square partial sums $s_{r}^{1}(x)$ converge a.e. on I^{d} provided (2) is satisfied. (For more details, see [12] and [6].)

The question of a.e. convergence of the spherical partial sums $s_{r}^{2}(x)$ of series (1) under condition (2) seems to us to be an open problem for $d \geqq 2$. As to the multiple trigonometric system, we cite here two papers by Russian mathematicians. On the one hand, Tevzadze [13] published in 1973 that he managed to prove that the spherical partial sums of the double Fourier expansion of a function $f\left(x_{1}, x_{2}\right)$ from $L^{p}\left(I^{2}\right)$ with $p>1$ converge a.e. on I^{2}, but the proof turned out to be false even in case $p=2$. On the other hand, Buadze [2] announced in 1976 the existence of a continuous function $f\left(x_{1}, x_{2}\right)$ on I^{2} such that the spherical partial sums of the double Fourier expansion of $f\left(x_{1}, x_{2}\right)$ diverge everywhere, but the construction has not yet appeared.

We are unable to decide this question. However, we can prove the a.e. ($C, \delta>0$)summability of the spherical partial sums $s_{r}^{2}(x)$ of series (1) under the only conditions that $\varphi=\left\{\varphi_{k}(x)\right\}$ is an ONS with properties (8) and (9), and $a=\left\{a_{k}\right\}$ is a system of coefficients satisfying (2). To this end, we recall that the ($C, \delta)$-means $\sigma_{e}^{\delta}(x)$ in question are defined as follows:

$$
\begin{aligned}
\sigma_{Q}^{\delta}(x) & =\frac{1}{A_{e}^{\delta}} \sum_{r=0}^{e} A_{Q-r}^{\delta-1} s_{r}^{2}(x)= \\
& =\frac{1}{A_{\varrho}^{\delta}} \sum_{r=0}^{e} A_{Q-r}^{\delta}\left(\sum_{r-1<|k| \leqq r} a_{k} \varphi_{k}(x)\right),
\end{aligned}
$$

where

$$
A_{e}^{\delta}=\binom{\varrho+\delta}{\varrho} \quad(\varrho=0,1, \ldots ; \delta>0)
$$

For a positive integer δ one can consider the following modified (C, δ)-means, too:

$$
\tilde{\sigma}_{e}^{\delta}(x)=\frac{1}{A_{e}^{\delta}} \sum_{|k| \leq e} A_{\varrho-|k|}^{\delta} a_{k} \varphi_{k}(\dot{x})
$$

in particular, for $\delta=1$,

$$
\tilde{\sigma}_{e}^{1}(x)=\sum_{|k| \leqq \varrho}\left(1-\frac{|k|}{\varrho+1}\right) a_{k} \varphi_{k}(x) .
$$

Unfortunately, we can prove the statement that

$$
\sigma_{e}^{\delta}(x)-\tilde{\sigma}_{e}^{\delta}(x) \rightarrow 0 \quad \text { as } \varrho \rightarrow \infty \quad \text { a.e. on } I
$$

only in case $\delta=1$. In fact, writing

$$
\sigma_{\varrho}^{1}(x)-\tilde{\sigma}_{\varrho}^{1}(x)=\frac{1}{\varrho+1} \sum_{r=0}^{\varrho}\left(\sum_{r-1<|k| \equiv r}(r-|k|) a_{k} \varphi_{k}(x)\right)
$$

by virtue of the Kronecker lemma (see, e.g. [1, p. 72]) it is enough to show that the single orthogonal series

$$
\sum_{r=0}^{\infty} \frac{1}{r+1}\left(\sum_{r-1<|k| \leq r}(r-|k|) a_{k} \varphi_{k}(x)\right)
$$

converges a.e. on I^{d}. But by the well-known Rademacher-Menšov theorem this is the case provided (2) is satisfied.

After these preliminaries we state the following
Theorem 5. Assume that $\varphi=\left\{\varphi_{k}(x)\right\}$ is a product ONS on I^{d} given by (8) and satisfying condition (9), $a=\left\{a_{k}\right\}$ is a system of coefficients satisfying (2), and δ is a positive number. Then the spherical partial sums $s_{r}^{2}(x)$ of series (1) are (C, δ)-summable a.e. on I^{d}.

Taking into account of what has been said above on the trigonometric and Walsh systems, hence it follows immediately the following

Corollary. If $\varphi=\left\{\varphi_{k}(x)\right\}$ is the d-multiple trigonometric or Walsh system, then the spherical partial sums $s_{r}^{2}(x)$ of series (1) are $(C, \delta>0)$-summable a.e. on I^{d} provided (2) is satisfied.

Remarks. (a) In the case when φ is the d-multiple trigonometric system, Stein [9] proved that the Bochner-Riesz means $\tilde{\tilde{\sigma}}_{\boldsymbol{d}}^{\delta}(x)$ of series (1) defined by

$$
\tilde{\tilde{\sigma}}_{\varrho}^{\delta}(x)=\sum_{|k|<\varrho}\left(1-\frac{|k|^{2}}{\varrho^{2}}\right)^{\delta} a_{k} \varphi_{k}(x) \quad(\varrho, \delta>0)
$$

converge to $f(x)$ a.e. on I^{d} provided series (1) is the d-multiple Fourier expansion of a function $f(x) \in L^{p}\left(I^{d}\right)$, where

$$
\delta>\frac{d-1}{2}\left(\frac{2}{p}-1\right) \quad \text { and } \quad 1<p \leqq 2
$$

In particular, under condition (2) the means $\tilde{\tilde{\sigma}}_{e}^{\delta}(x)$ converge a.e. on I^{d} again for every $\delta>0$.
(b) As to the multiple Haar system, Kemhadze [5] proved that the spherical partial sums of the expansion of a function $f(x)$ with respect to the d-multiple Haar system converge a.e. on I^{d} provided $f(x) \in L\left(\log ^{+} L\right)^{d-1}\left(I^{d}\right)$.

Proof of Theorem 5. Our starting point is that under the conditions of the theorem the square partial sums $s_{r}^{1}(x)$ of series (1) converge a.e. on I^{d}. We assume that $d \geqq 2$, since in case $d=1$ we have $s_{r}^{2}(x) \equiv s_{r}^{1}(x)(r=0,1, \ldots)$.

We will show that the subsequence $\left\{s_{d^{m}}^{2}(x): m=0,1, \ldots\right\}$ of the spherical partial sums of (1) also converges a.e. on I^{d}. This is an immediate consequence of Beppo Levi's theorem since

$$
\sum_{m=0}^{\infty} \int_{I^{a}}\left(s_{d^{m}}^{1}(x)-s_{d^{m}}^{2}(x)\right)^{2} d x=\sum_{m=0}^{\infty}\left(\sum_{k \in Q_{d^{m} \backslash Q_{d^{m}}^{1}}^{2}} a_{k}^{2}\right) \leqq \sum_{k \in Z^{a}} a_{k}^{2}<\infty .
$$

Here we took into account that $\left\{Q_{d^{m}}^{1} \backslash Q_{d^{m}}^{2}: m=0,1, \ldots\right\}$ is a disjoint sequence of
sets. In fact, if $k \in Q_{d^{m}}^{1} \backslash Q_{d^{m}}^{2}$ for a certain $m \geqq 1$, then $\max _{1 \leqq j \leqq d} k_{j}=d^{m}$ and hence

$$
|k| \leqq d^{1 / 2} \max _{1 \leqq j \leqq d} k_{j} \leqq d^{m+1 / 2}
$$

i.e., $k \notin Q_{d^{n}}^{1} \backslash Q_{d^{n}}^{2}$ for $n \geqq m+1$. On the other hand,

$$
\max _{1 \leqq j \leqq d} k_{j} \geqq d^{-1 / 2}|k|>d^{m-1 / 2}
$$

whence $k \notin Q_{d^{n}}^{1} \backslash Q_{d^{n}}^{2}$ follows for $n \leqq m-1$. We note that we should have taken the "thicker" subsequence $\left\{s_{\left[d^{m} / 2\right]}^{2}(x)\right\}$ too, where $[\cdot]$ means the integral part.

In order to make the proof complete, we apply a result of Tandori [10] in a somewhat more general setting as stated originally and add some supplements. To this effect, let $v=\left\{v_{r}: r=0,1, \ldots\right\}$ be, as earlier, a sequence of integers, $0 \leqq v_{0}<$ $<v_{1}<v_{2}<\ldots$, and consider the v_{r} th partial sums

$$
\tilde{s}_{v_{r}}\left(x_{1}\right)=\sum_{k_{1}=1}^{v_{r}} c_{k_{1}} \psi_{k_{1}}\left(x_{1}\right)
$$

of the orthogonal series (4) under condition (5). Now we form the ($C, \delta>0$)-means $\sigma_{e}^{\delta}\left(v ; x_{1}\right)$ of the subsequence $\left\{\tilde{s}_{v_{r}}\left(x_{1}\right)\right\}$:

$$
\begin{align*}
& \sigma_{\varrho}^{\delta}\left(v ; x_{1}\right)=\frac{1}{A_{Q}^{\delta}} \sum_{r=0}^{\varrho} A_{Q-r}^{\delta-1} \tilde{v}_{v_{r}}\left(x_{1}\right)= \tag{10}\\
&=\frac{1}{A_{Q}^{\delta}} \sum_{r=0}^{\varrho} A_{\varrho-r}^{\delta}\left(\sum_{k_{1}=v_{r-1}+1}^{v_{r}} c_{k_{1}} \psi_{k_{1}}\left(x_{1}\right)\right) \\
&\left(\varrho=0,1, \ldots ; v_{-1}=-1\right) .
\end{align*}
$$

Then the above-mentioned theorem of Tandori can be stated in a more general form as follows.

Theorem B ([10, Hilfssatz I]). Let $v=\left\{v_{r}\right\}$ be a strictly increasing sequence of nonnegative integers, and let $\delta>0$ and $q>1$. Then, under condition (5), we have
(i) $\quad \tilde{s}_{\nu_{\left[q^{m}\right]}}\left(x_{1}\right)-\sigma_{\left[q^{m}\right]}^{1}\left(v ; x_{1}\right) \rightarrow 0$ as $m \rightarrow \infty$, and
(ii) $\max _{\left[q^{m}\right]<r<\left[q^{m+1}\right]}\left(\sigma_{r}^{1}\left(v ; x_{1}\right)-\sigma_{\left[q^{m}\right]}^{1}\left(v ; x_{1}\right)\right) \rightarrow 0$ as $m \rightarrow \infty$ a.e. on I.

This theorem is proved in [10] for the special case $q=2$, but the proof can be executed, without essential changes, for general $q>1$, too.

Now, using the reasonings made in [4, pp. 186-187] for the special case $v_{r} \equiv r$, one can supplement (i)-(ii) as follows.

Theorem C. Let $v=\left\{v_{r}\right\}$ be a strictly increasing sequence of nonnegative integers and let $\delta>1 / 2$. Then, under condition (5), we have
(iii) $\frac{1}{\varrho+1} \sum_{r=0}^{\varrho}\left(\sigma_{r}^{\delta-1}\left(v ; x_{1}\right)-\sigma_{r}^{\delta}\left(v ; x_{1}\right)\right)^{2} \rightarrow 0 \quad$ as $\varrho \rightarrow \infty$
a.e. on I. Consequently, if

$$
\sigma_{r}^{\delta}\left(v ; x_{1}\right) \rightarrow f\left(x_{1}\right) \text { as } r \rightarrow \infty
$$

a.e. on I, then

$$
\frac{1}{\varrho+1} \sum_{r=0}^{\varrho}\left(\sigma_{r}^{\delta-1}\left(v ; x_{1}\right)-f\left(x_{1}\right)\right)^{2} \rightarrow 0 \quad \text { as } \varrho \rightarrow \infty
$$

a.e. on I.

Finally, we insert an elementary lemma which can be found e.g. in [4, p. 189]:
(iv) If $\delta>-1 / 2$ and

$$
\frac{1}{\varrho+1} \sum_{r=0}^{\varrho}\left(\sigma_{r}^{\delta}-s\right)^{2} \rightarrow 0 \quad \text { as } \varrho \rightarrow \infty,
$$

where the σ_{r}^{δ} are the (C, δ)-means of a numerical series, then, for every $\varepsilon>0$, we have

$$
\sigma_{r}^{\delta+1 / 2+\varepsilon} \rightarrow s \text { as } r \rightarrow \infty .
$$

Combining (i)-(iv) in such a manner as it is done in [4, pp. 189-190] for the case $v_{r} \equiv r$, one can conclude the following statement:

Under condition (5), the a.e. convergence of the subsequence $\left\{\tilde{s}_{\left.v_{[q]}\right]}\left(x_{1}\right): m=\right.$ $=0,1, \ldots\}$ of the partial sums of the orthogonal series (4) is equivalent to the a.e. convergence of the means $\left\{\sigma_{\rho}^{\delta}\left(v ; x_{1}\right): \varrho=0,1, \ldots\right\}$ defined by (10), where $\delta>0$ and $q>1$ are fixed numbers.

On closing, one more remark: the latter statement clearly holds true if the interval I of orthogonality is replaced by any measure space X, in particular, by $X=I^{d}$.

This completes the proof of Theorem 5.

References

[1] G. Alexits, Convergence properties of orthogonal series, Pergamon (Oxford-New York, 1961).
[2] A. I. Buadze, On the divergence of the spherical partial sums of multiple Fourier series (Russian), Soobš̌c. Akad. Nauk Gruzin. SSR, 94 (1976), 561-563.
[3] R. A. HUNT, On the convergence of Fourier series, Orthogonal expansions and their continuous analogues (Proc. Conf. Southern Illinois University, Edwardsville, 1967); 235-256, SIU (Carbondale, Illinois, 1968).
[4] S. Kaczmarz und H. Steinhaus, Theorie der Orthogonalreihen, Chelsea (New York, 1951).
[5] G. G. Kemhadze, On the convergence of the spherical partial sums of multiple Fourier-Haar series (Russian), Trudy Thilissk. Univ., 8 (1977), 27-38.
[6] F. Mórıcz, On the convergence of double orthogonal series, Analysis Math., 2 (1976), 287-304.
[7] F. Móricz, On the square and the spherical partial sums of multiple orthogonal series, Acta Math. Acad. Sci. Hungar., 37 (1981), 255-261.
[8] P. Sü̈lin, An inequality of Paley and convergence a.e. of Walsh-Fourier series, Arkiv Mat., 7 (1967-69), 551-570.
[9] E. M. Stein, Localization and summability of multiple Fourier series, Acta Math., 100 (1958), 93-147.
[10] K. Tandori, Über die orthogonalen Funktionen. VI (Eine genaue Bedingung für die starke Summation), Acta Sci. Math., 20 (1959), 14-18.
[11] K. Tandori, Über die Konvergenz der Orthogonalreihen. II, Acta Sci. Math., 25 (1964), 219— 232.
[12] N. R. Tevzadze, On the convergence of the double Fourier series of quadratic summable functions (Russian), Soobšc. Akad. Nauk Gruzin. SSR, 58 (1970), 277-279.
[13] N. R. Tevzadze, Convergence of the spherical partial sums of a double Fourier series (Russian), Soobšc. Akad. Nauk Gruzin. SSR, 70 (1973), 277-280.
[14] A. Zygmund, Trigonometric series. I (Cambridge, 1959).

