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A projection principle concerning biholomorphic automorphisms 

L. L. STACHÖ 

1. Introduction 

Let E denote a Banach space and D be a bounded domain in E. A mapping F 
of D onto itself is called a biholomorphic automorphism of D if the Frechet deriva-
tive of F exists at each point x£D and is a bounded invertible linear ¿'-operator. 
Our basic motivation in this article is the problem of describing Aut B(E) the group 
of all biholomorphic automorphisms of the unit ball B(E) of E. By recent results 
of W . KAUP [7] and J.-P. VIGUE [18], this problem stands in a close relationship with 
that of the classification of symmetric complex Banach manifolds which is solved 
since a long time in the finite dimensional case [2] but fairly not settled for infinite 
dimensions. 

In 1979, E. VESENTINI [16] has shown that the unit ball of a nontrivial Z.1-space 
admits only linear biholomorphic automorphisms. His proof goes back to investi-
gations on Aut-invariant distances and a classical two dimensional result of M. 
KRITIKOS [9]. Using a characterization of polynomial vector fields tangent to dB(E) 
(the boundary of B(E)) we found [11] an essentially two dimensional argument that 
enabled us to establish the sufficent and necessary condition for an Lp-space to have 
only linear unit ball automorphisms (for different approaches cf. also [1], [16]). 

The purpose of Section 2 the general abstract part of this work is to clear up the 
deeper geometric background and connections of the seemingly different methods 
in treating Lp-spaces that occur in [16] and [11], respectively. Our main theorem pro-
vides a sufficent condition in terms of the Caratheodory (or Kobayashi) metric to 
reconstruct the biholomorphic automorphism group of Banach manifolds from 
those of its certain submanifolds via holomorphic projections. This result seems to 
be very well suited in calculating explicitly Aut B(E) in various Banach spaces E ad-
mitting a sufficiently large family of contractive linear projections. In Section 3 we 
illustrate the use of this projection principle by two typical examples where the con-
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elusion seems hardly available with other already published methods: After nu-
merous partial solutions, recently T. FRANZONI [ 4 ] gave the complete description 
of Aut B(S^(H1,H2)) where H2) = {bounded linear operators H1^H2} 
and Hx, H2 are arbitrary Hilbert spaces. As we shall see, the projection principle 
makes it possible to obtain the exact description of Aut B(H1®...(S>Hn) in an ele-
mentary way where H1 <g>... <g> H„ = {continuous «-linear functional Hl X. . . X Hn — 
—C}. Note that H2)^Hl<^H2 and for H1®...®H„ cannot be 
equipped with a suitable/^-structure on which Franzoni's method is based. The key 
of the reduction by the projection principle is the fact that in finite dimensions the 
strong precompactness of B(H1<S> ...<g)Hn) considerably simplifies the treatment 
of the space (Section 4). The second application concerns atomic Banach lattices. 
The unit balls of finite dimensional such spaces are exactly the convex Reinhardt 
domains. In 1974, T. SUNADA [13] characterized Auto D f ° r a ' l the bounded Rein-
hardt domains D. However, his proofs depend on the Cartan theory of finite dimen-
sional semisimple Lie algebras thus cannot be carried out in infinite dimensions. 
If the finite dimensional ideals form a dense submanifold, the projection principle 
reduces even the most general case to some straightforward 2 dimensional consider-
ations. We remark that in this way also Sunada's proof can be simplified and the 
method applies in parts to other Banach lattices (cf. [12]). 

2. Projection principle 

Our main abstract result concerns with holomorphic vector fields on complex 
Banach manifolds (for basic definitions see [17], [7, §2]). If M denotes a complex 
Banach manifold, a vector field v: M—TM is complete in M iff for every x£M, 

there exists a mapping ex:R—M such that ex(0)=x and ^ex(t)=v(ex(t)) 

Vi€R. In this case we define exp (tv)(x)=ex(t). A function d\TM—R+ is 
called a differential Finsler metric on M if for any fixed xdM, the functional 
TxM^w>— <5(x, vv) is convex and positive-homogeneous and for each coordinate-
map (£/, <£), the function /¡¡Vtqi): >—<5($-1i>, i>($-1e?)) is locally bounded and 
lower semicontinuous whenever v is a holomorphic vector field on M. We shall 
write dM for the Caratheodory distance [3], [17] on M, i.e. dM(x, _y)=sup {areath 
F(y): F is a holomorphic M— A function, F(x)=0} where A = {C€C: |C|<1). 
For a holomorphic mapping F: M-+M, we denote by F' its Frechet derivative 
(recall that for any fixed x£M, F'(x) is a bounded linear TXM-*TXM operator). 
For a Banach space E, we shall denote by E*, || and B(E) its dual, norm, closure 
operation and open unit ball, respectively. 
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2.1. T h e o r e m . Let M be a complex Banach manifold, M' a (complex) sub-
manifold of M and v a complete holomorphic vector field on M. Suppose P is a holo-
morphic mapping of M onto M' such that P\M, = iAM, (the identity mapping on M"). 

Suppose there exists a differential Finsler metric 5 on M' such that 
(i) the vector field P'v\M, is 5-bounded (i.e. sup S(x, P'(x) v(x)) 

xiM 
and by writing d for the intrinsic distance generated by 5 on M', 

(ii) the topology of the metric d is finer than that of M', 
(iii) for any sequence x l 5 x2, which is a Cauchy sequence with respect 

to d but which is not convergent in M' we have dM,(xlt xn)-+°° (« — 
Then the vector field P'v is complete in M'. 

P r o o f . For the sake of simplicity, the proof will be divided into three steps. 
1) From the definition of Caratheodory distance we see immediately that 

dM,(x,y)^dM(x,y) yx,y£M' since M ' c M . It is also well-known [2] that the 
mapping P is a dM—dM, contraction. Hence the relation P\M, = idlli, entails 
dM,(x,y)SdM(x,y). Thus we obtained dM,=dM\M,. 

In the sequel, we set a x ( / ) s e x p (tv)(x) (x£M, i£R) and bx will denote the 

maximal solution of the initial value problem i^y=P'(y)v(y)', j ( 0 ) = x | . 

We show that for arbitrarily fixed zZM', 

(1) dM.(Paz(h),bz(h)) = o(h) (/j-0). 

Indeed: Consider any coordinate-map (U, $) from the atlas of M' for which 
z€ U. We may assume without loss of generality that is a biholomorphism between 

U and the open unit ball of some Banach space E. Then for all j /€dom 

M O e ^ - 1 ^ £ ( £ ) ) } we have 

dM.(Paz(h), K(h)) ^ d(Paz(h), bz(h)) = dB(E)(<PPaz(h), <Pbz(h)) S 

S fi\\4>Paz{h)-0bz(h)\\ 

where /¿=sup {dBm(f g)/\\f-g\\: f , gtl-BiE)^. It is easily seen that f i ^ 

^ 2 sup \dB(E)(f, 0)/ | | / | | : 5 ( £ ) } = 2 sup {ll/H"1 areath | | / | | : | | / | | 

The estimate \\$Paz(h) — <Pbz{h)\ =o(h) (_/—0) can be verified as follows: 

By definition, a is the solution of the initial value problem \-^-y=v(y), j ( 0 ) = z l . 
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Therefore \\$axQi)-(*z+h$'v(z))\\ = o(h). Thus 

d 

[<PPaz{h)-^b2(h)]-

dh 
<PPaz (h) - Q'P'v (z) = Q'P'v (z) - Q'P'v (z)=0. 

An application of (1) directly yields that for any x,y£M', 

m±[dM.(bx(h), by(h))-dM.(x, y)] = Em±ldM.(Pax{h), Pay{H))-dM.(x, y)] S 

S g - 1 [d„(ax(fc), ay(h))—dM(x, y)] = 0 

(since P is a contraction dM^~dM, and dM,=dM\M,). 
2) Henceforth we proceed by contradiction. Assume that the vector field P'v 

is not complete in M'. 
Now we may fix a point x£M' such that dom bx*R. Let t0 be a boundary 

point of the interval (or ray) dom bx. Since 0£dom bx, we have 0. So (by 

passing to the vector field —v) we may assume /„—!• Then consider the function 

e(0 = dM. |fcx(0, &,(/+•y)j [o, y)). 

Since bx(t+h)=b„xt(h) and bx j(/i) whenever t, t+h, 

0,1), from step 3) it follows that 

v,c[o.i). 

We show that the function g is locally Lipschitzian. Since the conclusion of the 
previous step can be interpreted as g'(t)=0 for all such values t where g'(t) exists, 
hence we obtain that g is constant i.e. 

(2) dM.[mo, = (*' a*(t)) W € t)-

P r o o f . By. triangle inequality, it suffices to see that for any z£M' , the mapping 
t<-~bz(t) is locally Lipschitzian with respect to the metric dM,. Denote by <5M, the 
Caratheodory differential Finsler metric of the manifold M' (for definition see 
[2], [17]). Then the function y: r~5M,(bz(r), P'b(bz(j))) is locally bounded (cf. 
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[17]). Hence if . / i s a compact subinterval of dom bz then sup y ( i )<°° and there-
fore 

bz{t")) ^ | f5M.{bz(t), bf,{t)) dt\ = \f y(t) dt\ s 
f f 

S supy(i) • jt"—1'\ whenever t',t"£j. 
its 

3) Write sup 5 (x, P'v(x)) and consider the sequence f„= 
x € M' 2 2 n 

(n= 1,2, . . . ) . For m ^ n we have 

d {bx ( im + , bx (i„ + i - ) | S / <5(6,(0, = 

= f"d(bx(t),P'v(bx(t)))dt^ jnKdt = ^[-1—I). 
'm 'm 

Thus |b x |f„ is a Cauchy sequence with respect to the metric d. Suppose 

i / ^ z|—0 (« — °°) for some point z£M'. Then we would have 

P'v(bx(tn))—P'v(z) («-»»), as a consequence of (ii). However, in this case the 
r [ b x i f ) if r<Edom6x . . . . function b(t)=\, ' . r » , ' , , is a solution of the initial value [bz(t— 1) if 0 s ( i — l)£dom&z 

problem j — y - P ' v ( y ) , j ( 0 ) = j c j with dom ¿¡¿dom bx which is excluded by the 

maximality of bx. Thus jfe* ̂ + — ^ j- does not converge in the metric d. 

By condition (iii), du, , 6X (l _ _L j J = d w ( + t ) ' ̂  ('" + Y ) ) " 

—oo («-• oo). From (2) we see 

- dM . bx ^ y j | - OO ( „ - oo). 

But this is impossible because the topology of a complex Banach manifold is always 
finer than that generated by its associated Caratheodory metric (cf. [17]) whence 

^ ' [ ^ ( y j ' ^ Y - ^ " j ] - * ^ since the mapping t*-+bx{t) is differentiate. 
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The obtained contradiction completes the proof. 

2.2. R e m a r k . From step 1) one immediately reads that in general we have 

2.2a L e m m a . If d*: N^-d*N is a metric valued functor on the category of com-
plex Banach manifolds such that for all manifolds N, N', 

(iv) d*N is a metric on N, 
(v) each holomorphic map N'-»N is a contraction, 

then d*M\M,—d*M,, whenever M' is a sutmanifold of M and there can be found a 
holomorphic projection of M onto M'. 

The proof of Theorem 2.1 can be carried out as well for any metric functor 
d* with properties (iv), (v) and 

(vi) sup {¿S ( f ) ( / , 0)/| | / | | :ll/H =s i - J< oo for any Banach space E. 

The Kobayashi invariant metric (def. see [17], [9]) also satisfies these requirements. 
Hence Theorem 2.1 holds when replacing Caratheodory distances by those of Koba-
yashi. Moreover we have the following important special case of Lemma 2.2a. 

2.2b L e m m a . If E denotes a Banach space and P is a contractive linear projec-
tion E^E then dB(E)\B(PE)=dB(PE) and dk

B(E)\BiPE)=dk
B(PE) where dk stands for the 

Kobayashi distance. 

P r o o f . Since ||JP|| = 1 (otherwise we have the trivial case P=0), PE is a closed 
subspace of E and PB(E)=B(PE)<zB(E). Thus Lemma 2.2a can be applied to 
M=B(E) and M'=B(PE). 

This latter result can be further specialized as follows: Consider any unit vector 
e£E. By the Hahn—Banach theorem, there exists 4>£E* with | |$| | = <£, <J>) = 1. 
Then the mapping P: fi—-(f, <P)e is a contractive linear projection of E onto Ce. 
Thus Lemma 2.2b contains Vesentini's following observation. 

2.2c L e m m a (VESENTINI [ 1 6 ] ) . Let E be a Banach space, e£E a unit vector and 
c — c 

Ci, Then we have dk
B(E)(Cie, (2e)=dB(Ce)(C1e, Cz)=areath 1 2 

1 — t i t : 
i.e. the curve [A BC1—fe] is a complex geodesic with respect to both the Caratheodory 
and Kobayashi distances in B(E). 

Later on, we restrict our attention to Banach space unit balls. Recall ([8], [18]) 
that in a Banach space E, the elements of A u t o ^ i s ) (the connected component of 
Aut B(E) w.r.t. the topology defined in [15]) are exactly the exponential images of 
the second degree polynomial vector fields being complete in B(E) whose Lie-
algebra will be denoted by log*Aut B(E). Moreover, the orbit [ A u t 5 ( £ ) ] {0} = 
= {F(0): Aut B(E)} is the intersection of B(E) with a subspace which, in the 
sequel, we shall denote by E0 and we have £'0=[log*Aut B(E)] {0}. 
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2.3. T h e o r e m . If E is a Banach space and P: E—E is a contractive linear 
projection then .P[log*Aut £ ( £ ) ] jP£clog*Aut B(PE). 

P r o o f . Let w£log*Aut.B(.E') be arbitrarily fixed. We have to show that the 
vector field Pu\B{PE) is complete in B(PE). As in the proof of Lemma 2.2b, let us 
consider the manifolds M=B(E), M'=B(PE), the projection P\B{E) of M onto 
M' and the vector field v=u\B(E) which is by definition complete in M. Take the 
differential Finsler metric S(x, w) = ||tv|| (x£B(PE), w£PE) on M' whose generated 
intrinsic distance is obviously d(x, J/) = ||JC— (x, y£B(PE)). To complete the 
proof, we need only to verify (i), (ii), (iii). 

(i): For x£B(PE) we have P'{x)v(x)=Pu{x) whence by a theorem of 
K A U P — U P M E I E R [ 8 ] , 

w ( 0 ) + w ' ( 0 ) x + y « " ( 0 ) ( x , x ) 

si iuiOjn + iiii'iO)!!, 
{bilin ExE-*E) 

II ¿e(E, E) 

(ii): Trivial. 
(iii): Assume , x2 , ... is a Cauchy sequence with respect to the metric d 

without a limit in M'. Then for some unit vector f(:PE, ||x„—/||-*-0 (m-* i.e. 
W l - l . Therefore, by Lemma 2.2c, dM,(x1, xn)=dB(PE){xl, xn)^dB{PE)(xn, 0 ) -
-d B l P E ){xi , 0)=areath ||x„]| =areath HxJ -«>. 

2.4. C o r o l l a r y . If E is a Banach space and P:E—E is a contractive linear 
projection then P(E0)a(PE)0. In particular, if B{E) is a symmetric manifold then so 
isB(PE), too. 

2.5. C o r o l l a r y . Let E be a Banach space. If one can find a family & of con-
tractive linear projections E—E such that for every P£ Aut B(PE) consists only 
of linear transformations and p | ker P— {0} then all the elements of Aut B(E) 
are also linear. PiSf 

P r o o f . If «glog*AutB(E) then Pv(0)=0 yPdSP whence v(0)=0 i.e. the 
vector fields is linear. On the other hand Aut B(E)=Aut"B(E) Aut0B(E)=Aut°B(E) • 
• exp log*Aut B(E), where Aut0 = {£-unitarities}. 

3. Applications 

Let (X, p) denote a measure space. In [1], [11] it is proved 

3.1. T h e o r e m . The unit ball of E=LP(X, n) admits only linear biholomoprhic 
automorphisms unless dim E= 1 or p—2, 

As the first illustration of the projection principle, we show how can this result 
be reobtained from Thullen's classical 2 dimensional theorem [14]. 
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P r o o f . Suppose H \ { 2 } and à\mE>\. If gi,g2 are functions in E 
with norm 1 having disjoint supports then it is easily seen that the mapping P : 

2 
E£f>-* 2 Ifgj\gj\P~2dfl'Sj is a contractive linear projection of E onto the subspace 

E t v , = ¿ C g j . Now B ( E g i t g ) = { t : i g 1 H 2 g M P + \ Q p ^ } is a Reinhardt domain 

whose biholomorphic automorphisms are all linear by Thullen's theorem. Further-
more we have k e r P g v g = { f £ E : f f Y j \ g j \ " - 2 c i n = 0 (7=1,2)}. Thus f | k e r p

9 v g = 

= {fiE: \/geE[3h£E min(|*| , | A | ) = 0 ] = >f / g \ g \ ' - * d n = 0 } c { f £ E : V ^ c ^ a ^ c 
c l \ l ! 0 < / i ( I 1 ) , / i f t ) < H = i f dffi=Q}— {0}. Hence Corollary 2.5 establishes 
the linearity of Aut B(E). 

To the next application, let . . . , / /„ be arbitrarily fixed Hilbert spaces1 of 
at least 2 dimensions and consider the biholomorphic automorphism group of the 
unit ball B=B(E) of the space E=Hi<Q...<glHn, the Banach space of «-linear 
functional endowed with the usual norm | |F | |=sup {|F(/il5 ...,h„)\: hj^Hj, \\hj\\ = 1 
0 '=1 , . .,«)} for FÇE. For « = 1, 2, the description of Aut B is completely settled 
[5], [4]. It is worth to remark that, in the light of the Kaup Vigué theory, the diffi-
culties in this case can be concentraded to the description of linear ¿'-unitary opera-
tors: If n = \,E can be identified with H1 and for any fixed c£H1, the quadratic 
vector field q^W^f1-*~(f\c)f] satisfies [11, (1)] i.e. tangent to the boundary of B. 

Similarly, if n=2, E can be identified with , H2) and for fixed 
Ci£e{Ey,E2), the vector field , H2)3F^-FC*F] is quadratic and satisfies 
[11, (1)]. It is easily seen, in both cases that, we have {[exp (tq)](0) : /ÇR}=(—1, 1)C, 
thus B is symmetric and Auti?=(Aut®B)exp {qc: c£E}. Here we turn our atten-
tion first of all to the case « ^ 3 which seems heavily treatable with other methods 
and is not touched by the literature. 

3.2. Lemma. Span {UC: U linear € Au t 0 5}=£ ' whenever C € £ \ { 0 } and 
dim H j < ° ° ( y = l , ...,«)• 

P roo f . If C t h e n we may fix unit vectors efeHj (j= 1, . . . ,«) such that 
y=C(e1, ...,en)*0. Then let Pj denote the orthogonal projection of Hj onto Cej 
and set Uf=exp (iSjPj), C(91, • • •, 9„)=(C/? <g>... ® Uf)C ( fyeR ; . /= l , ..., n). Since 
the operators Uf are / / -uni tary , £/f<g>...®£/®€Aut0j3, therefore ...®en — 

1 Without danger of confusion, we write simply (. |.) for the inner product in any of 
Ht, . . . , / /„ . For Aj€J?(Jfj,ffj) and 0 = 1, ...,ri), we define ...QA^H^® ...®Hn3 

3 F>-*-F(Ai/1,..., AJn)], el®...®en = [(f1,... , / „ )> - ( / 1 k 1 ) . . . ( / JO] and <5̂  _ = [F^F(e, ,...,en), 
respectively. 
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d" 
. C6S"=Span {UC: U linear€Aat0j5}. Thus for all / / - u n i t a r y 

y àS1...à9„ o 
operators VJ,(V1e1)®...®(Vnen) = (V1®...®V„)(e1®...®e„)ÇS i.e. f®...®fndS 
whenever / i ê /Z i , . . . , /„€/ /„ , whence S—E (since dim E< «>). 

3.3. P r o p o s i t i o n . For H>2, all the elements of Aut B(H1 ® H n ) are 
linear. 

P r o o f . Observe that the family ^={P1®...®Pn: allPy-s are orthogonal Hr 

projections with dim PjHj=[2 i f j s . 3 and 1 ifj'=-3]} consists of contractive £'-pro-
jections and f ) ker P= {0}. Since for arbitrary P£0>, the subspace PE is iso-

metrically isomorphic to C 2 ® C 2 ® C 2 (C is endowed with its usual euclidean 
norm), by Corollary 2.5 it suffices to see only that the elements of the group 
Aut B(C2 ®C2® C2) are linear. Thus we may assume n—3 and Hj=C ( 7 = 1 , 2 , 3). 
Assume now that E0^0. Now Lemma 3.2 establishes E0—E i.e. symmetry of B. 
We show that this is impossible. 

Denote by ex, e2 the vectors (1,0) and (0,1) in C2, respectively, and consider the 
elements C=e1®e1®e1 and F=e2®e1®e1+e1®e2®e1+e1®e1®e2 of E. Since 
the space E is finite dimensional, for every A£E we can find fi,f2,f3ddB{C2) 

with M | | = y i C / i , / „ / a ) . In particular, for arbitrarily given A£ |o, y j we can fix 

unit vectors f j { X ) such that \\C+1F\\=(C+?.F, <5/iW,/2(a),/3W>- since C,F^0 
(i.e. C(g1,gi,gt), F(gltga,ga)^0 V g i , f t , g 3 ^ 0 ) and since {C+XF,èe^e) = 

e-i + r,(X)e2 

= AF(e 2 , e 2 , e 2 )< 1, for some rj(X)SO we can write / , ( / ) = ^ 1 / 2 ( . /= 

= 1, 2,3). Thus introducing the function <P) (q1 , g2, g3) = ( C + I F , ô e1+g1g2 ji+esfa) (i+c?)1'2 (i+e|)1 / a 

= [l+A(ei + e, + eJ] ¿ ( 1 + eï)"1 / > , we have A àg} 

So U O + r ^ - t l + l ^ + ^ + r a ) ] } - J ( l + r , 2 ) - 3 ' 2 = 0 ( 7 = l , 2 , 3 ) and hence 

A = = = . Therefore r , * 0 ( 7 = 1 , 2 , 3 ) 
1 ~ rt(r2 + rs) 1 - r2(ri + r3) 1 - r3(r1 + r2) 

1 1 1 ( 1 s -v 
and — \ - r x = — h r 2 = — \ - r 3 = — h 2r,I. Observe that from this and from the 

rx r2 r3 \ A J = 1 ') 

assumption AÇ^O, — J it follows that rx—r2—r3. (Otherwise there would be r > 0 

such that two of the numbers rY, r2, ra coincided with r and the third with 1 ¡r, re-
llr r 

spectively. But then X = =0.) Thus the relation X= holds H 3 l-(l/r)(r+r) 1 —2r 
where r (A)=rx (A)=r2 (A)=r3 (A). This fact can be so interpreted that for sufficiently small 

^ = 0 0 = 1 , 2 , 3 ) . 
(̂ (AJ.r^Aj.raCA)) 
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I 1 • K 1 / - J 1 „ r 
values of 0 Inamely for / = — i.e. r < 1, F r=C-1 -F, 

\ 3 4 ' 1—2 r^ 
« V ^ « , . . f u l f i l l [|Fr||.||<PP|| = <Fr,<Pr>. Then by [11, Lemma] 

(2) | | F r | | 2 < c T ^ + < 9 ( F r , F r ) , ^ > = 0 ( o < r < 

for some symmetric bilinear map q\ExE-+E. Here (C, = 1, || F,|| = II - 1 (F r , <Pr) = 

= (1 + r 2 ) - 3 / 2 [ l +3/-y—^-^j = (l + /-2J~1/2(l—2r2)-1 and <9(F„Fr), <Pr) = (q(C,C), <Pr) + 

+ 2 1 r2 2 ^ + $ ) " T a k i n g i n t o c o n s i d e r a t i o n that for 

fixed V£E, the function r>—(V, <Pr) is a polynomial of 3rd degree in r, from 
(2) we obtain 

(2') ( l + r 2 ) - 1 ( l - 2 r 2 ) - 2 + p 1 ( r ) + p 2 W ( l - 2 r 2 ) - 1 + p 3 ( r ) ( l - 2 r 2 ) - 2 = 0 

for some polynomial-triplet p i , p 2 , p 3 - However, (2') immediately implies the con-
tradictory fact that the function /••-»•( 1 + r 2 ) - 1 is a polynomial. 

3.4. T h e o r e m . The linear H1<g>...<&H„-unitary operators are exactly those 
operators F for which there exists a permutation n of the index set {1,..., n} and there 
are surjective linear isometries Uk: Hk-+Hn(k) (k=l, ...,«) such that 

(3) F{L) = [(A, . . . , / „ ) ~ L ( £ / f V ; ( 1 ) , ..., t / " 1 / ^ , ) ] . 

A linear vector field V belongs to log*Aut B if and only if it is of the form 

n 

(3') V = i- 2 i d H i ® - ® i d H k _ 1 ® ^ k ® i d H k + 1 ® . . . ® i d H n k= 1 

where the Ak-s are arbitrary self-adjoint Hk-operators. 

P r o o f . Based on some compactness arguments, in the next section we shall 
establish independently the validity of (3') if the spaces Hk are all finite dimensional. 
Our starting point here is (3') for finite dimensional E. First we extend it to infinite 
dimensions. 

Let V linear€log*Aut B and e^dB^Hj), ..., e*£dB(H„) be arbitrarily fixed 
and define the operator V=V—(V(e*ig>...ig>e*),Set e*)id£ . Since /*id£€ 
£log*AutB, we have K€log*Aut£. Remark that V(e*ig)...iS>e*)=0. Then con-
sider the family of mappings ^={P1igi...0Fn: Pk is an orthogonal Hk-projection, 
dim PkHk<°°,ek£PkHk (k= 1, ..., n)}. Any element P=PX®... ®P„ of ^ is a 
contractive linear projection of the space E onto its subspace (P1H1)<g>...<gi(PnHn). 
Thus by the projection principle, PV\PE£log*Aut B(PE) \/P£SP. 'Hence (applying 
(3') to the finite dimensional (iy/i)®... ®(PnHn)) for each P£there exists a 
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unique choice of Ap£ {self-adj. /^-op.-s}, ..., Ap£ {self-adj. H„-op. -s} such that 

Ap
kHkaPkHk{i.e. PkAp

kPk = Ap
k) and (ASeftef) = 0 (fc = 1, n), 

n 

PVP = J2/'.idHl(8)...<2iidHk_1(g)^ik(8)idW|[+1<8i...(8iidHii. 
k = 1 

Introduce the following partial ordering ^ in SP\ If P=P1®... ®P„ and Q = 
def 

= fii®...®&, then let P^Q<=>PkHkaQkHk (i.e. Pk^Qk)k=\, ...,n. From 
the relation P^Q=>PVP=PQVQP we immediately see 

(4) A\ = PkA%Pk (k = 1, ..., n) whenever P g Q. 

Observe that for any fixed and index A:, 
Up

ke\f)\ = \((PV)iel®...®et-1®e®eU1®...®et), dt* ^ /.,;+II.....;>l ^ 

^ ll^ll f =11^11 ||F|| \fe,f$dB(HJ, 
that is 

(5) M H ^ m i (k = l , . . . , n ) 

Since obviously \jP, QdSP^RdS? P , Q ^ R and since by (4), (5) the relation P ^ Q 
entails \(A^e\f)-(,Ale\f)\ = \{A2(e-Pke)\f) + (A^Pke\f-Pkf)\^\\V\\(^e-Pke\\ + 
+ \\f-Pkf\\) Ve,f£dB(Hk), k—l, ..., n, the definitions 

ak(e,f)~i\m{Ap
ke\f) (e,f$Hk, fc = l , . . . , n ) 

make sense and determine bounded sesquilinear functionals. Therefore there exist 
self-adjoint operators Ax: H1-*H1, ..., A„: Hk—H„ such that ak(e,f) = (Ake\f) 
and hence (Ap

ke\f) = (Ap
k {Pke)\Pkf) = (AkPke\PJ) = (AkPke\PJ) = {PkAkPke\f) 

Me, f£Hk i.e. Ap=PkAkPk (P£0>,k=l, ..., n). Now for arbitrary L<iE,e£Hx, ..., 
eneHn the projections Pfc=projSpan{Cii>^e(c>e(J (k = ], . . . ,« ) satisfy 

[FZJfe, en) = [VL](Piei, ..., P„en) = [PVL](e1; ..., e„) = 

n n 

= ZL(en •••^kAkek, ...,<?„) = 2L(ei,- -,Aek,---,en). 
t = l * = 1 

n 
Thus we can write VL(et, ...,e„)= ••••>Bkek, ...,en) where B;=Aj for 

lc=l 

7=1, ..., n - 1 and B„=A„+(F(e*, ..., e*),Se* „») id f , proving (3') in general. 
To prove (3), let F be an arbitrarily given linear £-unitary operator and intro-

duce the families ^k = {Pt®... ®P„: Pk is an orthogonal Hk-projection, Pj=idHj 

for j ^ k } (k—\, . . . ,n ) . From (3') we see /^>
tclog*AutB and hence for every 

Pi&k, the mapping Q = FPF~X also has the properties /£>€log*Aut.B and Q2=Q 
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(since P2=P) which is possible (by (3')) only if Q£&>
IK{P) for some index ¿K{P) 

(k=l,...,«). 
L e t kÇ. {1, . . . , n} b e fixed. W e s h o w t h a t TK(PI)=<fK(P2) V A , A€^V\{ID£}-

Indeed, if then the operators QJ = FRJ F~1 (7 = 1, 2) commute 
(i.e. [ ô i , Ô2] = <2i Ô2 — Ô 2 < 2 i = 0 ) whence we would have [/?1 , /?2]=0. Observe 
t h a t VPI,P^^K\{IDE}3PS€^K [ A , i>3], [P2, P3]*0, t h u s (by t a k i n g R^PJ 
and R2=PS J=1,2) ¿k(Pj)=Tk(P3) holds for . /=1 ,2 . 

Therefore there exists a permutation rc with 

(6) = ( f c = 1, . . . , « ) . 

Since the finite linear combinations of orthogonal projections form a dense submani-
fold of the algebra of linear operators in any Hilbert space, it direcdy follows 
the existence of surjective linear isometries Sk: ££{Hk, Hn(k)) such 
that 

F ( i d H l ® . . . g n d ^ i ^ g n d ^ ® » i d ^ F " ^ 

= idtf, <g>... ® idHn ((c). t O Sk (Ak) O id a„ (k}+, <g>... <g> idHn 

(AkÇ<?(ffk,Hk); k = l, ...,«). 

As a consequence of the relations (6), the mappings Sk send orthogonal projections 
into orthogonal projections and therefore they constitute ""-isomorphisms between 
the C*-algebras ¿f(Hk,Hk) and ¿¡f(Hn(k), H„ik)). It is well-known that now we 
can write 

Sk\ AK~ UkAkUk* ( f c = l , . . . , n ) 

for some surjective linear isometries Uk: Hk^-HnW. Thus if we denote by a the in-
verse of the permutation n, for any linear ¿¿-operator A of the form A ... <g>A„ 
(where Ak££?(Hk, Hk) k= 1, ..., n) we have 

(FAF ~i)L = №,..., f„)~L(Ua (n)Aa(„) u^n)f„)] V L 6 F . 

This means that FAF~1 = UAU~1 \/A£2?{E, E) holds for the F-unitary operator 
U defined by 

U(L) = [(A, -..,/„) - HURVNM, - > U-V^N))] (UE). 

It is easily seen that this is possible only if F = e , 9 f / for some ,9ÇR which completes 
the proof. 

In the remainder part of this section, by making use of the projection principle, 
we shall examine the structure of biholomorphic unit ball automorphisms in case 
of minimal atomic Banach lattices (abbr. by min. 5-lattices). 

A Banach lattice E is called a min. ^-lattice if it is norm-spanned by its 1 dimen-
sional ideals. Henceforth we reserve the symbol E to designate a fixed min. 2?-lattice. 
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According to a well-known representation lemma [10. p. 143, Ex. 7 (b)], we may 
assume that for a fixed set X, E is a sublattice of {X— C functions} such that 

(7) 1 xdE and | |1J = 1 Vx£X, 

(8) Span {1,: = E. ( l x stand for [X3y>-+ 1 if y - x and 0 elsewhere]). 

Remark that then 

(8') wf£E and wf = lim w l Y f whenever / € £ , sup |w(x)| s I.2 

Y finite c X x£X 

For the sake of simplicity we write B=B(E) and the functional [E^ f<-*f(x)] will 
be denoted by 1*. 

First we describe the linear part of Aut B. 

3.5 D e f i n i t i o n . For x, y£X, let x~y if (/"(1 x), l ^ ^ O for some linear element 
£ of l o g o u t B. 

3.6. L e m m a , (i) x~y if and only if for all f , gdE, f—g£l^xy^E and 
2 l/(*)l2= 2 \g(z)\2 entail \\f\\ = \\g\\. 

z=x, y z=x,y 

(ii) The relation ~ is an equivalence. Moreover, in case of ... 

f-gOlx and jt\AxjW= 2\g{xjW imply ||/|] = ||g|| 
7 = 1 7 = 1 for all f,g£E whenever x , , ...,x„ are distinct points. 

P r o o f , (i) Let Y= {yt, ...,yn} be an arbitrary finite subset of X and £ linear^ 
£log*Auti?. Set ocJk = (£(lyj), l y J and assume a1 2? i0 (i.e. ~j>2). Since the mapping 

n 
P:/>-• 1 r f is a band projection of E onto 2 C L , the projection principle establishes 

7 = 1 1 

£ £log*Aut PB where £ =P£\PE. Thus by [11, Lemma]3 

(9) Re ( £ ( f ) , *> = 0 <= ( / , <t>) = ||/||||*|| \jf^PE, <P£(PEf. 

2 Proof: Given e > 0 , by (8), there are Zfinite cX,gfA2f with | | / -^ | | -=e /2 . Now Z c Ylt Y., 
finite c j r implies l l / - * l l s | / - l z / I M C / - l z . / ) | s M l i ' i U v , / - l i > f l l 0" = 1,2) i.e. by triangle 
inequality e s | | w l r i / - ) v l i r 2 / | | . Thus { w l y / } y f l n U e is a Cauchy net in£". Hence for some h£E*, 
w 1 Y f - h . But h(x) = (h, l i ) = l i m y ( w l y / , \x) = w(x)f(x) Mx. 

s In the same way as in [11, Lemma], one can see that if a linear vector field £ on Banach space 
F belongs to log*Aut 5 ( F ) then Re</(/),<Z>)=0-e=(/, i > ) = | l / l l | | $ | | \/f€F,<P€F*. 

Proof: Since £ is tangent to dB(F), we have £(J)£(H-f) whenever l | / | | = l and H isareal 
hyperplane in F supporting B ( f ) at / . But the general form of such a supporting hyperplane is 
H={h£F: Re(A, # ) = ! } where tf>€F* with ||<i>||=</, # ) = !. 
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2 n j e ~ i 9 j f ( y j ) 
j = i 

^ 2 * j \ f ( y j ) \ ^ p{\f<Ji)\, •••» I /OOI) = 11/11 
j=i 

Introduce the function p (e l 5 . . . , g„)= 2 6jly on R ^ and set C = { 0 € R + : 
J=i J 

grad|c/> does not exist}. Since p is an increasing positively homogenenous convex 
function, C is a cone of Lebesgue measure 0. Let us fix arbitrary vectors f ? £ R + \ C , 

n n 
9€R" and set 7 t = g r a d | e p , / 0 = 2 Qj^K > 2 • s i n c e the function 

n 
p is increasing, jt, ..., 7i„=0. Since 7t is positive homogeneous and convex, 2 nj6j = 

j=i 
=P(ei, —, en) i-e. </0 , #> = 11/oil- On the other hand, for any f£PE 

u n = 

i.e. || $| | = 1. Hence (9) can be applied to / 0 and <P. Thus 

(9') Re ( t ( 2 Q j e \ J , 2 = 0-

By the arbitrary choice of $€R", an equivalent form to (9') is 

(9'0 Re [2ejKj<Xjj+2 (ejnkccJk + Qk7ijcckj) ZjZ*1] = 0 
j i^k 

whenever |zj| = . . . = |z„| = 1. 

This is possible only if the rational expression (w.r.t. z l 5 ..., z„) in the argument of 
the Re operation vanishes. Thus in particular i?i7r2a12-l-i>27ria2i::= 0- I.e. we obtained 
the following partial differential equation 

(10) + = 0 ( e € R + \ C ) . 
OQ2 oQi 

f\ 

Since C ,= l l c 2 l , 1 l l ^ | | 2 cA , l l= / ' ( e ) Ve<ER"+, there exists e € R " + \ C w i t h 

J u p 2 
Therefore a 2 ] ^ 0 , moreover a2 1 /a1 2<0, i.e. a21/a12 = — |a2i|/|a12|. 

For (e>, ...,e„)6Rn
+-2, define ^ e„:R-R by <pe3 J f ) = 

=/>(|a12| cos t, |a21| sin i, 03, ..., Qn). Since C is a cone of measure 0 in R"+, (10) 
implies 

(11) <Pe3 e „ ( 0 = 0 for almost every f<E(0,Tr/2) and ( c „ .. . , e j e R T " 

From the convexity of p it follows that it is locally Lipschitzian in the interior of R + . 
Hence, by (11), 

(11') 9 « , „ (0 = J O ) V/£[0, n/2], (03, , 0 „ ) e R r 2 . 
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But then |a12 |=i»0 0(tt/2) = |a21| whence 

PK\-Hel+eir • <pei Cn (arccos = M-'iQl+ei)1'2^ c„(0)= 

<€R) form a one-para-

^ [ / - / ( ^ - / M U 

=p{Yel+elo>Qs>->s»)-
2 

Let now fg£E be functions such that f-g£l{nyi)E and 2^ l / C M 2 = 

= h g ( y j ) \ 2 - Then II1 y/li =p (( J 1/0^) l2)1/2,0,1/(^)1, • • •, I / M l ) = II1 r*ll • Tak-
ing into consideration the fact that Y may be any finite subset of X, from (8') we 
obtain | | / | | = ||s||. 

2 2 
Conversely: Assume that f-g^l^^E and 2\f(y})?= 2 \s(yj)\2 i m P ] y 

| | / | |= | |g | | for all f , g£E. Then the mappings , , „ , / + ((cos /) • / ( j 1 ) + 
+(sin 0 - / > 2 ) ) l y + ( ( - s in t) 'f(yi)+c+(cos t) - / ( J 2 ) ) y 

meter ¿-unitary operator group. Hence the linear field 
dt 

belongs to log*Aut B. 
Proof of (ii): Say t h a t / ~ r * if y finitecrA', / , * € £ , / - * € l y £ a n d 2 l/OOla = 

}>tr 
= 2 k ( j ) l a - Obviously, the relations ~ y are all equivalences. Consider the set 

j-er 
N={m: ... 3 / , * € £ / ~ { x i x">*, | | / | | Hlgll}- Suppose AM0 and set n== 
= min N. From (i) it follows n > 2 . F ixase t Y= {_yl5 ...,yn) andfunctions / i , / 2 € £ 
such that / ~ r f t ~.... ~ J,, but \\f\\ ^ | | / J . Consider the functions*;=1 ( A n u W / j + 

+ [ 2 / A y k f ) (7=1,2). Observe that "">*,• whence 11/11=11̂ 11 (7= 

= 1,2). However, *i~{, '1 ' , '!!>* and therefore by (i) we have ||*i|| =||*2 | | contra-
dicting the assumption H/J^ | | / 2 | | . Thus N=&. Hence if yi~y2~ya then \/f,g£E 
f ^ b y (i)5 y i ~ y 3 holds. 

3.7. C o r o l l a r y . The proof of (i) shows that <^(1^), 1 ^ =-<<f(l„2), 1*> when-
ever y1,y2£X and £ linear€log*Auti?. 

3.8. D e f i n i t i o n . From now on we reserve the notation i^J) to denote 
the partition of X formed by the equivalence classes of the relation ~ . For each / 6 J , 
we shall denote the projection band 1 S E of E by Ht. 

3.9. P r o p o s i t i o n , (i) If f , g£E are functions with finite support and ||/|s ||,a= 
=llslS|ll,. {=(2 ls(*)l2)1/a) v/e^- then ||/||=||*||. 
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(ii) For any i£y,Hi is a Hilbert space (i.e. the norm || • || restricted to Hi 

satisfies parallelogram identity). Namely, a function h: X-*C belongs to Hi i f f 
s u p p ( / i ) c S ' ' , 2 |fr<X>l2<~> furthermore we have l l / I M I / I U V/G^-

(iii) If f g i E and | | / | sJ|=||g| sJI V /6^ then ||/|| = ||g||. 
(iv) If g\X-CJ<LE and | | / |S ( | |„ = |ls|S(IU then gdE. 
(v) Assume tf£jjf(E,E). Then /£log*Aut B if and only if there exists a family 

of linear mappings { £ j : s u c h that i-ij is a self-adjoint Hj-operator for each 
sup and <f= <g> 
Ks its 

P r o o f , (i) is a directe consequence o f L e m m a 3.6 (i). 
(ii): Let f£H and x0£E be arbitrarily fixed. By (i), l | l y / I M I ( Z l / O O I 2 ) 1 / 2 l J 

yiY 0 

= ( 2 l / 0 ) l 2 ) 1 / 2 for all Y finite c X . Hence by (8'), ° ° H I / I I =11/11/.. Furthermore , 
ytr 

if g is a function X — C having support in St and U g l l ^ c °° then (i) ensures V T i , Y2 

finitecZ)||lr/-l1.i/|| = | | l r i / - l y s / | | , 2 = [ | l y i ^ / | | i.e. the net {1 y f } r is a C a u c h y 
net whence f£E. 

(iii): Let £ > 0 be fixed. According to (8'), one can find Y finitecX w i t h 
l l / - l z / I U I ^ - l z ^ l l < £ VZcY. Since the index set J={i£J: 7 0 ^ = 0 } is finite, 
there exists a family o f sets { Z , : / £ / } such that F R ^ c Z , - finite c St ( / € / ) a n d 
2 W l s i f ~ 1 z l f I L < e - Consider n o w the funct ions fc= 2 l U z / I U " 1*, and ge = iZJ itJ ' ' 
= 2 II lz Sh*' 1* where xi denotes an arbitrarily fixed point o f Si (i£J). B y writing itJ ' ' 
Z = U Z f , w e can see ||/e|l = | | l z / | | , | | g j = | | l z ^ l ! and l l / - l 2 / | | , \\g-lzg\\^e. U s i n g 

its 

the triangle inequality, I I / . - & N 2 III h/W^-W l z ( S l W = ( s i n c e II l s / l l , 2 = l l 

for all 0 = 2 llllz/ll^-llls/IU+lllsl«ll^-Pzlill/.l^fj^(ll.lS/-lzl/IU=yisli-
- 1Z{g\\^2e. Thus 111/11 = ||g\\ | S | | / - l z f \ \ + ||| l z / | | = || l z g | | | + | | g - lzg\\ 

(iv): By (8'), to every number w€N, w e can choose Z„ finite c z X such that 

I I /—l z / | | < — . W e may assume without loss o f generality Z x C Z 2 c . . . . T h e n set 
Tt 

y„= {/€,/: Z„nS;7i0} ,g„= 2 ls,g• fiy (") a n d finiteness of the sets JB,gn^E 

V « € N . If then | | a , - « J | = | | 2 l s , * l l = ( b y ( " O H 2 l S i / l l S (since 

I 2 h, / 1 = 1 / - l z / 1 ) ^ I I / - l z /11 T h u s {g„}„ is a Cauchy sequence in E. 

For all x£X, lim g„(x)=g(x) whence g= l im gn. 
n-*- 00 tl*+- 00 

(v) First let <f£log*Aut B. If j , k e J , j * k , x£Sj,yeSk then by the definit ion 
of the classes S{ and by L e m m a 3.6 (i), ( / ( l x ) , 1 * ) = 0 . This fact shows <f(Hj)<zHj 
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Thus by setting we obviously have and<f= ® £¡. Further-
1 iiJ 

more, [11, Lemma] establishes {self-adj. HJ-op.-s} V / 6 ^ . 
The converse statement is immediate from (ii) since then we have exp (tf)= 

= ф exp {£,) and, by assumption, all the operators exp (¿¡) are ^ - u n i t a r y here. 
ji* 

3.10. C o r o l l a r y . For some subset / 0 с / , by writing X0= U Sh we h.zve 
i€S0 

E0=l XE (where £ 0 Е Е С - [ А Щ 5 ] { 0 } cf. Introduction). 

P r o o f . Set Z={x€X: 3c£E0 c(x)^0}. Clearly E0<z\zE. On the other hand, 
if x£Z,c£E0 and с(х)^0 then, by (v), the linear field S=[f>-~i'f(x)lx] satisfies 
l ^ X { j c } c+e"c(x ) l x =exp(//)€£0 V ' € R w h e n c e E 0 з S p a n {Lx:x£Z}= lzEi.s.E0=\zE. 
Suppose now x£Z, с£Е0, с(х)т^0 and x^S^ Let and 

d 
It 

i/(*)l,+i/0>)lj. As in the previous case, c1=/f1(c)=— exp (iifi)c6£'o since by 

(v), Ae log*Aut5 . However, c1(y)=ic(x)^0 i.e. Thus 5 f c Z . 

Next we turn our attention to the quadratic part of log*Aut B. 
In the sequel we shall use the notations J0, X0 introduced in Corollary 3.10. 

Recall that for any c£E0, there is a unique symmetric bilinear form qc: EXE-+E 
with [/->-c-t-<7c(//)]£log*Aut2? and that the mapping c>—qc is conjugate-linear 
and continuous. Since the finitely supported functions are dense in E, to get the 
complete description of log*Aut B it is enough to determine only the values 
(qlx ( 1 ^ , 1 ^ ) , 1 ^ ) (X^XQ, xs, X3, X4£X). T O this task, the projection principle 
provides an essential reduction. 

3.11. L e m m a . Let xx, ...,xn£X,x£X0 and pl
Jk=(qlx (1_ , 1_), ir>. Then 
' *j J * I 

(i) 4 = 0 i f { l , t } * { j , k ] , 
(ii) 

(iii) /»«,€[-1,0] and l{jCi,;t2}JB = {C1lJCi+C2lX2:|Cir+IC2|-1//'<l} if or 
l{jti>Xi)il={C1lXl+C.l,i:max(|C1|, |C2|)<1} in case of /£=0 , 

(iv) — 1/2 if x1~x^x1 and $ 2 = 0 if Xl*x2€X0, 
(v) if xlt ...,xneX0 and xt-t-xj for i ^ j then | |C i l X l +. . .+C„l x J |=max( |Ci | , 

. . . X I ) for all 

P r o o f , (i) Consider the band projection P : / -» - l { ->JCj/. By the projection 
principle, [ /— LXI+PQLX ( / , / ) ] £ log*Aut PB. Applying [11," Lemma] to PB, we 
obtain 

о = в / п » о « ! . * ) + ( p q i * ( f , f ) , <= ii/ii • m = <f, Ф) т Р Е , Ф а Р Е у 

8* 
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Introducing the same function p\ R^.—R+ and set C c R ° + as in the proof of Lemma 
3.6, 

(12) o = p f a , . . . , e * Y ( i x , , J J | e - ' X ) + 

for all e 6 R n
+ \ C and 9€R". Thus 

(120 p ' ^ r ^ + i 2 faeje^e'^x-X>) = 0 (e<EC, 8<ER"). 
OQ i OQe ' 

dp " 
Therefore (for fixed £>€R+\C) the rational expression p ——zt+ 2 PjkQjQk' 

OQi j,k,i = 1 
3p 

•——z,zkz^1 vanishes on d0An i.e. its homogeneous parts are 0-s. Hence only the 
OQe 

coefficients of the form i) may differ from 0. 
(ii) is immediate from (12') if we take n=1 because then p{Q1) = g1-
For the proof of (iii) and (iv), consider the case « = 2 . From (12') and (ii) we 

then see 

(12") ( p 2 - e ! ) i ^ + 2 6 1 Q z ^ P l 2 = = o (e€R" + \C) . 
OQ I OQ2 

Since p(0, Q)=P(Q, 0) and since the function p is increasing and convex, Ve€ 
€[0,1) 3 ! ' = 0 p(Q, 0 = 1- Thus the function t: [0, 1 ) - R + is welldefined by 
p(g,f(g)) = l . Observe that now t is a decreasing concave function and / (0)=0. By 

dp\dgx the implicite function theorem, t'(Qi) = — - — - — whenever (g1, ( ( g ^ j ^ C . Thus, 
dp/dg 2 

since C is a cone with measure 0 in R+, (12") implies 

(12"') i ' ( e ) ( l - e 2 ) = 2gt(g)Pl2 for almost every Q£(0,1). 

Since 0, we have If # f 2 = 0 then r( e) = / ( 0 ) = l V(?€[0,1). In this 
case, /?(<?i, e2) = l if e i < l and = 1 or ^ = 1 and g2 = U i.e. 
p(Qi> e2) = m a x (&i> 62)- If t h e n the solution of (12"') with initial value 

/(0) = 1 is Thus by setting K={(6l, Q2)-.p(Ql, 

(13) K={(Q1,Qi):gl+Q2
lll>"^ 1}. 

The convexity of the function p entails that K is convex whence —1 yielding 
(iii). 



A projection principle 117 

(iv): If x 1 ~ x 2 ? i x 1 then p(gx, 62)=(el+el)1'2 (cf. Proposition 3.9 (ii)), that 

is, by (13), we have / ? i 2
= — y • 

On the other hand, suppose XX'/'X^XQ and P l ^ O . Since xt£X0, all the pre-
vious considerations can be carried out by interchanging and x2. Thus by (iii), 

= {CiU l+Caixs: |C1 |2+IC2r1/< ,1^ (1 '1, I jCi ) , l i i> S 1 } = 

= {Cilx1+C2U s:|C2|2+ICir1 /<9 l^ ('JC» , , JCl ) ,1"> ^ 1}. 

This is possible only if j = < ? l x i ( l X i , lXl), K ) thus p(Ql, 

If Si denotes the equivalence class (w.r.t. ~ ) of then by Proposition 3.9 (iii), 
II/+ l*,ll = 1111/11 •̂ l x 1 + e 1 » , l l = / ' ( l l / L ' » e ) = l l / + e l * , L i for a r b i t r a r y / 6 H , w h e n c e it 
follows x2£Si i.e. ~ x2 . The obtained contradiction proves (iv). 

(v): Let ylt ...,yn£X0 be pairwise non-~-equivalent. Now for arbitrarily fixed 

f ^ h n ,jF> 

q d f j ) = 2 c(ym) qi ( / , / ) = 2 <(yJ 2 f(yj)f(yk)(qiy U U , O V 
m — 1 ym m = l j,k,l=1 

Applying (i) and (iii) to xx=ym, xk=yk and Xj=yj, hence we obtain 

q d f j ) =~2 c(ym)f(ym)2lym = -c-p. 

Therefore the solution of the initial value problem j - ^ - / ( = c — # c ( / ( , / f ) , / 0 = o j 

is / , = t a n h (tc). Hence { J em 1 : •••» e„€[0,1 )}c{exp [ / ~ c + ? e ( / , / ) ] ( 0 ) : 
lm=l J 

c6l{j ) i J , n ) £ '}c [Aut£]{0}cf i . Then max Q„ 

£„€[0,1]. Consequently 2 emi, 
m = l 

2 e»1» N 1 whenever . . . , 

= 1 whenever max |(?m| = l whence 

2Cj i , 
i=1 

= max | i J . The proof is complete. 

From Lemma 3.11 (i) and the symmetry of the bilinear mappings qc follows 
directly that introducing the functions 

w, {—1/2 if xx = x2 
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we have 

91,(1,, U = 2wx(x)]x for all x£X0, 

q l x ( l x , ly) = w.OOl, if 

U = 0 if x${y,z},x£X0. 
Hence 
(14) gix(f,8)=f(x)wxg+g(x)wxf (xiX0) 

whenever the function f Z E is finitely supported. Moreover by (8') and Lemma 3.11 
(iii), (14) holds for every f£E. 

For sake of brevity, in what follows we shall write / ( i ) instead of the function 

V -
o 1 3.12. L e m m a , (i) — l S j whenever x£Si 

(ii) 0 whenever (id i/0), 
(iii) There exists a unique matrix (Ty)ie^ y6 s\s0 consisting of numbers belong-

ing to [0,1] such that w(J)=—ylJlSj whenever x£SiczXl0 and 

P r o o f , (i) and (ii) are contained in Lemma 3.11 (iv). 
(iii): Let x,x'£Si and y,y'£Sj where </0- From Proposition 3.9 (v) 

it follows the existence of an ¿-unitary operator Usuch that \X, = U\X and \y, = U\y^. 
From the elementary theory of Lie-groups it is well-known that t /vf/~1£log*Aut B 
for every fl£log*Aut B. In particular, [f^U(lx+q1 (U^f U~1f})]Oog*Aut B 
whence qlx.(f,f)=qvlx(f,f)=qlx(U-1f,U-1f). Therefore (qlx,(\x„ 1,,), 1?,) = 
={Uqlx(U-nx„ U-Hyf), l *>=<f f ? 1 ( l x , ly), l * ) > = < * i x ( l „ 1,), O since if U= © Ut 

izs 
is the directe decomposition of U provided by Proposition 3.9 (v) and f(LE then 

Henceforth we reserve the notation (?;./)• e.j '0 ,jej '\j 'o for the matrix introduced 
in Lemma 3.12 (iii). 

3.13. C o r o l l a r y . For arbitrary finitely supported c£E0 and f£E, 

(15) q c { f , f ) = - 2 ( / < i y i > ) / ( 0 - 2 2 i 2 y i j ( f V ) V a ) -
J € i£S o 

P r o o f . Applying Lemma 3.12. and (14), we can see that if c£E0 and f£E 
have finite supports then q c ( f , f ) = - 2 h x ( f J ) 2 2 2 ^ / W • 

x£X0 i£J'0»€S, 

In order to extend (15) to every c£E0 and f£E, we need the following observa-
tions. 



A projection principle 119 

3.14. L e m m a , (i) E0= © c o / / ; i.e. a function c: X—C belongs to E0 if and 
¡€ J'o 

ort/y i f y i ^ J I k ® ! , ^ « and V e > 0 {/€•/„: | | c ( 0 | | ^ S £ } f i n i t e ( / « i/ie latter 
case ||c|| = s u p | | c % , ) . 

¡«J'o 
(ii) sup 4 | k | | ( = 4 sup ||<7C|| = 4 sup \\qc(J, g)||). 

f.gee 

P r o o f , (i): Trivial from Proposition 3.9 (v), Lemma 3.11 (v) and the fact that 
the finitely supported functions are dense in E. 

(ii): Let i]_, y£Sj and x ^ S ^ , ..., x„£Sin. Consider the func-

tions c = 2 1« a n d / = lv+ 2 lx - 'By (i) we have ||c|| = l and ||/||=§2. By (15), _ i m ' i m m=l in=l 

< ? c ( / j ) , 0 = m i A t t h e s a m e t i m e ' i < 9 c ( / > / ) > i ; ) M i i i i i - i k M i / i i 2 - i u ; i i s 

—4||il | . 

3.15. C o r o l l a r y . (15) holds for each c£E0 and f£E. 

P r o o f . The previous lemma shows that the right hand side of (15) makes al-
ways sense. Observe that the mapping Q:E0XE$(c,f)i->-{right hand side of (15)} 
is real-linear in c and real-quadratic in / . For ||c||, | | / | | S l we have | | Q ( c , / ) | | ^ 
, | 2 - ( / ( 0 | c ( / ) ) / ( 0 i | + 2 | | ^ (sup 2 y j f % i M k % ) / w | | S | | / f . | | C | | + 4 | | 9 | | . M . 
i t s 0 H s 0 WS 0>Z*0 
•ll/ll2. Thus Q is a continuous map. On the other hand, the relation Q(c,f ) = 
= + q c ( f , f ) is already established for a dense submanifold of E0XE by Corollary 
3.13. 

In this way we completely know log*Aut B. The mappings exp [B^f>~* 

<-*c+qc(ff)] are easy to describe: By (15), the equation ft~c+qc{ft,ft) is 
dt 

equivalent with 

(16') = ^ - ( / i V W ( i a s 0 ) 

( i6") ± f t u ) = - 2 2 y y ( / , ( l , k ( 0 ) / . 0 ) U e s \ s j . 
a t ¡ej'o 

If we represent c(i) in the form c^sg ,«^ 0 where £>,-^0, | | = 1 and if / 0
( °= 

= CfCo ) +/ i ) where lying orthogonally to one then cheks immediately that 
for arbitrarily given f0£B, the solution of (16') is 

(17') /r° = M^itdcV+M^df? (iej0) 
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where Mx and are the Moebius- and co-Moebius transformations 

nsn - C + t a n h ( t ) - 0 ~ ( t a n h (T))2}1/2 ( c u m n ( 1 8 ) M = l + { tanh (T) ' * = 1+C tanh (r) ICI < !)• 

Substituting (17') into (16"), we obtain 

4 - f ? = [ - 2 2 y i i Q i M U t i ] ^ 

at l€Jf( | 

whose solution is given by 
(17") f ? = exp [ - 2 2 yu6i fMeiZ(Q dr]jf = 

L 0 J 

= [ n Mtt,{Q*y<,-\jf ( j € J \ S J . 
i€*o 

The fact that the right hand side in (17") makes sense, is guaranteed by Lemma 3.14 
(ii). Fortunately, by Lemma 3.14 (i) and (17'), 

[Aut B]{0} = Bf\E0 = { 2 0 ^ A, s 1, idJ0 and 

[i~Wc0{SJ} = { 2 wei(0)c,: e£-R+, c^dBiH;) and 
i i * 0 

[i - k,]€c0(S0)} = {exp [/1-«- c + ( / , / )](0):c6¿0} 

where c0(i/0) = {./0—C functions vanishing at infinity}. A classical theorem 
of Cartan asserts that the relations £/6 Aut B and U(0)—0 entail the line-
arity of U. Thus given Fd Aut B, if we choose the vector cdE0 so that the automor-
phism G=e\p[B3f>-+—c+q(-c){f,f)] satisfies G(0) = F_ 1(0) then the automor-
phism U=FoG is necessarily linear, i.e. we have Fd U• exp [f^-c+qc(f,f)] for 
suitable cdE0 and linear ¿-unitary U. Hence we arrive at the following characteri-
zation of Aut JB: 

3.16. Theo rem. Let E denote a minimal atomic Banach lattice. The space Eis 
spanned by a family {Ht: id J ) of its pairwise lattice-orthogonal Hilbertian projection 
bands such that 

(i) the linear members of Auto B(E) map B(Ht) onto themselve (\jidJ), 
(ii) conversely, if for any index id J , U-, is an H ¡-unitary operator then 0 E/,|B(£)€ 

£ A u t o £ ( £ ) . 
Furthermore there exists a matrix (y;y);, and an index subfamily 

cuch that 
(iii ; F0( =C[A«t P jF)] {0})= © co H„ 
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(iv) O^fij^l for all yu=— for all y y = 0 whenever 

or i and j are distinct elements of </0. 
(v) A mapping F: B(E)—E belongs to Aut0 B(E) if and only i f , by denoting 

the band projection onto Hi by Ph we have 

PiF(J) = C/i{Mei((Pi/|c?))c? + Me
J;((P i/ |c?))[/> ;/-(P f/ |c?)c?]} J0), 

P j F ( f ) = { e x p f 2 yijeiMeiZ{(PM)dx\UjPjf (j€S\SJ 

for suitable Hj-unitary operators Uj (j£ J ) , unit vectors (id<f0) and a func-
tion [./„3ii—-Qi] assuming values in R+ and vanishing at infinity, respectively (the 
transformations MQ l Mjt are those defined in (18)J. 

4. Appendix 
Linear finite dimensional tensor unit ball automorphisms 

Throughout this section H1, ..., H„ are fixed finite dimensional Hilbert spaces. 
We are aimed to describe the structure of the linear unitary operators in the space 
E=Hi®...®Hn. 

We shall use the notations B=B(E), B*=B{E*), 

K= {F£dB: 3\4><idB* <F, <P> = 1}, 

K* = {<P£dB*: 3F£K (F, 3>> = 1}. 

4.1. L e m m a . £ * = {<5Bi e^dBiHJ,..., e„£dB(H„)}. 

P r o o f . Since dim B is compact, thus for any «-linear functional 
FedB, one can find e^dB^HJ, ..., e„£dB(H„) with F(elr ..., en) = 1. Hence 
K*(z{8ei e : ej£dB(Hj)}. On the other hand, every ¿-unitary operator maps 

K onto itself and therefore also 

(19) U*K* = K* for all ¿-unitary operators. 

From the compactness of B it follows K^Q (indeed: for any smooth norm 
||-111 on E, ®7i{F£dB: ll/H^HGHi \/G£dB}aK) whence That is, for some 
unit vectors e%Hn we have 8eo eo£K*. Now from (19) we obtain 
8V eo v eo=(U1®...<giUn)*5eo eo£K* whenever the Us-s are /^-unitary 
operators". Thus {<5̂  ^ ej£dB(Hj)}z>K*. 

4.2. L e m m a . Let 9n and 0=8hi hn where 
^ f j i gj>hj€Hj(j=\, ...,«) and assume $ + ¥ = Then there exists k such that 

for each j^k we have fjWgj (i.e. f} and gj are linearly dependent). 
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P r o o f . The statement holds obviously if for some index m, f j \ \hj for all 
or f j ] ] g j for all 7V m. In the contrary case f k X g k and fmXhm for some pair of 
indices k^m. We may then suppose k=1 and m=2. First we show that in this 
case we have Kxcf . Indeed: from h x x _/j it follows that introducing the tensor 

where fts^-ll/iir'teiL/D/i the relations (£, $) = (£, 0) = 
= 0 ^ ( i ? , f ) hold. One can see in the same manner that h2}fg2. Since hxXfx, 
there exists ux£Hx with f1±u1%h1 and since h2tfg2 one can find u2£H2 

with g2 _L u2 i h2. But then the tensor T=ux <8» u2 <g> h3 <g>... <g) hn satisfies (T, 4>) = 
=(T,W)=O*(T,0) which is impossible. 

4.3. P r o p o s i t i o n . Set 7y = dim Hj ( / = 1 , ..., n) and let Ue^C(E, E) be fixed 
so that i/|B€ Au^ B. Then one can choose Hj-unitary operators Uj such that U= 
= U1<gi...<8>Un. 

P r o o f . It is enough to prove the statement only for ^-unitary operators lying 
in a suitable neighbourhood of idE as it is well-known (see e.g. [6]). 

To do this, fix £ > 0 such that the funct ional <P=Se € , <p=<5; ~ , 
3*=6>fi f n , yn (££*) fulfil 

(20) 3k ek±ek,/k±fk and Vj * k ej\\gj, f j \ \ f j 

whenever we have 

(21) 4>-$,V-¥£K*,\\&-$\\ =\\Y-¥\\ = p. and H ^ - S l , H ^ - ^ H < £, 

(22) \\ej\\ = \\Sj\\ = \\fj\\ = ||/,|| =1 (J = 1, ..., n). 

A value £ > 0 with the above properties in fact exists: Otherwise there would 
be a sequence <Pm=deT c , $m=5-eT fm=8fT 9m=Sjm /» (m = 

= 1, 2 , . . . ) satisfying (21), (22) for e = — but without property (20). For a suitable 
m 

index subsequence {ms}s and for some unit vectors ej, ij, fi, f} we have e™*->-ej, 
e j - ~ e j , f j u - * f j , f j

m ' ^ f j ( j - « > , / = 1 , ...,«). Then the limits satisfy 
$ = w , $ = 9 , || <2> - $ || = || ¥ - ^ | | = i l and the contrary of (20). At the same time 
we also have <P — $ , T—W^K* because of the closedness of K*. Thus by Lemma 
4.2, 3lkoVj*ko ejWj. Since \\<P-$\\ = f 2 , hence | k t o - e J = / 2 i.e. eko±eko. 
Similarly 3\S0 f(t±.fe and f j W f j - Since (20) does not hold, necessarily 
k0?±S0. However the relations $ = !F, entail k0=£0. 

Now assume \\U—id£||<£. Fix an orthonormed basis ( e j : / = 1, ..., rk} in 
Hk (k=1, ..., n), respectively and let us write the functional U*5ei e™ in the form 
U*5e 1 e j = S f i yn (cf. Lemma 4.1.) where f \ is a fixed unit vector in Hk (k = 
= 1, ...,77). It follows from the choice of e that for arbitrary index k, the singleton 
{/J} can be continued to an orthonormed basis { /* :7=1, • ••,/*} of Hk in a unique 
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way so that we have 

U*Se\ ei"1^.«?*1 = S f l fi'1 fkj.fi + l fl U = •••' 
k „ 

Set / 0 = {(1, 1,7, 1 , . . . , l ) : / c = l , ...,n;j=l, ...,rk}, / 1 = X 0 » •••> r*} a n d 

let a family Ial^ of multiindices be called thick if V»€/, V»'€/1 i'^i=>i'£l. 
Observe that for any multiindex / = ( / l 5 ..., /„)6h there exists a unique complex 

number which we shall denote by such that |jif| = l and 

(23) U*dei e» = ^ < 5 , 1 r . 
' en e '„ ' f'i K 

Indeed: If not, we can find a minimal (w.r.t. /€/1 not satisfying (23). Now 
U*S i en =8h h for some vectors hk£dB(Hk) (k=l, ..., n). Since obviously 

'1''"' '„ 1 n 

/<t/0, for arbitrarily fixed k, there is k^k with i j ^ 1. Consider the multiindex 7 
defined by 7',=[/.if i ^ k , 1 if (=k\ (<f=1, . . . , n). By the minimality of /, U*8ei en = H Jn 

=x,Sfi p, . Since U*\ <5.i „„ -) <5_i .„ I £K*, using Lemma 4.2 1 JH--'in Vj/2 <i e>» f i eh--eJn) 
we can see i.e. hk—akf^ for suitable otjZdA (k=\, ..., n). 

Then let I be a maximal thick subset of such that / p / o and x,-=l V'€/. 
(Remark: x~l \//6/0-) We shall show that necessarily 1=1^. Hence and from the 
linearity of the mapping U, (23) immediately yields the statement of the lemma. 

Assume / 1 \ / 7 i 0 . Le t7 be a minimal element of Observation: V'€A 
7 V / ^ 7 =>•/€/• I.e. the family / ' = / U {7} is thick. Therefore it suffices to prove X j = l 
(which contradicts our assumption). By writing / = { l , 7 ' i } X . . . X {1,7„}, 

= = /? . 

= * i b f \ i n \ 2 { J f ' . \ /"„ = ( K j - W f ) , / ;n+«5 / i+/i1 /;+/"„. 

However, the function U*<5ej+e} c » + c j has the form <5̂  whence directly 

Xj= 1. 

4.4. C o r o l l a r y . The vector fields V being tangent to dB(E) are exactly those of 
the form 

n 
V = i- 2^idHl®...®idHj_l®Aj®idHj+1®...®i<iHn 

where each A} is a self-adjoint H j -operator. 

s a self-
d 

exp (it • AJ eg)... (g) exp (it • A„). 

P r o o f . For every /7,--operator U} there is a self-adjoint Aj with Uj=exp (i-Aj). 
d 

Thus by Proposition 4.3, V has the form V=— 
dt t 
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