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A projection principle concerning biholomorphic automorphisms

L. L. STACHO ~

1. Introduction

Let E denote a Banach space and D be a bounded domain in E. A mapping F
of D onto itself is called a biholomorphic automorphism of D if the Fréchet deriva-
tive of F exists at each point x€D and is a bounded invertible linear E-operator.
Our basic motivation in this article is the problem of describing Aut B(E) the group
of all biholomorphic automorphisms of the unit ball B(E) of E. By recent results
of W. Kaupr [7] and J.-P. ViGUE [18], this problem stands in a close relationship with
that of the classification of symmetric complex Banach manifolds which is solved
since a long time in the finite dimensional case [2] but fairly not settled for infinite
dimensions.

In 1979, E. VESENTINI {16] has shown that the unit ball of a nontrivial L'-space
admits only linear biholomorphic automorphisms. His proof goes back to investi-
gations on Aut-invariant distances and a classical two dimensional result of M.
Krimixos [9]. Using a characterization of polynomial vector fields tangent to dB(E)
(the boundary of B(E)) we found [11] an essentially two dimensional argument that
enabled us to establish the sufficent and necessary condition for an L?-space to have
only linear unit ball automorphisms (for different approaches cf. also [1], [16]).

The purpose of Section 2 the general abstract part of this work is to clear up the
deeper geometric background and connections of the seemingly different methods
in treating LP-spaces that occur in [16] and [11], respectively. Our main theorem pro-
vides a sufficent condition in terms of the Carathéodory (or Kobayashi) metric to
reconstruct the biholomorphic automorphism group of Banach manifolds from
those of its certain submanifolds via holomorphic projections. This result seems to
be very well suited in calculating explicitly Aut B(F)in various Banach spaces E ad-
mitting a sufficiently large family of contractive linear projections. In Section 3 we
illustrate the use of this projection principle by two typical examples where the con-
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clusion seems hardly available with other already published methods: After nu-
merous partial solutions, recently T. FRANZONI [4] gave the complete description
of AutB(¥(H,,H;)) where %(H,, H;)={bounded linear operators H,—~H,}
and H,, H, are arbitrary Hilbert spaces. As we shall see, the projection principle
makes it possible to obtain the exact description of Aut B(H,®...® H,) in an ele-
mentary way where H,® ... ® H,={continuous n-linear functionals H;X...XH,—~
—~C}). Note that ¥(H,, H;)~H,®H, and for n=3,H,®...@H, cannot be
equipped with a suitable J *-structure on which Franzoni’s method is based. The key
of the reduction by the projection principle is the fact that in finite dimensions the
strong precompactness of B(H,®...® H,) considerably simplifies the treatment
of the space (Section 4). The second application concerns atomic Banach lattices.
The unit balls of finite dimensional such spaces are exactly the convex Reinhardt
domains. In 1974, T. SuNaDA [13] characterized Aut, D for all the bounded Rein-
hardt domains D. However, his proofs depend on the Cartan theory of finite dimen-
sional semisimple Lie algebras thus cannot be carried out in infinite dimensions.
If the finite dimensional ideals form a dense submanifold, the projection principle
reduces even the most general case to some straightforward 2 dimensional consider-
ations. We remark that in this way also Sunada’s proof can be simplified and the
method applies in parts to other Banach lattices (cf. [12]).

2. Projection principle

Our main abstract result concerns with holomorphic vector fields on complex
Banach manifolds (for basic definitions see [17], [7, § 2]). If M denotes a complex
Banach manifold, a vector field v: M ~TM is complete in M iff for every x€M,

there exists a mapping e,: R—-M such that e,(0)=x and %e,it):v(e,(t))

vt€R. In this case we define exp (w)(x)=e,(t). A function §:TM—-R, is
called a differential Finsler metric on M if for any fixed x€M, the functional
T .M>w—d(x,w) is convex and positive-homogeneous and for each coordinate-
map (U, ®), the function fU:?: dU>e—~5(P e, v(P %)) is locally bounded and
lower semicontinuous whenever » is a holomorphic vector field on M. We shall
write d,, for the Carathéodory distance [3], [17] on M, i.e. dy(x,y)=sup {areath
F(p): F is a holomorphic M- A function, F(x)=0} where A={{cC:|[{|<1}.
For a holomorphic mapping F: M—~M, we denote by F’ its Fréchet derivative
(recall that for any fixed x€M, F’(x) is a bounded linear T, M —T,M operator).
For a Banach space E, we shalldenoteby E*, || |,~ and B(E) its dual, norm, closure
operation and open unit ball, respectively.
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2.1. Theorem. Let M be a complex Banach manifold, M’ a (complex) sub-
manifold of M and v a complete holomorphic vector field on M. Suppose P is a holo-
morphic mapping of M onto M’ such that P|,,.=id,, (the identity mapping on M’).

Suppose there exists a differential Finsler metric 6 on M’ such that

(i) the vector field P'v|,, is 6-bounded (i.e. 51611:{ 3(x, P/(x) v(x)) <<o)
X

and by writing d for the intrinsic distance generated by 6 on M’,

(ii) the topology of the metric d is finer than that of M’,

(iii) for any sequence xy, x,,...€M’ which is a Cauchy sequence with respect
to d but which is not convergent in M’ we have d,.(x,,x,)—>c (n—o0).

Then the vector field Pv is complete in M’.

Proof. For the sake of simplicity, the proof will be divided into three steps.

1) From the definition of Carathéodory distance we see immediately that
dp (%, ¥)=dy(x,¥) Vx,yeEM’ since M’c M. It is also well-known [2] that the
mapping P is a d,—d,. contraction. Hence the relation P|,,=id,, entails
dy(x, y)=dy(x,y). Thus we obtained dy.=dyl,..

In the sequel, we set a,(t)=exp ()(x) (xeM, teR) and b, will denote the

maximal solution of the initial value problem {d_a; y=P (v (y); y(0)=x}.

We show that for arbitrarily fixed zeM’,

(M dy:(Pa.(h), b.(h)) = o(h) (h ~0).

Indeed: Consider any coordinate-map (U, ®) from the atlas of M’ for which
zeU. We may assume without loss of generality that & is a biholomorphism between

U and the open unit ball of some Banach space E. Then for all he{tedom b,:

b, (1)€ ¢‘1(7IB(E)]} we have

dyg-(Pa,(h), b, (h)) = d(Pa,(h), b,(h)) = dacey(®Pa,(h), Db.(h) =
= p||®Pa,(h)—Db,(h)|

where uzsup{dB(E)(f,g)/Hf—gll:f,ge—é-B(E)}. It is easily seen that u=

1 1
=2 sup {dsn (/111 fe5 BEE) =2 sup {171 areath | 111 /I = 5} <
The estimate || PPa,(h)— Db (h)|=0(h) (j—0) can be verified as follows:

By definition, a is the solution of the initial value problem {%y=v(y), y(0)=z}.
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Therefore ||®a,(h)—(®z+h®"v(2))|=0(h).  Thus —d‘% [ @Pa,(h)— Db, (h)]=
0

= %1- ®Pa,(h)— D' P'v(z)= ' P'v(z)— &' P'v(2)=0.
(1]

An application of (1) directly yields that for any x, yeM’,
[dM (bx(h), by () —dp(x, Y)) = [d,u (Pa,(h), Pa,(h))—dp-(x, y)] =

Ihl [dM(ax(h) a,(h)—dy(x, y)I =

(since P is a contraction dy,—~d,, and d,.=dyl,.).

2) Henceforth we proceed by contradiction. Assume that the vector field P»
is not complete in M’.

Now we may fix a point x€ M’ such that dom b,R. Let ¢, be a boundary
point of the interval (or ray) dom b,. Since Ocdomb,, we have #,>0." So (by

1 .
passing to the vector field —t—v) we may assume f,==1. Then consider the function
(1]

0(t) = dy, [b,,(t), bx[t+%)] [tE [O, %]]

1 1 i
Since b, (t+h)=b, ,(h) and b, [t+5+h)=bbx (t+3)(h) whenever 1, t+h, 1+,

1
t+3+h6[0, 1), from step 3) it follows that

— 0(t+h)— o) _ 1

We show that the function g is locally Lipschitzian. Since the conclusion of the
previous step can be interpreted as o’(¢)=0 for all such values ¢ where ¢’ (¢) exists,
hence we obtain that ¢ is constant ie.

@ dyy [b,,(:), b, (t+—21—]] =dy. [x, b, (%}] vie [o, -21-]

Proof. By triangle inequality, it suffices to see that for any ze M’, the mapping
t—b () is locally Lipschitzian with respect to the metric d,,.,. Denote by J,,. the
Carathéodory differential Finsler metric of the manifold M’ (for definition see
[2],[17]). Then the function y: 75, (5,(7), P’b(b.(1))) is locally bounded (cf.
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[17]). Hence if £ is a compact subinterval of dom b, then sup y(¢)<< and there-
fore es

v v
dig (b=, b.(2) = | [ 40 (bo0), L) dit| = | [ () dt| =
v v

=supy()-1t"—¢t’| whenever ¢, t"€S.
s

1
2n

N]»—-

3) Write  K=sup d(x, P'v(x)) and consider the sequence f,=
xeM

(n=1,2,...)). For m=n we have

d {bx (t,,, +%] b, (t,, +%]} = f " 5(b. (1), b)) dt =

= ,.f "5(by(0), P'o(be(t))) di = | mf”m SRS [L_i).

m n
1 . . .
Thus {b,, (t,, +5]} is a Cauchy sequence with respect to the metric d. Suppose
neEN

1
d[bx(t,,+3],z]—»0 (n—~<) for some point zeM’. Then we would have

P’v(b,(t,))~P’v(z) (n—~<), as a consequence of (ii). However, in this case the

function b(t)= {bx(’) if te¢domb,

b.(t—1) if 0= (1—1)cdom b, is a solution of the initial value

d . o C .
problem {Ey=1”v( »), y(0)=x} with dom bz2dom b, which is excluded by the
1
maximality of b,. Thus {b, [t,,+—2—]} does not converge in the metric d.

1 1 1 1
By condition (i), dM,[b,,(E],bx (1—5’;]]=dw[b,(t1+§),bx [,ﬂ+5)] -
—+o (n—+o). From (2) we see

oo ()0 ) a3 o)
il o)) = 2

—dM,[x, bx(%)] —~oo (n — ).

But this is impossible because the topology of a complex Banach manifold is always
finer than that generated by its associated Carathéodory metric (cf. [17]) whence

1 1 1
dy [b,, [5], b, (—2— ——2—]] -0 (n—+<) since the mapping t—b,(?) is differentiable.
n
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The obtained contradiction completes the proof.
2.2. Remark. From step 1) one immediately reads that in general we have

22a Lemma. If d*: N—d}, is a metric valued functor on the category of com-
plex Banach manifolds such that for all manifolds N, N’,

(iv) d} is a metric on N,

(v) each holomorphic map N’—~N is a dy—dy, contraction,
then dyly,=dy,, whenever M’ is a sutmanifold of M and there can be found a
holomorphic projection of M onto M’.

The proof of Theorem 2.1 can be carried out as well for any metric functor
d* with properties (iv), (v) and

1
(vi) sup {d;m( Lo f|[—<_—3}<°° for any Banach space E.

The Kobayashi invariant metric (def. see [17], [9]) also satisfies these requirements.
Hence Theorem 2.1 holds when replacing Carathéodory distances by those of Koba-
yashi. Moreover we have the following important special case of Lemma 2.2a.

22b Lemma. IfE denotes a Banach space and P is a contractive linear projec-
tion E~E then dyglppry=9ppr nd di plsen=45prn where d* stands for the
Kobayashi distance.

Proof. Since ||P|=1 (otherwise we have the trivial case P=0), PE is a closed
subspace of E and PB(E)=B(PE)CB(E). Thus Lemma 2.2a can be applied to
M=B(E) and M’=B(PE).

This latter result can be further specialized as follows: Consider any unit vector
e€E. By the Hahn—Banach theorem, there exists P€E* with | ®|=(e, P)=1.
Then the mapping P: f—(f, ®)e is a contractive linear projection of E onto Ce.
Thus Lemma 2.2b contains Vesentini’s following observation.

2.2c Lemma (VESENTINI [16)). Let E be a Banach space, e€E a unit vector and

81, (€ 4. Then we have d}, (E)(Cl e, C23)=dB(Ce) (16, L2€)=d (({, {;)=areath IC1 —CCZ
— 6162

i.e. the curve [43(—C(e] is a complex geodesic with respect to both the Carathéodory
and Kobayashi distances in B(E).

b4

Later on, we restrict our attention to Banach space unit balls. Recall ([8], [18])
that in a Banach space E, the elements of AutyB(E) (the connected component of
Aut B(E) w.r.t. the topology 7, defined in [15]) are exactly the exponential images of
the second degree polynomial vector fields being complete in B(E) whose Lie-
algebra will be denoted by log*Aut B(E). Moreover, the orbit [Aut B(E)]{0}=
={F(0): FEAut B(E)} is the intersection of B(E) with a subspace which, in the
sequel, we shall denote by £, and we have FE,=[log*Aut B(£)]{0}.
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2.3. Theorem. If E is a Banach space and P: E—~E is a contractive linear
projection then P[log*Aut B(E)]|pzClog*Aut B(PE).

Proof. Let uclog*Aut B(E) be arbitrarily fixed. We have to show that the
vector field Pulypp, is complete in B(PE). As in the proof of Lemma 2.2b, let us
consider the manifolds M=B(E), M'=B(PE), the projection P|y, of M onto
M’ and the vector field v=u|g, which is by definition complete in M. Take the
differential Finsler metric &(x, w)=|w| (x¢ B(PE), w€¢ PE ) on M’ whose generated
intrinsic distance is obviously d(x,y)=lx—yl (x, y€B(PE)). To complete the
proof, we need only to verify (i), (ii), (iii).

(i): For x¢B(PE) we have P’(x)v(x)=Pu(x) whence by a theorem of
Kaur—UPMEIER (8],

8(x, Po(x))=|1Pu(x)] =llu(x)||=|{u0)+u’ O+ u”(O)(x x)||=

1
=[uO)l + 1w (Ol 2, Eﬁ-\ —2-u”(0)

{bilin E x E-E).

(ii): Trivial.

(iii): Assume X, x,, ... is a Cauchy sequence with respect to the metric d
without a limit in M’. Then for some unit vector f€PE, |x,—f||~0 (n—<) i.ec.
fix,l =1.  Therefore, by Lemma 2.2¢,d),(xy, X,)=dgpg (X1, X) Z=dgpg (X, 0)—
—dppr)(%:1, 0)=areath ||x,]| =areath || x,| > <.

24. Corollary. If E is a Banach space and P:E—E is a contractive linear
projection then P(E))C(PE),. In particular, if B(E) is a symmetric manifold then so
is B(PE); too.

2.5. Corollary. Let E be a Banach space. If one can find a family 2 of con-
tractive linear projections E~E such that for every Pc P, Aut B(PE) consists only

of linear transformations and ﬂ ker P={0} then all the elements of AutB(E)
are also linear.

Proof. If v€log*Aut B(E) then Pv(0)=0 Y Pc? whence v(0)=0 ie. the
vector field v is linear. On the other hand Aut B(E)=Aut"B(E) Aut,B(E)=Aut’B(E) -
-exp log*Aut B(E), where Aut®= {E-unitarities}.

3. Applications

Let (X, u) denote a measure space. In [1], [11] it is proved

3.1. Theorem. The unit ball of E=L?(X, ) admzts only linear biholomoprhic
automorphisms unless dim E=1 or p=2, eo.

As the first illustration of the projection principle, we show how can this result
be reobtained from Thullen’s classical 2 dimensional theorem [14].
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‘Proof. Suppose p€[l, <]\ {2} and dim E>1. If g,, g, are functions in E
with norm 1 having disjoint supports then it is easily seen that the mapping )

2
Eef— 3 f /2;lgjIP~%du - g; is a contractive linear projection of E onto the subspace
i=1

2 .
E”"”’Ejgl Cg;. Now B(E, ,)={(,8,+{:8::(;["+I{.[P <1} is a Reinhardt domain

whose biholomorphic automorphisms are all linear by Thullen’s theorem. Further-
more we have ker Pgl.h={fEE:ffg_jlgjlp‘zd/z=0 (j=1,2)}. Thus () ker P, o=

192
={feE: vgcE[3h¢E min(|gl, |h))=01= [fZ|g|"~2du=0}c {fCE: ¥X,C X[3X,C
CX X1 O<p(Xy), u(Xy)<oo]= f dfu=0}={0}. Hence Corollary 2.5 establishes
the linearity of Aut B(E). %

To the next application, let H,, ..., H, be arbitrarily fixed Hilbert spaces! of
at least 2 dimensions and consider the biholomorphic automorphism group of the
unit ball B=B(E) of the space E=H,®...®H,, the Banach space of n-linear
functionals endowed with the usual norm ||F|=sup {|F(h, ..., h,)|: ;€ H;, ||| =1
(J=1,...,n)} for FEE. For n=1,2, the description of Aut B is completely settled
[5], [4]). It is worth to remark that, in the light of the Kaup Vigué theory, the diffi-
culties in this case can be concentraded to the description of linear E-unitary opera-
tors: If n=1, E can be identified with H, and for any fixed c€H,, the quadratic
vector field g=[H, 3f— —(f|c) f} satisfies [11, (1)] i.e. tangent to the boundary of B.

Similarly, if n=2, E can be identified with %(H,, H,) and for fixed
CEc % (E,, E,), the vector field [¥(H,, H;)> F—~—FC*F} is quadratic and satisfies
[11, (1)]. It is easily seen, in both cases that, we have {[exp (19)](0): te R}=(—1, C,
thus B is symmetric and Aut B=(Aut’B)exp {g.: ccE}. Here we turn our atten-
tion first of all to the case n=3 which seems heavily treatable with other methods
and is not touched by the literature.

32. Lemma. Span {UC:U linearcAutyB}=FE whenever CEEN\{0} and
dim Hj<e (j=1,...,n).

Proof. If C#0 then we may fix unit vectors e;6¢H, (j=1, ...,n) such that
y=C(é, ..., €,)#0. Then let P; denote the orthogonal projection of H; onto Ce;
and set U}=exp (i%;P),C(9,, ..., $,)=(U}®...®U)C (8;€R;j=1,...,n). Since
the operators U} are H-unitary, U}®...@ UJ€Aut,B, therefore e,®...®e,=

1 Without danger of confusion, we write simply (.|.) for the inner product in any of
H,,..,H,. For A,¢%(H, H) and e,€H, (j=1, ..., n), we define 4,®...04,=[H,®...9H,>

SF—F(A.\f,,...A.0)], e1®...®e,=[(f, ... f)—=>(file)...(f,le,)] and 6,1' e, =P~ Fley,..., e),
respectively.
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o
=7 _ CecS=Span {UC: U linear€Aut,B}. Thus for all H;-unitary
y 09,...09,|p

operators V;, (V1) ®...Q (V,e,)=(V1®...8V,)(&1®...Q¢e,)ES ie. 1®...QfES
whenever fi€H,, ....f,€H,, whence S=FE (since dim E< o).

3.3. Proposition. For n=>2, all the elements of Aut B(H,®...QH,) are
linear.

Proof. Observe that the family #={P,®...® P,: all P;-s are orthogonal H;-
projections with dim P;H;=[2if j=3 and 1 if >3]} consists of contractive E-pro-
jections and () ker P={0}. Since for arbitrary P€Z; the subspace PE is iso-

Pco
metrically isomorphic to C*®C:®C? (C is endowed with its usual euclidean

norm), by Corollary 2.5 it suffices to see only that the elements of the group
Aut B(C*® C?*® C?) are linear. Thus we may assume n=3 and H;=C (j=1,2,3).
Assume now that E;=0. Now Lemma 3.2 establishes E,=F i.e. symmetry of B.
We show that this is impossible.

Denote by e,, e, the vectors (1,0) and (0, 1) in C2, respectively, and consider the
elements C=e,®e,®e; and F=e,Qe,Q6,+6,0e,RQe,+6,®e;,Qe, of E. Since
the space E is finite dimensional, for every A€E we can find fi, f;, /3€0B(C?

i
with ||A|=A(f, /s, f3). In particular, for arbitrarily given A€ (0, ?) we can fix

unit vectors f;(1) such that [C+AF|=(C+AF,J; FRONA @y Since C, F=0
(ie. C(gl,gz, 83)> F (81,82, 83)=0 Vg1, &2 8320) and since (C+AF, 52, ez,e2>=
etri(Nes
T+, " (j=
=1, 2, 3). Thus introducing the function ®,(¢1, ¢z, ¢3)=(C+AF, 5 e, 4012, )43 )

A+ed2 Aot/

0
=[1+4(e,+0:+25)] 2(1+e§) 12, we have — $,=0 (j=L,2,3).
00; l(ry (), rg .7y ()

So {AQ+r)—[L+A(r 4131} 2 (1+r)~%2=0(j=1,2,3) and hence
K=1

=AF(ey, e, €5)<1, for some r;(A)=0 we can write f;(1)=

4! _ s _ £

B l—ry(re+ry) B 1—ry(ry+ry) B L—rs(ry-+ry)

Therefore fj;éO (j=12,3)
1 1 1 1 3 .

and ——+r1=——+r2=—+r3(= —+ er). Observe that from this and from the

rn ry rs Y =
1

assumption A€ (O, ?) it follows that ry=r,=r,. (Otherwise there would be r=0
such that two of the numbers r,, r,, r; coincided with r and the third with 1/r, re-
1

Ir <0.) Thus the relation 1= holds

1—-QA/r)(r+r) 1-2r
where r(A)=r,(1)=r, (A1) =r;(2). This fact can be so interpreted that for sufficiently small

spectively. But then A=
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F,
1—2r2

fulfill |F,|-||®,|=(F,, ®,). Then by [11, Lemma]
Vﬁ—3)
4 ’

1 17 -3
values of r=0 [namely for A>-§ i.e. r<—V-——4———], F,=C+ !

¢75521+rez, e;+reg,e,+tre,
@ IFATC, 3+ a(F F) oy =0 fo<r=
for some symmetric bilinear map ¢: EXE—~E. Here(C,®,)=1,|F,| =12~ (F,, ®,)=

= (17714 3= =(14+77) 7 (1-27%) " and q(F,, F), 0)=(4(C.C). )+

r2
r
1-2r2
fixed VEE, the function r—(V, ®,) is a polynomial of 3" degree in r, from
(2) we obtain

@) (147 (1 =2r) 724 py (N + p (N (1 —2r) 71+ pa () (1 =277 72 = 0

for some polynomial-triplet p,, p,, p;. However, (2) immediately implies the con-
tradictory fact that the function »—(1+r*~! is a polynomial.

+2

2
{g(C, F), o)+ [I—r—2r] {q(F, F), ®). Taking into consideration that for

3.4. Theorem. The linear H,®...Q H,-unitary operators are exactly those
operators F for which there exists a permutation 7 of the index set {1, ..., n} and there
are surjective linear isometries Uy: H,~H,y,, (k=1,...,n) such that

(3) F(L) = [(.fl, ,f;l)'_’L(Ul_l mw(l)s =°* Un_lfn(n))]-
A linear vector field V belongs to log*Aut B if and only if it is of the form

n

(3’) V = i' Zidﬂl®"'®idﬂk-l®Ak®ide+1®"'®idﬂn

k=1
where the A,-s are arbitrary self-adjoint H,-operators.

Proof. Based on some compactness arguments, in the next section we shall
establish independently the validity of (3’) if the spaces H, are all finite dimensional.
Our starting point here is (3") for finite dimensional E. First we extend it to infinite
dimensions.

Let ¥ linearclog*Aut B and ef€dB(H,), ..., e €0B(H,) be arbitrarily fixed
and define the operator V=V—-(V(e/®...Q¢e}), Oer,...ex)idg.  Since i-idg€
€log*Aut B, we have V¢log*Aut B. Remark that V(e}®...®e*)=0. Then con-
sider the family of mappings #={P,®...®P,: P, is an orthogonal H-projection,
dim P H <<, e6P.H, (k=1,...,n)}. Any element P=P,®...QP, of # is a
contractive linear projection of the space E onto its subspace (P, H,)®... (P, H,).
Thus by the projection principle, PV|pz€log*Aut B(PE) YP¢#. 'Hence (applying
(3" to the finite dimensional (P\H,)®...Q(P,H,)) for each P¢2, there exists a
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unique choice of AF¢ {self-adj. H,-op.-s}, ..., AF¢ {self-adj. H,-op.-s} such that
APH,c P, H,(ie. P,ALP, =A%) and (AFfelle}) =0 (k=1,...,n),

PVP = 2 i-idy®...Qidy,_,®4,8idy,,,®...®idy,.
k=1

Introduce the following partial ordering = in #: If P=P,®...QP, and Q=
def

=0,®9...0, then leE PéQj—;»PkaCQka (ie. P,=Q)k=1,...,n. From
the relation P=Q=PVP=PQOVQP we immediately see
C)) AP = P,A2P, (k=1,...,n) whenever P=0.
Observe that for any fixed P€# and index k,
[(AEel )] = [PV @ ... @ ef_1Qe®€f1® ... ®€)), Ser, et _,.fretsyronet) =

=PV e ®...0e®... @€k I0et,...s...cs =IPTI = IPI| Ve, feOB(HY),
that is
) 142 =171 (k=1,..,n) VPE.

Since obviously VP, Q€ 2 3Rc P P, Q=R and since by (4), (5) the relation P=Q
entails |(42e|f)—(ALe| )| =|(42(e— Pee)|f)+ (42 Pyel f— Po)| =7l (e — Peell +
+1f~Pfl) Ve, fcdB(H,), k=1, ...,n, the definitions

ak(esf) = I];lg%(AlI:elf) (e9fEHk’ k= 19 sees n)

make sense and determine bounded sesquilinear functionals. Therefore there exist
self-adjoint operators A,: H;—~H,, ..., A,: H,~H, such that g (e,f)=(A4elf)
and  hence (Alfe[f)z(Alf(Pke)IPkf):(AkPkeIPkf)=(AkPke|Pkf)=(PkAkPke|f)
Ve, fcH, ie. Af=P, A, P, (P¢P,k=1,...,n). Now for arbitrary LEE, e,€H,, ...,
e, H, the projections P =projspanie 4 ency K=1, ..., n) satisfy

(7Ll(e, ...,e,) = [VLI(Piey, ..., P,e,) =[PV L)(ey, ..., €,) =

= kgL(el, s PoAre, ..., e) = k;;L(e,, ey Aylyy .nr ).

Thus we can write VL(e,...,e,)= 3 L(ey,...,Bie,....e,) where B;=A4; for
k=1

j=1, ..,n—1and B,=A4,+{V (€], ..., €;), 0.2, ) idg, proving (3) in general.

To prove (3), let F be an arbitrarily given linear E-unitary operator and intro-
duce the families #,={P;®...® P,: P, is an orthogonal H,-projection, P;=idg,
for jk} (k=1,...,n). From (3") we see iZ,Clog*AutB and hence for every
Pc &, the mapping Q=FPF1 also has the properties iQ€log*Aut B and Q*=Q
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(since P*=P) which is possible (by (3)) only if Q€% (p, for some index £,(P)
(k=1, ..., n).

Let k€{l,...;n} be fixed. We show that £, (P))=¢,(P;) VP1, Po€ 2\ {idg}.
Indeed, if £,(R)#¢,(R,) then the operators Q;=FR;F~'(j=1,2) commute
(ie. [01, 0)]=0,0,—0,0,=0) whence we would have [R,, R;]=0. Observe
that VP, P.€ 2\ (idg} 3PP, [Py, Py, [Py, P5)#0, thus (by taking R,=P;
and R,=P; j=1,2) ¢, (P;)=¢,(Ps) holds for j=1,2.

Therefore there exists a permutation 7 with

(6) ngF-l = n (k) (k e l, ceny n).

Since the finite linear combinations of orthogonal projections form a dense submani-
fold of the algebra of linear operators in any Hilbert space, it directly follows
the existence of surjective linear isometries S,: Z(H,, H,)~%(H 4, Hyy) such
that

F(idy,®...Qidy,_,®4,®idg, ,,®...Qidg )F 1=

= id”]®"'®idHﬁ(k)-1®Sk(Ak)®idHn(k)+1®"'®idHn
(4L H, H); k=1, ..., n).

As a consequence of the relations (6), the mappings S, send orthogonal projections
into orthogonal projections and therefore they constitute *-isomorphisms between
the C*-algebras £(H,, H,) and %(H,,,, H,)- It is well-known that now we

can write
Sk: Ak‘—’ UkAkUlz-l (k_—-"l,, n)

for some surjective linear isometries U, : Hy—H, . Thus if we denote by o the in-
verse of the permutation x, for any linear E-operator A of the form A=4,®...9 4,
(where A4,€c¥(H,,H)k=1, ...,n) we have

(FAF WL =[(fi, -, ) = LU, 1y Ae y Ushy > s Uy Ao mUsly f1 - VLEE.

This means that FAF1=UAU"' YA€ ¥(E, E) holds for the E-unitary operator
U defined by

U(L) = [(f;l, af;) »L(Ul-lfn(l)a LR ] Un—lfn(n))] (L€E)

It is easily seen that this is possible only if F=eU for some 3¢R which completes
the proof.

In the remainder part of this section, by making use of the projection principle,
we shall examine the structure of biholomorphic unit ball automorphisms in case
of minimal atomic Banach lattices (abbr. by min. B-lattices).

A Banach lattice E is called a min. B-lattice if it is norm-spanned by its 1 dimen-
sional ideals. Henceforth we reserve the symbol E to designate a fixed min. B-lattice.
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According to a well-known representation lemma [10. p. 143, Ex. 7 (b)], we may
assume that for a fixed set X, E is a sublattice of {X—~C functions} such that

@) 1.€E and |I,f =1 Vx€X,
(8) Span {l,: xcX}=E. (1, stand for [X3y+— 1 if y =x and O elsewhere]).
Remark that then

®) wf€E and wf= 1lim wlyf whenever fcFE, suplw(x)| = 1.2
Y finitecX ' x€eX
For the sake of simplicity we write B=B(E) and the functional [E> fr~f(x)] will
be denoted by 13}.
First we describe the linear part of Aut B.

3.5 Definition. For x, y€X, letkwy if {/(1,), 1,)0 for some linear element
¢ of log*Aut B.

36. Lemma. (i) x~y if and only if for all f,g€E, f—g€l, ,E and
2 f@PF= 3 lg@} entail || fl=|gl.

z=X,y z=x,p
(ii) The relation ~ is an equivalence. Moreover, in case of xy~...~X,,

f-gely .y and _=2"]|f(x,-)r—'=jg";|g(x,-)|2 imply  11f1 = ligl

Jor all f,g€E whenever x,, ..., x, are distinct points.

Proof. (i) Let Y={yy, ..., y,} be an arbitrary finite subset of X and ¢ linear¢
€log* Aut B. Set ap={ (lyj), 1, ) and assume 0,20 (i.e. p1~py). Since the mapping

P: fi—~1,f is a band projection of E onto > Cl »,» the projection principle establishes
i=1
¢ €log*Aut PB where ¢ =P{|py. Thus by [11, Lemma]?

© Re (Z(f), ®) =0 < (f, &) = | fll P VfcPE, dc(PE)".

2 Proof: Given &¢>0, by (8), there are Z finite C X, g€1, f with || f—g|l<e&/2. Now ZCY;, Y,
finite < X implies ”f—g”EIf—lzflEWIU—]ZI)IEIW(IYIUY’[—lylf)l (=1,2) i.e. by triangle
inequality ex=||wly, f—wly, f1]. Thus {wly S}y cintee is @ Cauchy net inE. Hence for some h€E?,
wlyf—~h But A(x)={, 15 =limy{wlyf, 1.} =w(x)f(x) Vx.

3 In the same way as in [11, Lemma], one can see that if a linear vector field £ on Banach space
F belongs to log*Aut B(F) then Re({f(f), d)=0<={f, D)=IIf1] lIP]l VfEF, PEF~

Proof: Since £ is tangent to @B(F), we have £ (f)€(H—/) whenever ||f]]=1 and H is a real
hyperplane in F supporting B(f) at f. But the general form of such a supporting hyperplane is
H={heF: Re{h, ®)=1} where ®EF* with ||®]|=(f, P)=1.
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Introduce the function p (g4, ..., 00= > Qiln on R’ and set C={p€R":
j=1

grad|,p does not exist}. Since p is an increasing positively homogenenous convex
function, C is a cone of Lebesgue measure 0. Let us fix arbitrary vectors ¢€R,\C,

9€¢R" and set n=grad|,p, fo= > Qje"“’llyj, o= 3 gje"""!ly*j. Since the function
= =1

n
p is increasing, =, ..., 7,=0. Since 7 is positive homogeneous and convex, > m;0;=
ji=1

=p(0y, ---» n) 1. {(fo, P)=[fll. On the other hand, for any f€PE

I/, &)l =

Zme i) S Sl S p(S0D) s 170N = 1]

ie. [|@l=1. Hence (9) can be applied to f, and &. Thus

9 Re </[ o e'“fly,], > n;e"“’lf,> =0.
=1 =
By the arbitrary choice of 3€R”, an equivalent form to (9’) is
9" Re [ZQJ'“J'“H_*--;Z; (0 M+ e;04) 2,25 ] = O
J J
whenever |z,| =... = |z,| = 1.

This is possible only if the rational expression (w.r.t. z,, ..., z,) in the argument of
the Re operation vanishes. Thus in particular @, 7,05+ 0s7, %5, =0. Le. we obtained
the following partial differential equation

/] op —
(10) Q15i“12+@23§;“21=0 (e€RENO).

do
3 =0.

Since szllgzlhll§||Zgjlyj||=p(9) Vo€R" , there exists g€R%\C with »
J 2

Therefore ag;#0, moreover dg/o,<0, i.e. Ogrfotia= — lotay |/ |t12].

For (5, .-, 0)ERY™?,  define Poq.....0, ' R>R by Pog.....0, ()=
=p(Jasa| COS 1, |0tz | SN 2, 05, ..., 0,). Since C is a cone of measure 0 in R, (10)
implies ‘

(1) @, ...0.(t) =0 for almost every ¢€(0,7/2) and (g, ..., 0, )ERAE

From the convexity of p it follows that it is locally Lipschitzian in the interior of R’, .
Hence, by (11),

(1) Pos...nea(t) = @oy,....0n(0)  VIE[O, /2], (05, ..., €)ERTE
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_ e _
pl“lzl I(Qi"' 93)1/2 *Pey,... 0, (arccos (0 + Q‘l 2)1/—2] = I“ml 1(@%‘*‘ Qg)llzq’as,...,qn(o):
1

=p(VQ§+Q§’ 0, Ogs «+» Q,,)-
2

Let now f,gcE be functions such that f—g€l, E and S k=
v j=1

= 2 leOpl Then 11xf1=p ({ Z1FGIFJA01f0, . 0D =Iysl. Take

ing into consideration the fact that ¥ may be any finite subset of X, from (8") we
obtain || fll=ligl.

2 2
Conversely: Assume that f—gel, ,,E and 2fplE= > lg(ypl? imply
=1 =1

Ifl=lgl for all f,g€E. Then the mappings U'=[f—>ly\ 4,y f* ((cos By-f(y)+
+(sin £) - f(2) ), + ((—sin O« f(y1)+c+(cos ) - f(y2)),] (t€R) form a one-para-
meter E-unitary operator group. Hence the linear field %IOU ‘= frf (), —f()L,,]

belongs to log*Aut B.
Proof of (ii): Say that f~Ygif Y finitec X, f,g€E, f—g€lyEand 3 |f(¥)|*=
: 134

= > |g(»)|2. Obviously, the relations ~7¥ are all equivalences. Consider the set
yeY

N={m:3x;~...~x, 3f,8€E f~ Grewxmdg || £ ) gl ). Suppose N#0 and set n=
=min N. From (i) it follows n>2. Fixaset Y={y,, ..., »,} and functions f;, fo€E
such that f; ~ Y,y ~ ... ~y,but | fill | £,]|. Consider the functions g; =1 E\NU ) i+

=1,2). However, g, ~ "¢ and therefore by (i) we have | g =g, contra-
dicting the assumption | fi] #| fzll. Thus N=0. Hence if y, ~ys~ys then Vf,g€E
frbrreydgo fA Urvde je. by (i), yy~p; holds.

3.7. Corollary. The proof of (i) shows that {£(l,),1)=—{¢(,), l;:> when-
ever y;,¥,€X and ¢ linearclog*Aut B.

3.8. Definition. From now on we reserve the notation {S;:i€#} to denote
the partition of X formed by the equivalence classes of the relation ~. For each i€ 4,
we shall denote the projection band 15E of E by H,.

39. Proposition. (i) If f,g€E are functions with finite support and ||flS‘||,,=
=l glsl» (E(QZS lg(x)|)¥2) vies then ||fl=|gl.

8
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(i) For any i€ #, H; is a Hilbert space (i.e. the norm | -|| restricted to H;,
satisfies parallelogram identity). Namely, a function h: X—~C belongs to H, iff
supp (WS, > |h(x)]P<<o, furthermore we have | fli=Ifll,. VfeH,.

S,

x€S,

(iii) If f,g€E and |fls|=lgls|l vieF then | fli=lgl.

) If §: X~C./KE and |fls)|a=lgls)a Vi€F then gcE.

(v) Assume ¢€ ¥ (E,E). Then (€log*Aut B if and only if there exists a family
of linear mappings {¢;:j€ $} such that i-£; is a self-adjoint H-operator for each

JES, sup £l <o and £= @ ¢;.
jes

Proof. (i) is a directe consequence of Lemma 3.6 (i).
(ii): Let f€H and x,€E be arbitrarily fixed. By (i), [ 1y £ I=I( 3 | f(»)[]2)"2 L
yeY

=( % | f(»)[2)2 for all Y finitec X. Hence by (8"), e>=| f||=If|l,s. Furthermore,
y

if g is a function X—C having support in S; and | gll,s<<> then (i) ensures VY, Y,
ﬁniteCX,Illylf— ly’f||=||1,.1f— ly,f";z:”lylu,f" i.e. the net {I,f}, is a Cauchy
net whence f€E.

(iii): Let e=0 be fixed. According to (8"), one can find Y finitec X with
If—12f1,lg—1;gll<¢ YZCY. Since the index set J={ic#: YNS;=0} is finite,
there exists a family of sets {Z;:i€J} such that YN S;cZ; finitec S, ({¢J) and
%Ills‘f— 1 fll,,<e. Consider now the functions f,= é’l 1z, flls-1,, and g,=

= 1158l 1, where x; denotes an arbitrarily fixed point of S; (i¢J). By writing
ieJ

Z= LEJJ Z,, we can see || fl=I1z11, lgl=ll12¢l and | f~1.f1|,llg—1zgll<e. Using

the triangle inequality, [|f, —g.|= Z W1z, fll2— 11z gl o|=(since |15 fll2=I15 gl
for all )= 2 1z, flla—01s f|l,a+|| ls,g"ﬁ Illz‘gllﬂl<( 2(”ls,f Iz la=l1s8—

_]z‘g"ga)<23- Thus || fli=lgll=I/- zfll+llllzfll—Illzglll+|lg— I8l =4e.
(iv): By (8’), to every number néN, we can choose Z, finitec X such that

1 .
lf—1; fll<—. We may assume without loss of generality Z,cCZ,c.... Then set
" n
F.={icF:Z,NS;#0},8,= 2 l5 g By (ii) and the finiteness of the sets £, g,€E
ié3,
vnEN. If n>m then |g,—g.l=l g 15 gll= (by (iii))=ll_€ Z\’ Is, fl| = (since
ics, i

1 n m
| X 15 fI=lf-1, A)=1-1, f||<;. Thus {g,}, is a Cauchy sequence in E.
€5 NFm ~ m
For all x€X, lim g,(x)=g(x) whence g=lim g,.

n—-»oo Ne—+oo

(v) First let ¢¢log*Aut B. If j,k€S,j#k,x€S;, y<S, then by the definition
of the classes S; and by Lemma 3.6 (i), (¢(1,), 1;)=0. This fact shows ¢(H;)CH;
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vj€#. Thus by setting £,=¢| a, We obviously have ||£;}}=|//] and /= & ¢;. Further-
jes

more, [11, Lemma)] establishes ¢;€i- {self-adj. H;-op.-s} Vj€.f.
The converse statement is immediate from (il) since then we have exp (£)=
= 65; exp (£;) and, by assumption, all the operators exp (¢;) are H;-unitary here.
j€

3.10. Coiollary. For some subset $,C %, by writing Xo= 1) S;, we hxve
€%,
E,=1y E (where E,=C-[AutB]{0} cf. Introduction).

Proof. Set Z={x€X: 3¢€E, ¢(x)»=0}. Clearly E,C1,E. On the other hand,
if x€Z,ceE, and c¢(x)>#0 then, by (v), the linear field £=[f—i-f(x)1,] satisfies
Iy n¢ +e'c(x)1,=exp (t£)€ E, Vtc Rwhence E, D Span {1,:x€Z}=1,Eie.E,=1,E.
Suppose now x€Z,c€Ey, c(x)=0 and x€S;. Let yeS\{x} and ¢ =[f—~

d
if(x)1,+if(»)1,]. As in the previous case, clzt’l(c)=zl exp (t£,)c€E, since by
. 0
W), ¢€log*Aut B. However, ¢, (y)=ic(x)=0 ie. y€S; Thus S,CZ.

Next we turn our attention to the quadratic part of log*Aut B.

In the sequel we shall use the notations #,, X, introduced in Corollary 3.10.
Recall that for any c€E,, there is a unique symmetric bilinear form q.: EXE—~E
with [fr~c+q.(f.f)]€log*Aut B and that the mapping c~»¢g. is conjugate-linear
and continuous. Since the finitely supported functions are dense in E, to get the
complete description of log*Aut B it is enough to determine only the values
<q1x1(lxs’ 1), 1.) (x,€X0, X,, X5, X,€X). To this task, the projection principle
provides an essential reduction.

3.11. Lemma. Let Xy, ..., x,€X, x,€ X, and Bj,=(q,, (1, 1,0, 1%). Then
1

() B%=0if {1,¢}={j, k},

@) fn=-1,

(i) BLE[—1,00 and 1,3 B={GL 4l [GE+GIP<1) if f5=0 or
Yoy xgB={01 15, + 01, max (0], () <1} in case of Bi.=0,

(v) B=—1/2 if x;~xy5#x, and f3,=0 if x; #x,€Xy;

W) if X1, ..., %,€Xy and x;xx; for i#j then |{;1,,+...+,1, |=max (|{],
s L) for all ¢y, ..., ,€C.

.....

principle, [ fs-—»lxl+Pq1x( f.N]€log*Aut PB. Applying [11, Lemma] to PB, we
obtain

= [ f1* sy @)+ <P (f: ), ) = | fIl -1 @]l = (f, @) VSfEPE, PE(PE)*.

8*
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Introducing the same function p: R’} —R, andset CCR’, asin the proof of Lemma
3.6,

(12) 0= p(o1, -..r 0n)? <lx1, 3 gp _.s,l*>+
j=100;

op -
+<q1 (Ze;e iy Zene’s*lxk), > 35( ey,

for all geR,\C and 9¢R". Thus
, d 0 n
a2y p° ap '31+( ﬁ’ke,ek 31’ ¢ it “"] 0 (e¢C, %€R").

Therefore (for fixed 0€R?\C) the rational expression p %zl+ Z ,B k00
9
"de,

coefficients of the form pL(=pL,) may differ from 0.

(i) is immediate from (12") if we take n=1 because then p(o,)=0,.
For the proof of (iii) and (iv), consider the case n=2. From (12’) and (ii) we
then see

ap ap
” 2_ 2 2 n
(129 (p*—0d) ’—391 +20,0: _392 Bie =0 (ecR3\CO).

——2z,;z,z;* vanishes on dy4" i.e. its homogeneous parts are 0-s. Hence only the

Since p(0, ¢)=p(g,0) and since the function p is increasing and convex, Y¢¢
€[0,1) 31t=0 p(g,?)=1. Thus the function #:[0,1)-R, is welldefined by
p(e,1(0))=1. Observe that now ¢ is a decreasing concave function and #(0)=0. By
dp/9e,
dp|de.

since C is a cone with measure 0 in R2 , (12”) implies

the implicite function theorem, #'(o;) =— whenever (g,, t(¢,))¢C. Thus,
(127 t’(0)(1— 0% = 20t(0) p3. for almost every €(0, 1).

Since t'=0, we have B%=0. If %,=0 then t(g)=1(0)=1 Vo€[0,1). In this
case, p(0:, ¢2)=1 if g,<1 and g=t(g))=1 or g=1 and g,=1, ie.
p(0:, 02)=max (¢, 0;). If P%=<0 then the solution of (12”) with initial value

t0)=1 is t(g)=(1—¢® 1. Thus by setting K={(01, 2): p(e1> 02)=1},
13 K = {(01, 02): 03+ 07 VP = 1}.

The convexity of the function p entails that K is convex whence f2,= —1 yielding

(iii).
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(iv): If x,~x,x, then p(o,, 0)=(ei+ed)"® (cf. Proposition 3.9 (ii)), that

1
is, by (13), we have f2,= -5

On the other hand, suppose x; #x,€X, and B%,0. Since x,€X,, all the pre-
vious considerations can be carried out by interchanging x; and x,. Thus by (iii),

2 - 2 ix,)s .:
ey B = (ke +Laleg: 1l + 10l ™ lrrrledd <y o

2 —
— {C11x1+C21x8:|C2| +|(1I ll(qlxl(lx’.lxl):’xl) = 1}.

1
This is possible only if p},= —5=<‘11,1(1x,’ 1,), 13 ) thus p(e;, e)=(0}+03) 2.

If S, denotes the equivalence class (w.r.t. ~) of x; then by Proposition 3.9 (iii),
14+ L= f - L, + e, |=p(If 12, @ =17+l I 2 for arbitrary feH, whence it
follows x,€S; i.e. x;~X,. The obtained contradiction proves (iv).

(v): Let yy, ..., y.€ X, be pairwise non- ~-equivalent. Now for arbitrarily fixed

.......

n n n

() = 2 Omay, () = 30 3 OO0, Uy 1), )1,

m=1 m=1 Ik 1=1

Applying (i) and (iii) to x;=y,, x, =y, and x;=y;, hence we obtain

ms==1

0. f) == 3 cOm fOmPL,, =—C-f2
d

Therefore the solution ‘of the initial value problem

T h=e=a.fn 0 1o=0}

is f,=tanh (¢«c). Hence {"'Z:'I Oml, 015y 0,€[0, 1)}c {exp [f»c+qc(ﬂf)](0):

c€ly, .,y E}c[Aut B]{0}cB. Then max g, = 2 0nl, |I=1 whenever g,, ...,
n m= m=1 m
2,€[0,1]. Consequently 2 @ml, ||=1  whenever max lo.]=1 whence
m=1 m m=

=m”z_u1( |¢ml. The proof is complete.

P28

From Lemma 3.11 (i) and the symmetry of the bilinear mappings g, follows
directly that introducing the functions

_1/2 if xl =x2

Wiy (¥2) = {(q1x(lx1, L), Y if x = x

(x1€ Xy, X2€ X),
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we have
g1, (., L) =2w,(x)1, for all xeX,
ql,(lxa ly) = Wx(y)ly if xeXO’ yEX\{X},
7. ,,1) =0 if x¢{y, z}, x€X,.

Hence

(14) 9:1.(f, &) =f () weg+ 8w, f (x€X,)

whenever the function f€E is finitely supported. Moreover by (8") and Lemma 3.11
(iii), (14) holds for every f€E.
For sake of brevity, in what follows we shall write f© instead of the function

15,/

1
3.12. Lemma. (i) w§?=—§- 15 whenever x€S; (i€ %),

(i) wP=0 whenever x¢S,; (i€.5),
(iii) There exists a unique matrix (y;)ic 5, jc s\, €ONSisting of numbers belong-
ing to [0, 1] such that w87=—y,jlsj whenever x€S,CX, and jEI\S,.

Proof. (i) and (ii) are contained in Lemma 3.11 (iv).

(iii): Let x, x’€S; and y, y’'eS; where i€.#, j¢ £, From Proposition 3.9 (v)
it follows the existence of an E-unitary operator U such that 1,,=Ul, and 1,,=U1, .
From the elementary theory of Lie-groups it is well-known that UsU—€log*Aut B
for every v€log*AutB. In particular, [fi~U(1.+4¢, (U™Y, U7Yf))]clog*Aut B
whence g1 (f,/)=qu (f.f)=q: (U £, U f). Therefore (g, (1,,1,), 1})=
=(Uq, (U'1,,, U1, 1;‘,)=(Uq,x(1x, 1), 1;’)>=<q1x(1x’ 1), 1) since if U= S{?‘ U,
is the directe decomposition of U provided by Proposition 3.9 (v) and f¢E then
U 15 =0 O1L)=(fOU 1,)=(fOIU;  1,)=(fO|1,).

Henceforth we reserve the notation ()¢ 4,, jes\ s, fOr the matrix introduced
in Lemma 3.12 (iii).

3.13. Corollary. For arbitrary finitely supported c€E, and f¢E,
(15) 9.(.f) =—‘€2J (fCeO fO=2 [ Z v;(fOleD]fO.
LA ]

- JESNSFy €S,

Proof. Applying Lemma 3.12. and (14), we can see that if c€E, and f€E
have finite supports then g.(ff)=— 3 cWq (L) 5 3 2c()f(x)-
i€F, x€8,

x€X,
1
: [_ —fO- 2 Yijfm]-
2 i€F,

In order to extend (15) to every c€E, and f€E, we need the following observa-
tions. ’ '
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3.14. Lemma. (i) E,= @%H; i.e. a function c: X—~C belongs to E, if and
ics,
only if Vi€S [P <o and VYe=0 {icF: ||V ,0=¢} finitec S, (in the latter

case |ic|| =Sup el ).
l

(i) sup Z vy =4lgl(=4 sup lgl =4 sup llg.(f; DI
JeINS, i cEBNE, c€ B0,
X2

Proof. (i): Trivial from Proposition 3.9 (v), Lemma 3.11 (v) and the fact that
the finitely supported functions are dense in E.
(ii): Let j€ S\S, Iy, ..., in€ Iy, YES; and X1€8; 5 .5 X,€S;,. Consider the func-

tions ¢= Zn’ I, and f=1+ Zn' I, 2 By (i) we have |c[|=1 and | f||=2. By (15),
m=1 " m=1

4. )= Z_'lvn,,,,-- At the same time, Kg.(f.f), I5)|=lgl-lell -1 /12 115]=
=4lq]|. '
3.15. Corollary. (15) holds for each c€E, and f€E.

Proof. The previous lemma shows that the right hand side of (15) makes al-
ways sense. Observe that the mapping Q:E,X E>(c, f)~{right hand side of (15)}
is real-linear in ¢ and real-quadratic in f. For |c|,[fll=1 we have |Q(c,N)lI=

ﬂZ(f“’IC"’)f")H-FZH Z (SUP Z’ Yall S Py 1e®l2) SPN=N F12 el +4ligl « fiell -

k¢ sy i€
|l f !|2 Thus Q isa contmuous map On the other hand, the relation Q(c, f)=
=+44q.(f,f) is already established for a dense submanifold of E,XE by Corollary
3.13.

In this way we completely know log*Aut B. The mappings exp[B>f
' d
—c+q.(f,f)] are easy to describe: By (15), the equation = fimetq (fis f) is

equivalent with

(1) LIO = O-(PIOSD (€5

16" LI ==2 3 g (PO P (eFN)-
1£7,

If we represent ¢® in the form ¢P=g,c® where ¢,=0,|c’}=1 and if fO=
={;cD+1D where f© lying orthogonally to ¢, one then cheks immediately that
for arbitrarily given fy€B, the solution of (16") is

(17) IO = M, () + ML) O (esy)
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where M, and ML are the Moebius- and co-Moebius transformations

{+tanh (7)
1+ tanh (1)’

Substituting (17’) into (16”), we obtain

{1—(tanh ())%'/2

M) = vk @

1) M@=

(t€R, {{| < D).

-d . ,
=P =[-2 3 weiMe ()] (jeA\R)
dt i€s,

whose solution is given by

1 -
ar) O e [-2 3 ma [ Mo ae] 19 =
o 0

= [ J Max@1]fS (GeSNSD.

The fact that the right hand side in (17”) makes sense, is guaranteed by Lemma 3.14
(ii). Fortunately, by Lemma 3.14 (i) and (17"),

[Aut B){0} = BNE,={ 3 Xc;: 0=, =1,c,€IB(H;) i€F and
€7,
[i— Aleco(F)} = {EZJ' M, (0)c;: ¢€R,, c;€dB(H) Vi€S, and
[i — AJ€co(Fo)} = {exp [f—> c+g.(f; ]I(0): c€ Ey}

where co(SFo)={F—C functions vanishing at infinity}. A classical theorem
of Cartan asserts that the relations U€AutB and U(0)=0 entail the line-
arity of U. Thus given F¢ Aut B, if we choose the vector ¢€E, so that the automor-
phism G=exp [B3fir—c+qo(f.f)] satisfies G(0)=F~'(0) then the automor-
phism U=FoG is necessarily linear, i.e. we have FcU-exp[firc+q.(f,f)] for
suitable c€FE, and linear E-unitary U. Hence we arrive at the following characteri-
zation of Aut B:

3.16. Theorem. Let E denote a minimal atomic Banach lattice. The space E is
spanned by a family {H;: ic #} of its pairwise lattice-orthogonal Hilbertian projection
bands such that

(i) the linear members of Auty B(E) map B(H,) onto themselve (Vi€.5),
(i) conversely, if for any index i€ #, U, is an H;-unitary operator then E% Uilse€
i€
€Aut, B(E).

Furthermore there exists a matrix (y;;); ;€# and an index subfamily SyC .S
such that

(iii " Eo( =C[Aut BIE)]{0})= _9-9’  H;,

i€Fo
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1
(iv) O=y,;=1 for all i,jc.5,; y,~i=3 Sor all ic.#y; y;;=0 whenever i,j¢5,

or i and j are distinct elements of F,,.
(v) A mapping F:B(E)—~E belongs to Auty B(E) if and only if, by denoting
the band projection onto H; by P;, we have

PLE() = UM, (BT 1e) 4+ M3 (PAID)P~(PAID ) (€50,
PG ={on ] 3 ne(PAD) U LT (GESNSD

for suitable H ;-unitary operators U, (j€#), unit vectors c}€H,;(i€¢#,) and a func-
tion [F,3i—0;] assuming values in R, and vanishing at infinity, respectively (the
transformations M, , M;,ri are those defined in (18)).

4. Appendix
Linear finite dimensional tensor unit ball automorphisms

Throughout this section H,, ...; H, are fixed finite dimensional Hilbert spaces.
We are aimed to describe the structure of the linear unitary operators in the space
E=H,®...QH,.

We shall use the notations B=B(E), B*=B(E"),

K ={FecoB: 31PcoB* (F,P) =1},

= {PcdB*: 3F€K (F, d)=1}.
e es’ e,€0B(H)), ..., e,c0B(H,)}.

Proof. Since dim E<o, B is compact, thus for any n-linear functional
FcdB, one can find e,€8B(H,), ..., e,£0B(H,) with F(e, ..., e,)=1. Hence
K *C{‘Sel,...,e": e,€0B(H j)}. On the other hand, every E-unitary operator maps
K onto itself and therefore also

4.1. Lemma. K*={o

(19) U*K* = K* for all E-unitary operators.

From the compactness of B it follows K@ (indeed: for any smooth norm
-, on E, 0= {F€dB: || Fll,=|G|, YGEIB}CK) whence K*>@. That is, for some
unit vectors eY€H,, ..., e%€H, we have be. .., 0€K*. Now from (19) we obtain
0v,0,..0,0=(U1®...QU,)" S0 o€K* whenever the U;-s are H;-unitary
operators. Thus {6, . :e€dB(H)}>K"

42. Lemma. Let ®=§, ,.¥=6, and ©=6, ., where 0z
=f;, 8, Bi€H; (j=1, ..., n) and assume (D+T "©. Then there exists k such that
for each j=k we have fillg; (ie. f; and g; are linearly dependent).
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Proof. The statement holds obviously if for some index m, fil|h; for all j=m
or fjlg; for all j#m. In the contrary case fittg, and f,ih, for some pair of
indices km. We may then suppose k=1 and m=2. First we show that in this
case we have h,tf;. Indeed: from h, 4 f; it follows that introducing the tensor
E=§08.®...0g, where §,=g,—| fil 2(g:| /) /i the relations (£, ®)=(E, @)=
=07(E, ¥) hold. One can see in the same manner that h,jg,. Since h K1,
there exists ,€H; with f;1u, % h, and since h,lrg, one can find wu,cH,
with g, 1 u; 2 h,. But then the tensor T=u,Qu, @h; ® ... ®h, satisfies (T, Py=
=(T, ¥)=0=(T, ©) which is impossible.

4.3. Proposition. Set r;=dim H; (j=1, ...,n) and let U¢Z(E, E) be fixed
so that Ul|g€Auty B. Then one can choose H ;-unitary operators U; such that U=
=Ul®"' ®Un.

Proof. It is enough to prove the statement only for E-unitary operators lying
in a suitable neighbourhood of idg as it is well-known (see e.g. [6]).

To do this, fix &>0 such that the functionals ®=6, .. ¢=6; ..
=0, . .. ¥=6; .7 (CE%) fulfil

(20) 3k e lé.filfy and Vji=k e, filf;

whenever we have

@) -8, ¥-PcK* |0-B| =[¥-P| =V2 and |0-¥|,|E-P| <s,
(22) led =gl =11 =1/ =1 G=1,..,n).

A value ¢=0 with the above properties in fact exists: Otherwise there would

be a sequence @,=06.m  .m, 5",55;1","”;;", ¥, =0pm  ms ¥p=0pm  im (m=

R 1 . .
=1, 2, ...) satisfying (21), (22) for ¢=— but without property (20). For a suitable
m

index subsequence {m}, and for some unit vectors e;, &, f;, f'J we have ej-—~e;,
efsve;, [ ~f; [o~f; (s=eo,j=1,...;n). Then the limits &, &, ¥, ¥ satisfy
o=V, =7 ,||d—&|=||¥—P|=V2 and the contrary of (20). At the same time
we also have & — &, ¥ — PcK* because of the closedness of K*. Thus by Lemma
4.2, 3k, Vjs¢k, e;]&;. Since [#—B[=V2, hence lle,,—&ll=y2 ie. e,L18&,.
Similarly 3!/, ffonfo and Vj=¢, filf;. Since (20) does not hold, necessarily
ko#¢,. However the relations =¥, =¥ entail k,=¢,.

Now assume [U-—idg}<e. Fix an orthonormed basis {e4:j=1,...,r} in
H, (k=1, ..., n), respectively and let us write the functional U*S,1 . in the form
U*,, =0,  ;n (cf. Lemma 4.1.) where f} is a fixed unit vector in H, (k=
=1, ..., n). It follows from the choice of ¢ that for arbitrary index k, the singleton
{f3} can be continued to an orthonormed basis {f%:j=1, ...,r} of H, in a unique
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way so that we have

Udey,..ekmtekohr, o0 = Op, it pe oot g (G =151

k n
Set I={(,....1,j1,.., k=1 ..,nj=1,..,n}, L=X{l...,n} and
i=1

let a family I, of multiindices be called thick if Vicl,vi'el, i'=i=i'€l
Observe that for any multiindex i=(i, ..., [,)€I; there exists a unique complex
number which we shall denote by »x; such that |»]=1 and

) Udetposer, = %1053 p

Indeed: If not, we can find a minimal (w.r.t. =) i€l; not satisfying (23). Now
U*,1 o =0y, ., for some vectors h€0B(H,)(k=1,...,n). Since obviously
1 i, 12 %n

i¢1,, for arbitrarily fixed k, there is £k with i;=1. Consider the multiindex j
defined by j,=[i, if £k, 1if £=k](/=1, ..., n). By the minimality of 7, U*éel n =

1 ,eJ
=x15f‘1,1,...,p;"- Since U* (7—15—541,...,e’,‘"+'l/_1§'5e}l,...,e'j'"
we can see hllff ie. h=a, f¥ for suitable «;€94 (k=1, ..., n). :

Then let 7 be a maximal thick subset of I, such that I, >/, and »;=1 Vicl.
(Remark: »;=1 vi€l,.) We shall show that necessarily /=1;. Hence and from the
linearity of the mapping U, (23) immediately yields the statement of the lemma.

Assume IN\J# 5. Let j be a minimal element of I,;\/. Observation: Vi€l
Jj#i=j=icl. Le.the family I’=7U {/} is thick. Therefore it suffices to prove x; —1
(which contradicts our’ assumption). By writing J={1,/,}X...X{1,/,},

l’ (,* — —
58i+e,. aefte] = 2& 5, e, 2 ”i‘sf,ll,...,f;'
i n n

)EK*, using Lemma 4.2

= xjéf}’l f,.+,6,§m5 e j;n = (K —1)51-} reor +5f1+f11’ vfx+f"

However, the function U*6. el oere] has the form 9, whence directly

”j:-l.

4.4. Corollary. The vector fields V being tangent to 0B(E) are exactly those of
the form

=1 -12 idHl® ces ®ide-1®Aj®ide+1® ves ®idHn
=1
where each A; is a self-adjoint H ;-operator.

Proof. For every H;-operator U; there is a self-adjoint 4; with U;=exp (i~ 4;).
. d
Thus by Proposition 4.3, ¥ has the form V=—d—t exp (it-A)®...Qexp (it-A,).
0
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