A projection principle concerning biholomorphic automorphisms

L. L. STACHÓ

1. Introduction

Let E denote a Banach space and D be a bounded domain in E. A mapping F of D onto itself is called a biholomorphic automorphism of D if the Fréchet derivative of F exists at each point $x \in D$ and is a bounded invertible linear E-operator. Our basic motivation in this article is the problem of describing Aut $B(E)$ the group of all biholomorphic automorphisms of the unit ball $B(E)$ of E. By recent results of W. Kaup [7] and J.-P. Vigué [18], this problem stands in a close relationship with that of the classification of symmetric complex Banach manifolds which is solved since a long time in the finite dimensional case [2] but fairly not settled for infinite dimensions.

In 1979, E. Vesentin [16] has shown that the unit ball of a nontrivial L^{1}-space admits only linear biholomorphic automorphisms. His proof goes back to investigations on Aut-invariant distances and a classical two dimensional result of M . Kritikos $^{\text {[9]. Using a characterization of polynomial vector fields tangent to } \partial B(E)}$ (the boundary of $B(E)$) we found [11] an essentially two dimensional argument that enabled us to establish the sufficent and necessary condition for an L^{p}-space to have only linear unit ball automorphisms (for different approaches cf. also [1], [16]).

The purpose of Section 2 the general abstract part of this work is to clear up the deeper geometric background and connections of the seemingly different methods in treating L^{p}-spaces that occur in [16] and [11], respectively. Our main theorem provides a sufficent condition in terms of the Carathéodory (or Kobayashi) metric to reconstruct the biholomorphic automorphism group of Banach manifolds from those of its certain submanifolds via holomorphic projections. This result seems to be very well suited in calculating explicitly Aut $B(E)$ in various Banach spaces E admitting a sufficiently large family of contractive linear projections. In Section 3 we illustrate the use of this projection principle by two typical examples where the con-

[^0]clusion seems hardly available with other already published methods: After numerous partial solutions, recently T. Franzoni [4] gave the complete description of Aut $B\left(\mathscr{L}\left(H_{1}, H_{2}\right)\right)$ where $\mathscr{L}\left(H_{1}, H_{2}\right) \equiv\left\{\right.$ bounded linear operators $\left.\quad H_{1} \rightarrow H_{2}\right\}$ and H_{1}, H_{2} are arbitrary Hilbert spaces. As we shall see, the projection principle makes it possible to obtain the exact description of Aut $B\left(H_{1} \otimes \ldots \otimes H_{n}\right)$ in an elementary way where $H_{1} \otimes \ldots \otimes H_{n} \equiv$ \{continuous n-linear functionals $H_{1} \times \ldots \times H_{n} \rightarrow$ $\rightarrow \mathbf{C}\}$. Note that $\mathscr{L}\left(H_{1}, H_{2}\right) \simeq H_{1} \otimes H_{2}$ and for $n \geqq 3, H_{1} \otimes \ldots \otimes H_{n}$ cannot be equipped with a suitable J^{*}-structure on which Franzoni's method is based. The key of the reduction by the projection principle is the fact that in finite dimensions the strong precompactness of $B\left(H_{1} \otimes \ldots \otimes H_{n}\right)$ considerably simplifies the treatment of the space (Section 4). The second application concerns atomic Banach lattices. The unit balls of finite dimensional such spaces are exactly the convex Reinhardt domains. In 1974, T. Sunada [13] characterized $\mathrm{Aut}_{0} D$ for all the bounded Reinhardt domains D. However, his proofs depend on the Cartan theory of finite dimensional semisimple Lie algebras thus cannot be carried out in infinite dimensions. If the finite dimensional ideals form a dense submanifold, the projection principle reduces even the most general case to some straightforward 2 dimensional considerations. We remark that in this way also Sunada's proof can be simplified and the method applies in parts to other Banach lattices (cf. [12]).

2. Projection principle

Our main abstract result concerns with holomorphic vector fields on complex Banach manifolds (for basic definitions see [17], [7, § 2]). If M denotes a complex Banach manifold, a vector field $v: M \rightarrow T M$ is complete in M iff for every $x \in M$, there exists a mapping $e_{x}: \mathbf{R} \rightarrow M$ such that $e_{x}(0)=x$ and $\frac{d}{d t} e_{x}(t)=v\left(e_{x}(t)\right)$ $\forall t \in \mathbf{R}$. In this case we define $\exp (t v)(x) \equiv e_{x}(t)$. A function $\delta: T M \rightarrow \mathbf{R}_{+}$is called a differential Finsler metric on M if for any fixed $x \in M$, the functional $T_{x} M \ni w \mapsto \delta(x, w)$ is convex and positive-homogeneous and for each coordinatemap (U, Φ), the function $f_{v}^{(U, \Phi)}: \Phi U \ni e \mapsto \delta\left(\Phi^{-1} e, v\left(\Phi^{-1} e\right)\right.$) is locally bounded and lower semicontinuous whenever v is a holomorphic vector field on M. We shall write d_{M} for the Carathéodory distance [3], [17] on M, i.e. $d_{M}(x, y) \equiv \sup$ \{areath $F(y): F$ is a holomorphic $M \rightarrow \Delta$ function, $F(x)=0\}$ where $\Delta \equiv\{\zeta \in \mathbf{C}:|\zeta|<1\}$. For a holomorphic mapping $F: M \rightarrow M$, we denote by F^{\prime} its Fréchet derivative (recall that for any fixed $x \in M, F^{\prime}(x)$ is a bounded linear $T_{x} M \rightarrow T_{x} M$ operator). For a Banach space E, we shall denote by $E^{*},\| \|,-$ and $B(E)$ its dual, norm, closure operation and open unit ball, respectively.
2.1. Theorem. Let M be a complex Banach manifold, $M^{\prime} a$ (complex) submanifold of M and v a complete holomorphic vector field on M. Suppose P is a holomorphic mapping of M onto M^{\prime} such that $\left.P\right|_{M^{\prime}}=\mathrm{id}_{M^{\prime}}$ (the identity mapping on M^{\prime}).

Suppose there exists a differential Finsler metric δ on M^{\prime} such that
(i) the vector field $\left.P^{\prime} v\right|_{M^{\prime}}$ is δ-bounded (i.e. $\sup _{x \in M} \delta\left(x, P^{\prime}(x) v(x)\right)<\infty$) and by writing d for the intrinsic distance generated by δ on M^{\prime},
(ii) the topology of the metric d is finer than that of M^{\prime},
(iii) for any sequence $x_{1}, x_{2}, \ldots \in M^{\prime}$ which is a Cauchy sequence with respect to d but which is not convergent in M^{\prime} we have $d_{M^{\prime}}\left(x_{1}, x_{n}\right) \rightarrow \infty \quad(n \rightarrow \infty)$.

Then the vector field $P^{\prime} v$ is complete in M^{\prime}.
Proof. For the sake of simplicity, the proof will be divided into three steps.

1) From the definition of Carathéodory distance we see immediately that $d_{M^{\prime}}(x, y) \geqq d_{M}(x, y) \quad \forall x, y \in M^{\prime}$ since $M^{\prime} \subset M$. It is also well-known [2] that the mapping P is a $d_{M} \rightarrow d_{M^{\prime}}$ contraction. Hence the relation $\left.P\right|_{M^{\prime}}=\mathrm{id}_{M^{\prime}}$ entails $d_{M^{\prime}}(x, y) \leqq d_{M}(x, y)$. Thus we obtained $d_{M^{\prime}}=\left.d_{M}\right|_{M^{\prime}}$.

In the sequel, we set $a_{x}(t) \equiv \exp (t v)(x)(x \in M, t \in \mathbf{R})$ and b_{x} will denote the maximal solution of the initial value problem $\left\{\frac{d}{d t} y=P^{\prime}(y) v(y) ; y(0)=x\right\}$.

We show that for arbitrarily fixed $z \in M^{\prime}$,

$$
\begin{equation*}
d_{M^{\prime}}\left(P a_{z}(h), b_{z}(h)\right)=o(h) \quad(h \rightarrow 0) . \tag{1}
\end{equation*}
$$

Indeed: Consider any coordinate-map (U, Φ) from the atlas of M^{\prime} for which $z \in U$. We may assume without loss of generality that Φ is a biholomorphism between U and the open unit ball of some Banach space E. Then for all $h \in\left\{t \in \operatorname{dom} b_{z}\right.$: $\left.b_{z}(t) \in \Phi^{-1}\left(\frac{1}{2} B(E)\right)\right\}$ we have

$$
\begin{aligned}
d_{M^{\prime}}\left(P a_{z}(h), b_{z}(h)\right) & \leqq d\left(P a_{z}(h), b_{z}(h)\right)=d_{B(E)}\left(\Phi P a_{z}(h), \Phi b_{z}(h)\right) \leqq \\
& \leqq \mu\left\|\Phi P a_{z}(h)-\Phi b_{z}(h)\right\|
\end{aligned}
$$

where $\mu \equiv \sup \left\{d_{B(E)}(f, g) /\|f-g\|: f, g \in \frac{1}{2} B(E)\right\}$. It is easily seen that $\mu \equiv$ $\leqq 2 \sup \left\{d_{B(E)}(f, 0) /\|f\|: f \in \frac{1}{2} B(E)\right\}=2 \sup \left\{\|f\|^{-1}\right.$ areath $\left.\|f\|:\|f\| \leqq \frac{1}{2}\right\}<\infty$.

The estimate $\left\|\Phi P a_{z}(h)-\Phi b_{z}(h)\right\|=o(h)(j \rightarrow 0)$ can be verified as follows: By definition, a is the solution of the initial value problem $\left\{\frac{d}{d t} y=v(y), y(0)=z\right\}$.

Therefore $\left\|\Phi a_{z}(h)-\left(\Phi z+h \Phi^{\prime} v(z)\right)\right\|=o(h)$. Thus $\left.\quad \frac{d}{d h}\right|_{0}\left[\Phi P a_{z}(h)-\Phi b_{z}(h)\right]=$ $=\left.\frac{d}{d h}\right|_{0} \Phi P a_{z}(h)-\Phi^{\prime} P^{\prime} v(z)=\Phi^{\prime} P^{\prime} v(z)-\Phi^{\prime} P^{\prime} v(z)=0$.

An application of (1) directly yields that for any $x, y \in M^{\prime}$,

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{1}{|h|}\left[d_{M^{\prime}}\left(b_{x}(h), b_{y}(h)\right)-d_{M^{\prime}}(x, y)\right]=\lim _{h \rightarrow 0} \frac{1}{|h|}\left[d_{M^{\prime}}\left(P a_{x}(h), P a_{y}(h)\right)-d_{M^{\prime}}(x, y)\right] \leqq \\
\leqq \lim _{h \rightarrow 0} \frac{1}{|h|}\left[d_{M}\left(a_{x}(h), a_{y}(h)\right)-d_{M}(x, y)\right]=0
\end{gathered}
$$

(since P is a contraction $d_{M^{\prime}} \rightarrow d_{M^{\prime}}$ and $d_{M^{\prime}}=\left.d_{M}\right|_{M^{\prime}}$).
2) Henceforth we proceed by contradiction. Assume that the vector field $P^{\prime} v$ is not complete in M^{\prime}.

Now we may fix a point $x \in M^{\prime}$ such that $\operatorname{dom} b_{x} \neq \mathbf{R}$. Let t_{0} be a boundary point of the interval (or ray) dom b_{x}. Since $0 \in \operatorname{dom} b_{x}$, we have $t_{0} \neq 0$. So (by passing to the vector field $\frac{1}{t_{0}} v$) we may assume $t_{0}=1$. Then consider the function

$$
\varrho(t) \equiv d_{M^{\prime}}\left(b_{x}(t), b_{x}\left(t+\frac{1}{2}\right)\right) \quad\left(t \in\left[0, \frac{1}{2}\right)\right) .
$$

Since $b_{x}(t+h)=b_{b_{x}}(h)$ and $b_{x}\left(t+\frac{1}{2}+h\right)=b_{b_{x}}\left(t+\frac{1}{2}\right)(h)$ whenever $t, t+h, t+\frac{1}{2}$, $t+\frac{1}{2}+h \in[0,1)$, from step 3) it follows that

$$
\lim _{h \rightarrow 0} \frac{\varrho(t+h)-\varrho(t)}{|h|} \leqq 0 \quad \forall t \in\left[0, \frac{1}{2}\right) .
$$

We show that the function ϱ is locally Lipschitzian. Since the conclusion of the previous step can be interpreted as $\varrho^{\prime}(t)=0$ for all such values t where $\varrho^{\prime}(t)$ exists, hence we obtain that ϱ is constant i.e.

$$
\begin{equation*}
d_{M^{\prime}}\left(b_{x}(t), b_{x}\left(t+\frac{1}{2}\right)\right)=d_{M^{\prime}}\left(x, b_{x}\left(\frac{1}{2}\right)\right) \quad \forall t \in\left[0, \frac{1}{2}\right) . \tag{2}
\end{equation*}
$$

Proof. By triangle inequality, it suffices to see that for any $z \in M^{\prime}$, the mapping $t \rightarrow b_{2}(t)$ is locally Lipschitzian with respect to the metric $d_{M^{\prime}}$. Denote by $\delta_{M^{\prime}}$ the Carathéodory differential Finsler metric of the manifold M^{\prime} (for definition see [2], [17]). Then the function $\gamma: \tau \mapsto \delta_{M^{\prime}}\left(b_{z}(\tau), P^{\prime} b\left(b_{z}(\tau)\right)\right)$ is locally bounded (cf.
[17]). Hence if \mathscr{I} is a compact subinterval of $\operatorname{dom} b_{z}$ then $\sup _{t \in \mathscr{F}} \gamma(t)<\infty$ and therefore

$$
\begin{gathered}
d_{M^{\prime}}\left(b_{z}\left(t^{\prime}\right), b_{z}\left(t^{\prime \prime}\right)\right) \leqq\left|\int_{r^{\prime}}^{t^{\prime \prime}} \delta_{M^{\prime}}\left(b_{z}(t), b_{z}^{\prime}(t)\right) d t\right|=\left|\int_{r^{\prime}}^{t^{\prime}} \gamma(t) d t\right| \leqq \\
\leqq \sup _{t \in \mathscr{F}} \gamma(t) \cdot\left|t^{\prime \prime}-t^{\prime}\right| \quad \text { whenever } \quad t^{\prime}, t^{\prime \prime} \in \mathscr{I} .
\end{gathered}
$$

3) Write $K \equiv \sup _{x \in M^{\prime}} \delta\left(x, P^{\prime} v(x)\right)$ and consider the sequence $t_{n} \equiv \frac{1}{2}-\frac{1}{2 n}$ ($n=1,2, \ldots$). For $m \leqq n$ we have

$$
\begin{aligned}
& d\left(b_{x}\left(t_{m}+\frac{1}{2}\right), b_{x}\left(t_{n}+\frac{1}{2}\right)\right) \leqq \int_{t_{m}}^{t_{n}} \delta\left(b_{x}(t), b_{x}^{\prime}(t)\right) d t= \\
= & \int_{t_{m}}^{t_{n}} \delta\left(b_{x}(t), P^{\prime} v\left(b_{x}(t)\right)\right) d t \leqq \int_{t_{m}}^{t_{n}} K d t=\frac{K}{2}\left(\frac{1}{m}-\frac{1}{n}\right) .
\end{aligned}
$$

Thus $\left\{b_{x}\left(t_{n}+\frac{1}{2}\right)\right\}_{n \in \mathbf{N}}$ is a Cauchy sequence with respect to the metric d. Suppose $d\left(b_{x}\left(t_{n}+\frac{1}{2}\right), z\right) \rightarrow 0(n \rightarrow \infty)$ for some point $z \in M^{\prime}$. Then we would have $P^{\prime} v\left(b_{x}\left(t_{n}\right)\right) \rightarrow P^{\prime} v(z) \quad(n \rightarrow \infty)$, as a consequence of (ii). However, in this case the function $\tilde{b}(t) \equiv\left\{\begin{array}{ll}b_{x}(t) & \text { if } t \in \operatorname{dom} b_{x} \\ b_{z}(t-1) & \text { if } 0 \leqq(t-1) \in \operatorname{dom} b_{z}\end{array}\right.$ is a solution of the initial value problem $\left\{\frac{d}{d t} y=P^{\prime} v(y), y(0)=x\right\}$ with dom \tilde{b} 玍dom b_{x} which is excluded by the maximality of b_{x}. Thus $\left\{b_{x}\left(t_{n}+\frac{1}{2}\right)\right\}$ does not converge in the metric d.

By condition (iii), $d_{M^{\prime}}\left(b_{x}\left(\frac{1}{2}\right), b_{x}\left(1-\frac{1}{2 n}\right)\right)=d_{M^{\prime}}\left(b_{x}\left(t_{1}+\frac{1}{2}\right), b_{x}\left(t_{n}+\frac{1}{2}\right)\right) \rightarrow$ $\rightarrow \infty \quad(n \rightarrow \infty)$. From (2) we see

$$
\begin{gathered}
d_{M^{\prime}}\left(b_{x}\left(\frac{1}{2}\right), b_{x}\left(\frac{1}{2}-\frac{1}{2 n}\right)\right) \geqq d_{M^{\prime}}\left(b_{x}\left(\frac{1}{2}\right), b_{x}\left(1-\frac{1}{2 n}\right)\right)- \\
-d_{M^{\prime}}\left(b_{x}\left(1-\frac{1}{2 n}\right), b_{x}\left(\frac{1}{2}-\frac{1}{2 n}\right)\right)=d_{M^{\prime}}\left(b_{x}\left(\frac{1}{2}\right), b_{x}\left(1-\frac{1}{2 n}\right)\right)- \\
-d_{M^{\prime}}\left(x, b_{x}\left(\frac{1}{2}\right)\right) \rightarrow \infty \quad(n \rightarrow \infty)
\end{gathered}
$$

But this is impossible because the topology of a complex Banach manifold is always finer than that generated by its associated Carathéodory metric (cf. [17]) whence $d_{M^{\prime}}\left(b_{x}\left(\frac{1}{2}\right), b_{x}\left(\frac{1}{2}-\frac{1}{2 n}\right)\right) \rightarrow 0(n \rightarrow \infty)$ since the mapping $t \rightarrow b_{x}(t)$ is differentiable.

The obtained contradiction completes the proof.
2.2. Remark. From step 1) one immediately reads that in general we have
2.2a Lemma. If $d^{*}: N \mapsto d_{N}^{*}$ is a metric valued functor on the category of complex Banach manifolds such that for all manifolds N, N^{\prime},
(iv) d_{N}^{*} is a metric on N,
(v) each holomorphic map $N^{\prime} \rightarrow N$ is a $d_{N}^{*} \rightarrow d_{N^{\prime}}^{*}$ contraction,
then $\left.d_{M}^{*}\right|_{M}=d_{M}^{*}$, whenever M^{\prime} is a sutmanifold of M and there can be found a holomorphic projection of M onto M^{\prime}.

The proof of Theorem 2.1 can be carried out as well for any metric functor d^{*} with properties (iv), (v) and
(vi) $\sup \left\{d_{B(F)}^{*}(f, 0) /\|f\|:\|f\| \leqq \frac{1}{2}\right\}<\infty$ for any Banach space E.

The Kobayashi invariant metric (def. see [17], [9]) also satisfies these requirements. Hence Theorem 2.1 holds when replacing Carathéodory distances by those of Kobayashi. Moreover we have the following important special case of Lemma 2.2a.
2.2b Lemma. If E denotes a Banach space and P is a contractive linear projection $E \rightarrow E$ then $\left.d_{B(E)}\right|_{B(P E)}=d_{B(P E)}$ and $\left.d_{B(E)}^{k}\right|_{B(P E)}=d_{B(P E)}^{k}$ where d^{k} stands for the Kobayashi distance.

Proof. Since $\|P\|=1$ (otherwise we have the trivial case $P=0$), $P E$ is a closed subspace of E and $P B(E)=B(P E) \subset B(E)$. Thus Lemma 2.2a can be applied to $M \equiv B(E)$ and $M^{\prime} \equiv B(P E)$.

This latter result can be further specialized as follows: Consider any unit vector $e \in E$. By the Hahn-Banach theorem, there exists $\Phi \in E^{*}$ with $\|\Phi\|=\langle e, \Phi\rangle=1$. Then the mapping $P: f \mapsto\langle f, \Phi\rangle e$ is a contractive linear projection of E onto $\mathbf{C e}$. Thus Lemma 2.2b contains Vesentini's following observation.
2.2c Lemma (VESENTINI [16]). Let E be a Banach space, $e \in E$ a unit vector and $\zeta_{1}, \zeta_{2} \in \Delta$. Then we have $d_{B(E)}^{k}\left(\zeta_{1} e, \zeta_{2} e\right)=d_{B(\mathrm{C} e)}\left(\zeta_{1} e, \zeta_{2} e\right)=d_{\Delta}\left(\zeta_{1}, \zeta_{2}\right)=\operatorname{areath}\left|\frac{\zeta_{1}-\zeta_{2}}{1-\zeta_{1} \zeta_{2}}\right|$, i.e. the curve $[\Delta \ni \zeta \mapsto \zeta$ e] is a complex geodesic with respect to both the Carathéodory and Kobayashi distances in $B(E)$.

Later on, we restrict our attention to Banach space unit balls. Recall ([8], [18]) that in a Banach space E, the elements of $\mathrm{Aut}_{0} B(E)$ (the connected component of Aut $B(E)$ w.r.t. the topology \mathscr{T}_{a} defined in [15]) are exactly the exponential images of the second degree polynomial vector fields being complete in $B(E)$ whose Liealgebra will be denoted by $\log ^{*}$ Aut $B(E)$. Moreover, the orbit [Aut $B(E)$] $\{0\} \equiv$ $\equiv\{F(0): F \in$ Aut $B(E)\}$ is the intersection of $B(E)$ with a subspace which, in the sequel, we shall denote by E_{0} and we have $E_{0}=\left[\log ^{*} A u t B(E)\right]\{0\}$.
2.3. Theorem. If E is a Banach space and $P: E \rightarrow E$ is a contractive linear projection then $\left.P\left[\log ^{*}\right.$ Aut $\left.B(E)\right]\right|_{P E} \subset \log ^{*}$ Aut $B(P E)$.

Proof. Let $u \in \log ^{*} A u t B(E)$ be arbitrarily fixed. We have to show that the vector field $\left.P u\right|_{B(P E)}$ is complete in $B(P E)$. As in the proof of Lemma 2.2 b , let us consider the manifolds $M \equiv B(E), M^{\prime} \equiv B(P E)$, the projection $\left.P\right|_{B(E)}$ of M onto M^{\prime} and the vector field $\left.v \equiv u\right|_{B(E)}$ which is by definition complete in M. Take the differential Finsler metric $\delta(x, w) \equiv\|w\|(x \in B(P E), w \in P E)$ on M^{\prime} whose generated intrinsic distance is obviously $d(x, y) \equiv\|x-y\| \quad(x, y \in B(P E))$. To complete the proof, we need only to verify (i), (ii), (iii).
(i): For $x \in B(P E)$ we have $P^{\prime}(x) v(x)=P u(x)$ whence by a theorem of KaUP-UPMEIER [8],

$$
\begin{gathered}
\delta\left(x, P^{\prime} v(x)\right)=\|P u(x)\| \leqq\|u(x)\|=\left\|u(0)+u^{\prime}(0) x+\frac{1}{2} u^{\prime \prime}(0)(x, x)\right\| \leqq \\
\leqq\|u(0)\|+\left\|u^{\prime}(0)\right\|_{\mathscr{P}(E, E)}+\left\|\frac{1}{2} u^{\prime \prime}(0)\right\|_{\{\text {bilin } E \times E \rightarrow E\}}
\end{gathered}
$$

(ii): Trivial.
(iii): Assume x_{1}, x_{2}, \ldots is a Cauchy sequence with respect to the metric d without a limit in M^{\prime}. Then for some unit vector $f \in P E,\left\|x_{n}-f\right\| \rightarrow 0(n \rightarrow \infty)$ i.e. $\left\|x_{n}\right\| \rightarrow 1$. Therefore, by Lemma 2.2c, $d_{M^{\prime}}\left(x_{1}, x_{n}\right)=d_{B(P E)}\left(x_{1}, x_{n}\right) \geqq d_{B(P E)}\left(x_{n}, 0\right)-$ $-d_{B(P E)}\left(x_{1}, 0\right)=$ areath $\left\|x_{n}\right\|=$ areath $\left\|x_{1}\right\| \rightarrow \infty$.
2.4. Corollary. If E is a Banach space and $P: E \rightarrow E$ is a contractive linear projection then $P\left(E_{0}\right) \subset(P E)_{0}$. In particular, if $B(E)$ is a symmetric manifold then so is $B(P E)$, too.
2.5. Corollary. Let E be a Banach space. If one can find a family \mathscr{P} of contractive linear projections $E \rightarrow E$ such that for every $P \in \mathscr{P}$, Aut $B(P E)$ consists only of linear transformations and $\bigcap_{P \in \mathscr{G}}$ ker $P=\{0\}$ then all the elements of Aut $B(E)$ are also linear.

Proof. If $v \in \log ^{*}$ Aut $B(E)$ then $P v(0)=0 \forall P \in \mathscr{P}$ whence $v(0)=0$ i.e. the vector field v is linear. On the other hand Aut $B(E)=\operatorname{Aut}^{0} B(E) \operatorname{Aut}_{0} B(E)=\operatorname{Aut}^{0} B(E)$. $\cdot \exp \log ^{*}$ Aut $B(E)$, where $A u t^{0} \equiv\{E$-unitarities $\}$.

3. Applications

Let (X, μ) denote a measure space. In [1], [11] it is proved
3.1. Theorem. The unit ball of $E \equiv L^{p}(X, \mu)$ admits only linear biholomoprhic automorphisms unless $\operatorname{dim} E=1$ or $p=2, \infty$.

As the first illustration of the projection principle, we show how can this result be reobtained from Thullen's classical 2 dimensional theorem [14].

Proof. Suppose $p \in[1, \infty] \backslash\{2\}$ and $\operatorname{dim} E>1$. If g_{1}, g_{2} are functions in E with norm 1 having disjoint supports then it is easily seen that the mapping $P_{g_{1}, g_{2}}$: $E \in f \mapsto \sum_{j=1}^{2} \int f \overline{g_{j}}\left|g_{j}\right|^{p-2} d \mu \cdot g_{j}$ is a contractive linear projection of E onto the subspace $E_{g_{1}, g_{2}} \equiv \sum_{j=1}^{2} \mathbf{C} g_{j}$. Now $B\left(E_{\theta_{1}, g_{2}}\right)=\left\{\zeta_{1} g_{1}+\zeta_{2} g_{2}:\left|\zeta_{1}\right|^{p}+\left|\zeta_{2}\right|^{p}<1\right\}$ is a Reinhardt domain whose biholomorphic automorphisms are all linear by Thullen's theorem. Furthermore we have ker $P_{g_{1}, g_{2}}=\left\{f \in E: \int f \overline{g_{j}}\left|g_{j}\right|^{p-2} d \mu=0 \quad(j=1,2)\right\}$. Thus $\bigcap_{g_{1}, g_{2}} \operatorname{ker} P_{g_{1}, g_{2}}=$ $=\left\{f \in E: \forall g \in E[\exists h \in E \quad \min (|g|,|h|)=0] \Rightarrow \int f \bar{g}|g|^{p-2} d \mu=0\right\} \subset\left\{f \in E: \forall X_{1} \subset X\left[\exists X_{2} \subset\right.\right.$ $\left.\left.\subset X \backslash X_{1} \quad 0<\mu\left(X_{1}\right), \mu\left(X_{2}\right)<\infty\right] \Rightarrow \int_{X_{1}} d f \mu=0\right\}=\{0\}$. Hence Corollary 2.5 establishes
the linearity of Aut $B(E)$.

To the next application, let H_{1}, \ldots, H_{n} be arbitrarily fixed Hilbert spaces ${ }^{1}$ of at least 2 dimensions and consider the biholomorphic automorphism group of the unit ball $B \equiv B(E)$ of the space $E \equiv H_{1} \otimes \ldots \otimes H_{n}$, the Banach space of n-linear functionals endowed with the usual norm $\|F\| \equiv \sup \left\{\left|F\left(h_{1}, \ldots, h_{n}\right)\right|: h_{j} \in H_{j},\left\|h_{j}\right\|=1\right.$ $(j=1, \ldots, n)\}$ for $F \in E$. For $n=1,2$, the description of Aut B is completely settled [5], [4]. It is worth to remark that, in the light of the Kaup Vigué theory, the difficulties in this case can be concentraded to the description of linear E-unitary operators: If $n=1, E$ can be identified with H_{1} and for any fixed $c \in H_{1}$, the quadratic vector field $q \equiv\left[H_{1} \ni f \mapsto-(f \mid c) f\right]$ satisfies [11, (1)] i.e. tangent to the boundary of B.

Similarly, if $n=2, E$ can be identified with $\mathscr{L}\left(H_{1}, H_{2}\right)$ and for fixed $C \in \mathscr{L}\left(E_{1}, E_{2}\right)$, the vector field $\left[\mathscr{L}\left(H_{1}, H_{2}\right) \ni F \mapsto-F C^{*} F\right.$] is quadratic and satisfies $[11,(1)]$. It is easily seen, in both cases that, we have $\{[\exp (t q)](0): t \in \mathbf{R}\}=(-1,1) C$, thus B is symmetric and Aut $B=\left(\operatorname{Aut}^{0} B\right) \exp \left\{q_{c}: c \in E\right\}$. Here we turn our attention first of all to the case $n \geqq 3$ which seems heavily treatable with other methods and is not touched by the literature.
3.2. Lemma. Span $\left\{U C: U\right.$ linear $\left.\in \mathrm{Aut}_{0} B\right\}=E$ whenever $C \in E \backslash\{0\}$ and $\operatorname{dim} H_{j}<\infty \quad(j=1, \ldots, n)$.

Proof. If $C \neq 0$ then we may fix unit vectors $e_{j} \in H_{j}(j=1, \ldots, n)$ such that $\gamma \equiv C\left(e_{1}, \ldots, e_{n}\right) \neq 0$. Then let P_{j} denote the orthogonal projection of H_{j} onto $\mathbf{C} e_{j}$ and set $U_{j}^{\vartheta} \equiv \exp \left(i \vartheta_{j} P_{j}\right), C\left(\vartheta_{1}, \ldots, \vartheta_{n}\right) \equiv\left(U_{j}^{\vartheta} \otimes \ldots \otimes U_{j}^{\vartheta}\right) C\left(\vartheta_{j} \in \mathbf{R} ; j=1, \ldots, n\right)$. Since the operators U_{j}^{ϑ} are H_{j}-unitary, $U_{1}^{9} \otimes \ldots \otimes U_{n}^{9} \in$ Aut $_{0} B$, therefore $e_{1} \otimes \ldots \otimes e_{n}=$

[^1]$=\left.\frac{i}{\gamma} \frac{\partial^{n}}{\partial \vartheta_{1} \ldots \partial \vartheta_{n}}\right|_{0} C \in S \equiv \operatorname{Span}\left\{U C: U \quad\right.$ linear $\left.\in A u t_{0} B\right\}$. Thus for all H_{j}-unitary operators $V_{j},\left(V_{1} e_{1}\right) \otimes \ldots \otimes\left(V_{n} e_{n}\right)=\left(V_{1} \otimes \ldots \otimes V_{n}\right)\left(e_{1} \otimes \ldots \otimes e_{n}\right) \in S$ i.e. $f_{1} \otimes \ldots \otimes f_{n} \in S$ whenever $f_{1} \in H_{1}, \ldots, f_{n} \in H_{n}$, whence $S=E$ (since $\operatorname{dim} E<\infty$).
3.3. Proposition. For $n>2$, all the elements of Aut $B\left(H_{1} \otimes \ldots \otimes H_{n}\right)$ are linear.

Proof. Observe that the family $\mathscr{P} \equiv\left\{P_{1} \otimes \ldots \otimes P_{n}\right.$: all P_{j}-s are orthogonal H_{j} projections with $\operatorname{dim} P_{j} H_{j}=[2$ if $j \leqq 3$ and 1 if $\left.j>3]\right\}$ consists of contractive E-projections and $\bigcap_{P \in \mathscr{F}}$ ker $P=\{0\}$. Since for arbitrary $P \in \mathscr{P}$; the subspace $P E$ is isometrically isomorphic to $\mathbf{C}^{2} \otimes \mathbf{C}^{2} \otimes \mathbf{C}^{2}(\mathbf{C}$ is endowed with its usual euclidean norm), by Corollary 2.5 it suffices to see only that the elements of the group Aut $B\left(\mathbf{C}^{2} \otimes \mathbf{C}^{2} \otimes \mathbf{C}^{2}\right)$ are linear. Thus we may assume $n=3$ and $H_{j}=\mathbf{C}(j=1,2,3)$. Assume now that $E_{0} \neq 0$. Now Lemma 3.2 establishes $E_{0}=E$ i.e. symmetry of B. We show that this is impossible.

Denote by e_{1}, e_{2} the vectors $(1,0)$ and $(0,1)$ in \mathbf{C}^{2}, respectively, and consider the elcments $\quad C \equiv e_{1} \otimes e_{1} \otimes e_{1}$ and $F \equiv e_{2} \otimes e_{1} \otimes e_{1}+e_{1} \otimes e_{2} \otimes e_{1}+e_{1} \otimes e_{1} \otimes e_{2}$ of E. Since the space E is finite dimensional, for every $A \in E$ we can find $f_{1}, f_{2}, f_{3} \in \partial B\left(\mathbf{C}^{2}\right)$ with $\|A\|=A\left(f_{1}, f_{2}, f_{3}\right)$. In particular, for arbitrarily given $\lambda \in\left(0, \frac{1}{3}\right)$ we can fix unit vectors $f_{j}(\lambda)$ such that $\|C+\lambda F\|=\left\langle C+\lambda F, \delta_{\left.f_{1}(\gamma), f_{2}(\lambda), f_{3}(\lambda)\right\rangle \text {. Since } C, F \geqq 0}\right.$ (i.e. $\left.C\left(g_{1}, g_{2}, g_{3}\right), F\left(g_{1}, g_{2}, g_{3}\right) \geqq 0 \forall g_{1}, g_{2}, g_{3} \geqq 0\right)$ and since $\left\langle C+\lambda F, \delta_{e_{8}, e_{2}, e_{2}}\right\rangle=$ $=\lambda F\left(e_{2}, e_{2}, e_{2}\right)<1$, for some $r_{j}(\lambda) \geqq 0$ we can write $f_{j}(\lambda)=\frac{e_{1}+r_{j}(\lambda) e_{2}}{\left(1+r_{j}(\lambda)\right)^{1 / 2}} \quad(j=$ $=1,2,3)$. Thus introducing the function $\Phi_{\lambda}\left(\varrho_{1}, \varrho_{2}, \varrho_{3}\right) \equiv\left\langle C+\lambda F, \delta_{\frac{e_{1}+\varrho_{1} e_{2}}{\left(1+e_{1}^{2}\right)^{1 / 2}}, \ldots, \frac{e_{1}+e_{3} e_{3}}{\left(1+e_{3}^{2}\right)^{1 / 2}}}^{\left(\varrho^{1 / 2}\right.}\right.$ $=\left[1+\lambda\left(\varrho_{1}+\varrho_{2}+\varrho_{3}\right)\right] \sum_{k=1}^{3}\left(1+\varrho_{k}^{2}\right)^{-1 / 2}$, we have $\left.\frac{\partial}{\partial \varrho_{j}}\right|_{\left(r_{1}(\lambda), r_{2}(\lambda), r_{3}(\lambda)\right)} \Phi_{\lambda}=0 \quad(j=1,2,3)$. So $\quad\left\{\lambda\left(1+r_{j}^{2}\right)-\left[1+\lambda\left(r_{1}+r_{2}+r_{3}\right)\right]\right\} \cdot \sum_{k=1}^{3}\left(1+r_{k}^{2}\right)^{-3 / 2}=0(j=1,2,3) \quad$ and hence $\lambda=\frac{r_{1}}{1-r_{1}\left(r_{2}+r_{3}\right)}=\frac{r_{3}}{1-r_{2}\left(r_{1}+r_{3}\right)}=\frac{r_{3}}{1-r_{3}\left(r_{1}+r_{2}\right)}$. Therefore $\quad r_{j} \neq 0 \quad(j=1,2,3)$ and $\frac{1}{r_{1}}+r_{1}=\frac{1}{r_{2}}+r_{2}=\frac{1}{r_{3}}+r_{3}\left(=\frac{1}{\lambda}+\sum_{j=1}^{3} r_{j}\right)$. Observe that from this and from the assumption $\lambda \in\left(0, \frac{1}{3}\right)$ it follows that $r_{1}=r_{2}=r_{3}$. (Otherwise there would be $r>0$ such that two of the numbers r_{1}, r_{2}, r_{3} coincided with r and the third with $1 / r$, respectively. But then $\lambda=\frac{1 / r}{1-(1 / r)(r+r)}<0$.) Thus the relation $\lambda=\frac{r}{1-2 r}$ holds where $r(\lambda) \equiv r_{1}(\lambda)=r_{2}(\lambda)=r_{3}(\lambda)$. This fact can be so interpreted that for sufficiently small
values of $\quad r>0 \quad$ (namely for $\lambda>\frac{1}{3}$ i.e. $r<\frac{\sqrt{17}-3}{4}$), $F_{r} \equiv C+\frac{r}{1-2 r^{2}} F$, $\Phi_{r} \equiv \delta_{e_{1}+r e_{2}, e_{1}+r e_{2}, e_{1}+r e_{2}}$ fulfill $\left\|F_{r}\right\| \cdot\left\|\Phi_{r}\right\|=\left\langle F_{r}, \Phi_{r}\right\rangle$. Then by [11, Lemma]

$$
\begin{equation*}
\left\|F_{r}\right\|^{2} \overline{\left\langle C, \Phi_{r}\right\rangle}+\left\langle q\left(F_{r}, F_{r}\right), \Phi_{r}\right\rangle=0 \quad\left(0<r<\frac{\sqrt{17}-3}{4}\right), \tag{2}
\end{equation*}
$$

for some symmetric bilinear map $q: E \times E \rightarrow E$. Here $\left\langle C, \Phi_{r}\right\rangle=1,\left\|F_{r}\right\|=\left\|\Phi_{r}\right\|^{-1}\left\langle F_{r}, \Phi_{r}\right\rangle=$ $=\left(1+r^{2}\right)^{-3 / 2}\left(1+3 r \frac{r}{1-2 r^{2}}\right)=\left(1+r^{2}\right)^{-1 / 2}\left(1-2 r^{2}\right)^{-1}$ and $\left\langle q\left(F_{r}, F_{r}\right), \Phi_{r}\right\rangle=\left\langle q(C, C), \Phi_{r}\right\rangle+$ $+2 \frac{r}{1-2 r^{2}}\left\langle q(C, F), \Phi_{r}\right\rangle+\left(\frac{r}{1-2 r}\right)^{2}\langle q(F, F), \Phi\rangle$. Taking into consideration that for fixed $V \in E$, the function $r \mapsto\left\langle V, \Phi_{r}\right\rangle$ is a polynomial of $3^{r d}$ degree in r, from (2) we obtain

$$
\left(1+r^{2}\right)^{-1}\left(1-2 r^{2}\right)^{-2}+p_{1}(r)+p_{2}(r)\left(1-2 r^{2}\right)^{-1}+p_{3}(r)\left(1-2 r^{2}\right)^{-2}=0
$$

for some polynomial-triplet p_{1}, p_{2}, p_{3}. However, (2') immediately implies the contradictory fact that the function $r \mapsto\left(1+r^{2}\right)^{-1}$ is a polynomial.
3.4. Theorem. The linear $H_{1} \otimes \ldots \otimes H_{n}$-unitary operators are exactly those operators F for which there exists a permutation π of the index set $\{1, \ldots, n\}$ and there are surjective linear isometries $U_{k}: H_{k} \rightarrow H_{n(k)}(k=1, \ldots, n)$ such that

$$
\begin{equation*}
F(L)=\left[\left(f_{1}, \ldots, f_{n}\right) \mapsto L\left(U_{1}^{-1} f_{\pi(1)}, \ldots, U_{n}^{-1} f_{\pi(n)}\right)\right] \tag{3}
\end{equation*}
$$

A linear vector field V belongs to $\log ^{*} A u t B$ if and only if it is of the form

$$
V=i \cdot \sum_{k=1}^{n} \operatorname{id}_{H_{1}} \otimes \ldots \otimes \mathrm{id}_{H_{k-1}} \otimes A_{k} \otimes \operatorname{id}_{H_{k+1}} \otimes \ldots \otimes \mathrm{id}_{H_{n}}
$$

where the $A_{k}-s$ are arbitrary self-adjoint H_{k}-operators.
Proof. Based on some compactness arguments, in the next section we shall establish independently the validity of (3^{\prime}) if the spaces H_{k} are all finite dimensional. Our starting point here is (3^{\prime}) for finite dimensional E. First we extend it to infinite dimensions.

Let V linear $\in \log ^{*}$ Aut B and $e_{1}^{*} \in \partial B\left(H_{1}\right), \ldots, e_{n}^{*} \in \partial B\left(H_{n}\right)$ be arbitrarily fixed and define the operator $\tilde{V} \equiv V-\left\langle V\left(e_{1}^{*} \otimes \ldots \otimes e_{n}^{*}\right), \delta_{e_{1}^{*}, \ldots, e_{n}^{*}}\right\rangle \mathrm{id}_{E}$. Since $i \cdot \mathrm{id}_{E} \epsilon$ $\in \log ^{*}$ Aut B, we have $\tilde{V} \in \log ^{*}$ Aut B. Remark that $\tilde{V}\left(e_{1}^{*} \otimes \ldots \otimes e_{n}^{*}\right)=0$. Then consider the family of mappings $\mathscr{P} \equiv\left\{P_{1} \otimes \ldots \otimes P_{n}: P_{k}\right.$ is an orthogonal H_{k}-projection, $\left.\operatorname{dim} P_{k} H_{k}<\infty, e_{k} \in P_{k} H_{k}(k=1, \ldots, n)\right\}$. Any element $P \equiv P_{1} \otimes \ldots \otimes P_{n}$ of \mathscr{P} is a contractive linear projection of the space E onto its subspace $\left(P_{1} H_{1}\right) \otimes \ldots \otimes\left(P_{n} H_{n}\right)$. Thus by the projection principle, $\left.P \widetilde{V}\right|_{P E} \in \log ^{*} A u t B(P E) \forall P \in \mathscr{P}$. Hence (applying (3') to the finite dimensional $\left(P_{1} H_{1}\right) \otimes \ldots \otimes\left(P_{n} H_{n}\right)$) for each $P \in \mathscr{P}$, there exists a
unique choice of $A_{1}^{P} \in\left\{\right.$ self-adj. H_{1}-op.-s $\}, \ldots, A_{n}^{P} \in\left\{\right.$ self-adj. H_{n}-op. -s $\}$ such that

$$
\begin{gathered}
A_{k}^{P} H_{k} \subset P_{k} H_{k}\left(\text { i.e. } P_{k} A_{k}^{P} P_{k}=A_{k}^{P}\right) \quad \text { and } \quad\left(A_{k}^{P} e_{k}^{*} \mid e_{k}^{*}\right)=0 \quad(k=1, \ldots, n), \\
P \tilde{V} P=\sum_{k=1}^{n} i \cdot \mathrm{id}_{H_{1}} \otimes \ldots \otimes \mathrm{id}_{H_{k-1}} \otimes A_{k} \otimes \mathrm{id}_{H_{k+1}} \otimes \ldots \otimes \mathrm{id}_{H_{n}} .
\end{gathered}
$$

Introduce the following partial ordering \leqq in \mathscr{P} : If $P=P_{1} \otimes \ldots \otimes P_{n}$ and $Q=$ $=Q_{1} \otimes \ldots \otimes Q_{n}$ then let $P \leqq Q \stackrel{\text { def }}{\Longrightarrow} P_{k} H_{k} \subset Q_{k} H_{k}$ (i.e. $\left.P_{k} \leqq Q_{k}\right) k=1, \ldots, n$. From the relation $P \leqq Q \Rightarrow P \tilde{V} P=P Q \tilde{V} Q P$ we immediately see

$$
\begin{equation*}
A_{k}^{P}=P_{k} A_{k}^{Q} P_{k} \quad(k=1, \ldots, n) \quad \text { whenever } \quad P \leqq Q . \tag{4}
\end{equation*}
$$

Observe that for any fixed $P \in \mathscr{P}$ and index k,

$$
\begin{align*}
& \left|\left(A_{k}^{P} e \mid f\right)\right|=\left\lvert\,\left\langle(P \tilde{V})\left(e_{1}^{*} \otimes \ldots \otimes e_{k-1}^{*} \otimes e \otimes e_{k+1}^{*} \otimes \ldots \otimes e_{n}^{*}\right), \delta_{\left.e_{1}^{*}, \ldots, e_{k-1}^{*}, \ldots, f, e_{k+1}^{*}, \ldots, e_{n}^{*}\right\rangle \leqq} \begin{array}{l}
\leqq\|P \tilde{V}\| \cdot\left\|e_{1}^{*} \otimes \ldots \otimes e \otimes \ldots \otimes e_{n}^{*}\right\| \cdot\left\|\delta_{e_{1}^{*}, \ldots, f}, \ldots, e_{n}^{*}\right\|=\|P \tilde{V}\| \leqq\|\tilde{V}\| \quad \forall e, f \in \partial B\left(H_{k}\right) \text {, } \\
\text { that is } \\
\begin{array}{l}
\text { (5) }
\end{array} \quad\left\|A_{k}^{P}\right\| \leqq\|\tilde{V}\| \quad(k=1, \ldots, n) \quad \forall P \in \mathscr{P} .
\end{array}\right.\right.
\end{align*}
$$

Since obviously $\forall P, Q \in \mathscr{P} \exists R \in \mathscr{P} P, Q \leqq R$ and since by (4), (5) the relation $P \leqq Q$ entails $\left|\left(A_{k}^{Q} e \mid f\right)-\left(A_{k}^{P} e \mid f\right)\right|=\left|\left(A_{k}^{Q}\left(e-P_{k} e\right) \mid f\right)+\left(A_{k}^{Q} P_{k} e \mid f-P_{k} f\right)\right| \leqq\|\tilde{V}\|\left(\left\|e-P_{k} e\right\|+\right.$ $\left.+\left\|f-P_{k} f\right\|\right) \quad \forall e, f \in \partial B\left(H_{k}\right), k=1, \ldots, n$, the definitions

$$
a_{k}(e, f) \equiv \lim _{P \in \mathscr{F}}\left(A_{k}^{P} e \mid f\right) \quad\left(e, f \in H_{k}, \quad k=1, \ldots, n\right)
$$

make sense and determine bounded sesquilinear functionals. Therefore there exist self-adjoint operators $A_{1}: H_{1} \rightarrow H_{1}, \ldots, A_{n}: H_{k} \rightarrow H_{n}$ such that $a_{k}(e, f)=\left(A_{k} e \mid f\right)$ and hence $\quad\left(A_{k}^{P} e \mid f\right)=\left(A_{k}^{P}\left(P_{k} e\right) \mid P_{k} f\right)=\left(A_{k} P_{k} e \mid P_{k} f\right)=\left(A_{k} P_{k} e \mid P_{k} f\right)=\left(P_{k} A_{k} P_{k} e \mid f\right)$ $\forall e, f \in H_{k}$ i.e. $A_{k}^{P}=P_{k} A_{k} P_{k} \quad(P \in \mathscr{P}, k=1, \ldots, n)$. Now for arbitrary $L \in E, e_{1} \in H_{1}, \ldots$, $e_{n} \in H_{n}$ the projections $P_{k} \equiv \operatorname{proj}_{\text {Span }\left\{e_{k}, A_{k} e_{k}, e_{k}\right\}}(k=1, \ldots, n)$ satisfy

$$
\begin{aligned}
& {[\tilde{V} L]\left(e_{1}, \ldots, e_{n}\right)=[\widetilde{V} L]\left(P_{1} e_{1}, \ldots, P_{n} e_{n}\right)=[P \tilde{V} L]\left(e_{1}, \ldots, e_{n}\right)=} \\
& \quad=\sum_{k=1}^{n} L\left(e_{1}, \ldots, P_{k} A_{k} e_{k}, \ldots, e_{n}\right)=\sum_{k=1}^{n} L\left(e_{1}, \ldots, A_{k} e_{k}, \ldots, e_{n}\right) .
\end{aligned}
$$

Thus we can write $V L\left(e_{1}, \ldots, e_{n}\right)=\sum_{k=1}^{n} L\left(e_{1}, \ldots, B_{k} e_{k}, \ldots, e_{n}\right)$ where $B_{j} \equiv A_{j}$ for $j=1, \ldots, n-1$ and $B_{n} \equiv A_{n}+\left\langle V\left(e_{1}^{*}, \ldots, e_{n}^{*}\right), \delta_{\left.e_{1}^{*}, \ldots, e_{n}^{*}\right\rangle}\right\rangle \operatorname{id}_{E}$, proving (3^{\prime}) in general.

To prove (3), let F be an arbitrarily given linear E-unitary operator and introduce the families $\mathscr{D}_{k} \equiv\left\{P_{1} \otimes \ldots \otimes P_{n}: P_{k}\right.$ is an orthogonal H_{k}-projection, $P_{j}=\operatorname{id}_{H_{j}}$ for $j \neq k\}(k=1, \ldots, n)$. From (3') we see $i \mathscr{P}_{k} \subset \log ^{*} A u t B$ and hence for every $P \in \mathscr{P}_{k}$, the mapping $Q \equiv F P F^{-1}$ also has the properties $i Q \in \log ^{*} A u t B$ and $Q^{2}=Q$
(since $P^{2}=P$) which is possible (by ($\left.3^{\prime}\right)$) only if $Q \in \mathscr{P}_{\ell_{k}(P)}$ for some index $\ell_{k}(P)$ ($k=1, \ldots, n$).

Let $k \in\{1, \ldots, n\}$ be fixed. We show that $\ell_{k}\left(P_{1}\right)=\ell_{k}\left(P_{2}\right) \forall P_{1}, P_{2} \in \mathscr{P}_{k} \backslash\left\{\mathrm{id}_{E}\right\}$. Indeed, if $\ell_{k}\left(R_{1}\right) \neq \ell_{k}\left(R_{2}\right)$ then the operators $Q_{j} \equiv F R_{j} F^{-1}(j=1,2)$ commute (i.e. $\left[Q_{1}, Q_{2}\right] \equiv Q_{1} Q_{2}-Q_{2} Q_{1}=0$) whence we would have $\left[R_{1}, R_{2}\right]=0$. Observe that $\forall P_{1}, P_{2} \in \mathscr{P}_{k} \backslash\left\{\mathrm{id}_{E}\right\} \exists P_{3} \in \mathscr{P}_{k} \quad\left[P_{1}, P_{3}\right],\left[P_{2}, P_{3}\right] \neq 0$, thus (by taking $R_{1} \equiv P_{j}$ and $\left.R_{2} \equiv P_{3} \quad j=1,2\right) \quad \ell_{k}\left(P_{j}\right)=\ell_{k}\left(P_{3}\right)$ holds for $j=1,2$.

Therefore there exists a permutation π with

$$
\begin{equation*}
F \mathscr{P}_{k} F^{-1}=\mathscr{P}_{\pi(k)} \quad(k=1, \ldots, n) . \tag{6}
\end{equation*}
$$

Since the finite linear combinations of orthogonal projections form a dense submanifold of the algebra of linear operators in any Hilbert space, it directly follows the existence of surjective linear isometries $S_{k}: \mathscr{L}\left(H_{k}, H_{k}\right) \rightarrow \mathscr{L}\left(H_{\pi(k)}, H_{\pi(k)}\right)$ such that

$$
\begin{aligned}
& F\left(\mathrm{id}_{H_{1}} \otimes \ldots \otimes \mathrm{id}_{H_{k-1}} \otimes A_{k} \otimes \mathrm{id}_{H_{k+1}} \otimes \ldots \otimes \mathrm{id}_{H_{n}}\right) F^{-1}= \\
& =\mathrm{id}_{H_{1}} \otimes \ldots \otimes \mathrm{id}_{H_{\pi}(k)-1} \otimes S_{k}\left(A_{k}\right) \otimes \mathrm{id}_{H_{\pi(k)+1}} \otimes \ldots \otimes \mathrm{id}_{H_{n}} \\
& \left(A_{k} \in \mathscr{L}\left(H_{k}, H_{k}\right) ; k=1, \ldots, n\right) .
\end{aligned}
$$

As a consequence of the relations (6), the mappings S_{k} send orthogonal projections into orthogonal projections and therefore they constitute ${ }^{*}$-isomorphisms between the C^{*}-algebras $\mathscr{L}\left(H_{k}, H_{k}\right)$ and $\mathscr{L}\left(H_{\pi(k)}, H_{\pi(k)}\right)$. It is well-known that now we can write

$$
S_{k}: A_{k} \mapsto U_{k} A_{k} U_{k}^{-1} \quad(k=1, \ldots, n)
$$

for some surjective linear isometries $U_{k}: H_{k} \mapsto H_{\pi(k)}$. Thus if we denote by σ the inverse of the permutation π, for any linear E-operator A of the form $A \equiv A_{1} \otimes \ldots \otimes A_{n}$ (where $A_{k} \in \mathscr{L}\left(H_{k}, H_{k}\right) k=1, \ldots, n$) we have

$$
\left(F A F^{-1}\right) L=\left[\left(f_{1}, \ldots, f_{n}\right) \mapsto L\left(U_{\sigma(1)} A_{\sigma(1)} U_{\sigma(1)}^{-1} f, \ldots, U_{\sigma(n)} A_{\sigma(n)} U_{\sigma(n)}^{-1} f_{n}\right)\right] \quad \forall L \in E .
$$

This means that $F A F^{-1}=U A U^{-1} \forall A \in \mathscr{L}(E, E)$ holds for the E-unitary operator U defined by

$$
U(L) \equiv\left[\left(f_{1}, \ldots, f_{n}\right) \mapsto L\left(U_{1}^{-1} f_{\pi(1)}, \ldots, U_{n}^{-1} f_{\pi(n)}\right)\right] \quad(L \in E) .
$$

It is easily seen that this is possible only if $F=e^{i s} U$ for some $\vartheta \in \mathbf{R}$ which completes the proof.

In the remainder part of this section, by making use of the projection principle, we shall examine the structure of biholomorphic unit ball automorphisms in case of minimal atomic Banach lattices (abbr. by min. B-lattices).

A Banach lattice E is called a min. B-lattice if it is norm-spanned by its 1 dimensional ideals. Henceforth we reserve the symbol E to designate a fixed min. B-lattice.

According to a well-known representation lemma [10. p. 143, Ex. 7 (b)], we may assume that for a fixed set X, E is a sublattice of $\{X \rightarrow \mathbf{C}$ functions $\}$ such that

$$
\begin{equation*}
I_{x} \in E \quad \text { and } \quad\left\|1_{x}\right\|=1 \quad \forall x \in X \tag{7}
\end{equation*}
$$

(8) $\operatorname{Span}\left\{1_{x}: x \in X\right\}=E$. (1_{x} stand for $[X \ni y \mapsto 1$ if $y=x$ and 0 elsewhere]).

Remark that then
($\left.8^{\prime}\right) \quad w f \in E$ and $\quad w f=\lim _{Y \text { finite } \subset X} w l_{Y} f$ whenever $f \in E, \quad \sup _{x \in X}|w(x)| \leqq 1 .^{2}$
For the sake of simplicity we write $B \equiv B(E)$ and the functional $[E \ni f \mapsto f(x)$] will be denoted by 1_{x}^{*}.

First we describe the linear part of Aut B.
3.5 Definition. For $x, y \in X$, let $x \sim y$ if $\left\langle\ell\left(1_{x}\right), 1_{y}\right\rangle \neq 0$ for some linear element ℓ of $\log ^{*}$ Aut B.
3.6. Lemma. (i) $x \sim y$ if and only if for all $f, g \in E, f-g \in 1_{\{x, y\}} E$ and $\sum_{z=x, y}|f(z)|^{2}=\sum_{z=x, y}|g(z)|^{2}$ entail $\|f\|=\|g\|$.
(ii) The relation \sim is an equivalence. Moreover, in case of $x_{1} \sim \ldots \sim x_{n}$,

$$
f-g \in 1_{\left\{x, \ldots, x_{n}\right\}} \quad \text { and } \quad \sum_{j=1}^{n}\left|f\left(x_{j}\right)\right|^{2}=\sum_{j=1}^{n}\left|g\left(x_{j}\right)\right|^{2} \quad \text { imply } \quad\|f\|=\|g\|
$$

for all $f, g \in E$ whenever x_{1}, \ldots, x_{n} are distinct points.
Proof. (i) Let $Y \equiv\left\{y_{1}, \ldots, y_{n}\right\}$ be an arbitrary finite subset of X and ℓ linear ϵ $\in \log ^{*}$ Aut B. Set $\alpha_{j k} \equiv\left\langle\ell\left(l_{y_{j}}\right), l_{y_{k}}\right\rangle$ and assume $\alpha_{12} \neq 0$ (i.e. $y_{1} \sim y_{2}$). Since the mapping $P: f \mapsto 1_{Y} f$ is a band projection of E onto $\sum_{j=1}^{n} \mathbf{C l}_{y_{j}}$, the projection principle establishes $\tilde{\ell} \in \log ^{*}$ Aut $P B$ where $\left.\tilde{\ell} \equiv P \ell\right|_{P E}$. Thus by [11, Lemma] ${ }^{3}$

$$
\begin{equation*}
\operatorname{Re}\langle\tilde{\ell}(f), \Phi\rangle=0 \Leftarrow\langle f, \Phi\rangle=\|f\|\|\Phi\| \quad \forall f \in P E, \Phi \in(P E)^{*} \tag{9}
\end{equation*}
$$

[^2]Introduce the function $p\left(\varrho_{1}, \ldots, \varrho_{n}\right) \equiv \sum_{j=1}^{n} \varrho_{j} l_{y_{j}}$ on \mathbf{R}_{+}^{n} and set $C \equiv\left\{\varrho \in \mathbf{R}_{+}^{n}\right.$: $\left.\operatorname{grad}\right|_{e} p$ does not exist $\}$. Since p is an increasing positively homogenenous convex function, C is a cone of Lebesgue measure 0 . Let us fix arbitrary vectors $\varrho \in \mathbf{R}_{+}^{n} \backslash C$, $\vartheta \in \mathbf{R}^{n}$ and set $\left.\pi \equiv \operatorname{grad}\right|_{e} p,\left.f_{0} \equiv \sum_{j=1}^{n} \varrho_{j} e^{i \vartheta_{j}}\right|_{y_{j}}, \Phi \equiv \sum_{j=1}^{n} \varrho_{j} e^{-i \vartheta_{j}} j_{y_{j}}^{*}$. Since the function p is increasing, $\pi, \ldots, \pi_{n} \geqq 0$. Since π is positive homogeneous and convex, $\sum_{j=1}^{n} \pi_{j} \varrho_{j}=$ $=p\left(\varrho_{1}, \ldots, \varrho_{n}\right)$ i.e. $\left\langle f_{0}, \Phi\right\rangle=\left\|f_{0}\right\|$. On the other hand, for any $f \in P E$

$$
|\langle f, \Phi\rangle|=\left|\sum_{j=1}^{n} \pi_{j} e^{-i \vartheta_{j}} f\left(y_{j}\right)\right| \leqq \sum_{j=1}^{n} \pi_{j}\left|f\left(y_{j}\right)\right| \leqq p\left(\left|f\left(y_{1}\right)\right|, \ldots,\left|f\left(y_{n}\right)\right|\right)=\|f\|
$$

i.e. $\|\Phi\|=1$. Hence (9) can be applied to f_{0} and Φ. Thus

$$
\operatorname{Re}\left\langle\ell\left(\sum_{j=1}^{n} \varrho_{j} e^{i s_{j}} I_{y_{j}}\right), \sum_{j=1}^{n} \pi_{j} e^{-i \vartheta_{j}} I_{y_{j}}^{*}\right\rangle=0 .
$$

By the arbitrary choice of $\vartheta \in \mathbf{R}^{n}$, an equivalent form to $\left(9^{\prime}\right)$ is

$$
\begin{gather*}
\operatorname{Re}\left[\sum_{j} \varrho_{j} \pi_{j} \alpha_{j j}+\sum_{j \neq k}\left(\varrho_{j} \pi_{k} \alpha_{j k}+\varrho_{k} \pi_{j} \overline{\alpha_{k j}}\right) z_{j} z_{k}^{-1}\right]=0 \\
\text { whenever } \quad\left|z_{1}\right|=\ldots=\left|z_{n}\right|=1
\end{gather*}
$$

This is possible only if the rational expression (w.r.t. z_{1}, \ldots, z_{n}) in the argument of the Re operation vanishes. Thus in particular $\varrho_{1} \pi_{2} \alpha_{12}+\varrho_{2} \pi_{1} \overline{\alpha_{21}}=0$. I.e. we obtained the following partial differential equation

$$
\begin{equation*}
\varrho_{1} \frac{\partial p}{\partial \varrho_{2}} \alpha_{12}+\varrho_{2} \frac{\partial p}{\partial \varrho_{1}} \overline{\alpha_{21}}=0 \quad\left(\varrho \in \mathbf{R}_{+}^{\pi} \backslash C\right) . \tag{10}
\end{equation*}
$$

Since $\varrho_{2}=\left\|\varrho_{2} 1_{y_{2}}\right\| \leqq\left\|\sum_{j} \varrho_{j} 1_{y_{j}}\right\|=p(\varrho) \quad \forall \varrho \in \mathbf{R}_{+}^{n}$, there exists $\varrho \in \mathbf{R}_{+}^{n} \backslash C$ with $\frac{\partial \varrho}{\partial p_{2}}>0$. Therefore $\alpha_{21} \neq 0$, moreover $\alpha_{21} / \alpha_{12}<0$, i.e. $\overline{\alpha_{21}} / \alpha_{12}=-\left|\alpha_{21}\right| /\left|\alpha_{12}\right|$.

For $\quad\left(\varrho_{3}, \ldots, \varrho_{n}\right) \in \mathbf{R}_{+}^{n-2}$, define $\varphi_{\varrho_{3}, \ldots, e_{n}}: \mathbf{R} \rightarrow \mathbf{R}$ by $\varphi_{\varrho_{3}, \ldots, e_{n}}(t) \equiv$ $\equiv p\left(\left|\alpha_{12}\right| \cos t,\left|\alpha_{21}\right| \sin t, \varrho_{3}, \ldots, \varrho_{n}\right)$. Since C is a cone of measure 0 in $\mathbf{R}_{+}^{n_{n}},(10)$ implies
(11) $\varphi_{\varrho_{3}, \ldots, \ell_{n}}(t)=0$ for almost every $t \in(0, \pi / 2)$ and $\left(\varrho_{3}, \ldots, \varrho_{n}\right) \in \mathbf{R}_{n}^{n-2}$.

From the convexity of p it follows that it is locally Lipschitzian in the interior of \mathbf{R}_{+}^{n}. Hence, by (11),

$$
\varphi_{e_{3}, \ldots, e_{n}}(t)=\varphi_{e_{3}, \ldots, e_{n}}(0) \quad \forall t \in[0, \pi / 2],\left(\varrho_{3}, \ldots, \varrho_{n}\right) \in \mathbf{R}_{+}^{n-2} .
$$

But then $\left|\alpha_{12}\right|=\varphi_{0, \ldots, 0}(\pi / 2)=\left|\alpha_{21}\right|$ whence

$$
\begin{gathered}
p\left|\alpha_{12}\right|^{-1}\left(\varrho_{1}^{2}+\varrho_{2}^{2}\right)^{1 / 2} \cdot \varphi_{\varrho_{3}, \ldots, \varrho_{n}}\left(\arccos \frac{\varrho_{1}}{\left(\varrho_{1}+\varrho_{2}\right)^{1 / 2}}\right)=\left|\alpha_{12}\right|^{-1}\left(\varrho_{1}^{2}+\varrho_{2}^{2}\right)^{1 / 2} \varphi_{\varrho_{3}, \ldots, \varrho_{n}}(0)= \\
=p\left(\sqrt{\varrho_{1}^{2}+\varrho_{2}^{2}}, 0, \varrho_{3}, \ldots, \varrho_{n}\right) .
\end{gathered}
$$

Let now $f, g \in E$ be functions such that $f-g \in 1_{\left(y_{1}, y_{2}\right)} E$ and $\sum_{j=1}^{2}\left|f\left(y_{j}\right)\right|^{2}=$ $=\sum_{j=1}^{2}\left|g\left(y_{j}\right)\right|^{2}$. Then $\left\|1_{Y} f\right\|=p\left(\left(\sum_{j=1}^{2}\left|f\left(y_{j}\right)\right|^{2}\right)^{1 / 2}, 0,\left|f\left(y_{3}\right)\right|, \ldots,\left|f\left(y_{n}\right)\right|\right)=\left\|1_{Y} g\right\|$. Taking into consideration the fact that Y may be any finite subset of X, from (8^{\prime}) we obtain $\|f\|=\|g\|$.

Conversely: Assume that $f-g \in 1_{\left\{y_{1}, y_{2}\right\}} E$ and $\sum_{j=1}^{2}\left|f\left(y_{j}\right)\right|^{2}=\sum_{j=1}^{2}\left|g\left(y_{j}\right)\right|^{2}$ imply $\|f\|=\|g\|$ for all $f, g \in E$. Then the mappings $U^{t} \equiv\left[f \mapsto l_{X \backslash\left(y_{1}, y_{2}\right)} f+\left((\cos t) \cdot f\left(y_{1}\right)+\right.\right.$ $\left.\left.+(\sin t) \cdot f\left(y_{2}\right)\right) l_{y}+\left((-\sin t) \cdot f\left(y_{1}\right)+c+(\cos t) \cdot f\left(y_{2}\right)\right) l_{y}\right] \quad(t \in \mathbf{R}) \quad$ form a one-parameter E-unitary operator group. Hence the linear field $\left.\frac{d}{d t}\right|_{0} U^{t}=\left[f \mapsto f\left(y_{2}\right) l_{y_{1}}-f\left(y_{1}\right) l_{y_{2}}\right]$ belongs to $\log ^{*}$ Aut B.

Proof of (ii): Say that $f \sim^{Y} g$ if Y finite $\subset X, f, g \in E, f-g \in 1_{Y} E$ and $\sum_{y \in Y}|f(y)|^{2}=$ $=\sum_{y \in Y}|g(y)|^{2}$. Obviously, the relations \sim^{Y} are all equivalences. Consider the set $N \equiv\left\{m: \exists x_{1} \sim \ldots \sim x_{m} \exists f, g \in E f \sim\left\{x_{1}, \ldots, x_{m}\right\},\|f\| \neq\|g\|\right\}$. Suppose $N \neq 0$ and set $n \equiv$ $\equiv \min N$. From (i) it follows $n>2$. Fix a set $Y \equiv\left\{y_{1}, \ldots, y_{n}\right\}$ and functions $f_{1}, f_{2} \in E$ such that $f_{1} \sim{ }^{\mathbf{Y}} f_{2}, y_{1} \sim \ldots \sim y_{n}$ but $\left\|f_{1}\right\| \neq\left\|f_{2}\right\|$. Consider the functions $g_{j} \equiv 1_{\left(X \backslash \eta \cup\left(y_{1}\right)\right.} f_{J}+$ $+\left(\sum_{k=2}^{n} f_{j}\left(y_{k}\right)^{2}\right)^{1 / 2} l_{y_{2}}(j=1,2)$. Observe that $f_{j} \sim{ }^{\left\{y_{2}, \ldots, y_{n}\right\}} g_{j}$ whence $\left\|f_{j}\right\|=\left\|g_{j}\right\|(j=$ $=1,2$). However, $g_{1} \sim{ }^{\left\{y_{1}, y_{2}\right\}} g$ and therefore by (i) we have $\left\|g_{1}\right\|=\left\|g_{2}\right\|$ contradicting the assumption $\left\|f_{1}\right\| \neq\left\|f_{2}\right\|$. Thus $N=\emptyset$. Hence if $y_{1} \sim y_{2} \sim y_{3}$ then $\forall f, g \in E$ $f \sim\left\{y_{1}, y_{2}, y_{3}\right\} g \Rightarrow f \sim{ }^{\left\{y_{1}, y_{3}\right\}} g$ i.e. by (i), $y_{1} \sim y_{3}$ holds.
3.7. Corollary. The proof of (i) shows that $\left\langle\ell\left(l_{y_{1}}\right), l_{y_{3}}^{*}\right\rangle=-\left\langle\ell\left(l_{y_{2}}\right), l_{y_{1}}^{*}\right\rangle$ whenever $y_{1}, y_{2} \in X$ and ℓ linear $\in \log ^{*}$ Aut B.
3.8. Definition. From now on we reserve the notation $\left\{S_{i}: i \in \mathscr{I}\right\}$ to denote the partition of X formed by the equivalence classes of the relation \sim. For each $i \in \mathscr{I}$, we shall denote the projection band $1_{s_{i}} E$ of E by H_{i}.
3.9. Proposition. (i) If $f, g \in E$ are functions with finite support and $\left\|\left.f\right|_{s_{i}}\right\|_{\varepsilon^{2}}=$ $=\left\|\left.g\right|_{s_{i}}\right\|_{I^{2}}\left(\equiv\left(\sum_{x \in S_{\mathrm{t}}}|g(x)|^{2}\right)^{1 / 2}\right) \quad \forall i \in \mathscr{I}$ then $\|f\|=\|g\|$.
(ii) For any $i \in \mathscr{J}, H_{i}$ is a Hilbert space (i.e. the norm $\|\cdot\|$ restricted to H_{i} satisfies parallelogram identity). Namely, a function $h: X \rightarrow \mathrm{C}$ belongs to H_{i} iff $\operatorname{supp}(h) \subset S^{i}, \sum_{x \in S_{i}}|h(x)|^{2}<\infty$, furthermore we have $\|f\|=\|f\|_{e^{2}} \quad \forall f \in H_{i}$.
(iii) If $f, g \in E$ and $\left\|\left.f\right|_{s_{i}}\right\|=\left\|\left.g\right|_{s_{i}}\right\| \quad \forall i \in \mathscr{I}$ then $\|f\|=\|g\|$.
(iv) If $g: X \rightarrow \mathbf{C}, f \in E$ and $\left\|\left.f\right|_{S_{1}}\right\|_{\iota^{3}}=\left\|\left.g\right|_{S_{i}}\right\|_{\iota^{2}} \quad \forall i \in \mathscr{I}$ then $g \in E$.
(v) Assume $\ell \in \mathscr{L}(E, E)$. Then $\ell \in \log ^{*} A u t B$ if and only if there exists a family of linear mappings $\left\{\ell_{j}: j \in \mathscr{F}\right\}$ such that $i \cdot \ell_{j}$ is a self-adjoint H_{j}-operator for each $j \in \mathscr{I}, \sup _{j \in \mathcal{S}}\left\|\ell_{j}\right\|<\infty$ and $\ell=\otimes_{j \in \mathcal{S}} \ell_{j}$.

Proof. (i) is a directe consequence of Lemma 3.6 (i).
(ii): Let $f \in H$ and $x_{0} \in E$ be arbitrarily fixed. By (i), $\left\|1_{Y} f\right\|=\left\|\left(\sum_{y \in Y}|f(y)|^{2}\right)^{1 / 2} 1_{x_{0}}\right\|$ $=\left(\sum_{y \in Y}|f(y)|^{2}\right)^{1 / 2}$ for all Y finite $\subset X$. Hence by ($\left.8^{\prime}\right), \infty>\|f\|=\|f\|_{a^{2}}$. Furthermore, if g is a function $X \rightarrow \mathbf{C}$ having support in S_{i} and $\|g\|_{f^{2}}<\infty$ then (i) ensures $\forall Y_{1}, Y_{2}$ finite $\subset X,\left\|1_{Y_{1}} f-1_{Y_{2}} f\right\|=\left\|1_{Y_{1}} f-1_{Y_{2}} f\right\|_{\mathcal{C}_{2}}=\left\|1_{Y_{1} \Delta Y_{2}} f\right\|$ i.e. the net $\left\{1_{Y} f\right\}_{Y}$ is a Cauchy net whence $f \in E$.
(iii): Let $\varepsilon>0$ be fixed. According to (8^{\prime}), one can find Y finite $\subset X$ with $\left\|f-1_{z} f\right\|,\left\|g-1_{z} g\right\|<\varepsilon \forall Z \subset Y$. Since the index set $J \equiv\left\{i \in \mathscr{I}: Y \cap S_{i}=\emptyset\right\}$ is finite, there exists a family of sets $\left\{Z_{i}: i \in J\right\}$ such that $Y \cap S_{i} \subset Z_{i}$ finite $\subset S_{i}(i \in J)$ and $\sum_{i \in J}\left\|1_{S_{i}} f-1_{z_{i}} f\right\|_{\ell_{\varepsilon}}<\varepsilon$. Consider now the functions $f_{\varepsilon} \equiv \sum_{i \in J}\left\|1_{z_{i}} f\right\|_{\varepsilon^{2}} \cdot 1_{x_{i}}$ and $g_{\varepsilon} \equiv$ $\equiv \sum_{i \in J}\left\|1_{Z_{i}} g\right\|_{\varepsilon^{2}} \cdot 1_{x_{i}}$ where x_{i} denotes an arbitrarily fixed point of $S_{i}(i \in J)$. By writing $Z \equiv \bigcup_{i \in J} Z_{i}$, we can see $\left\|f_{e}\right\|=\left\|1_{z} f\right\|,\left\|g_{\varepsilon}\right\|=\left\|1_{z} g\right\|$ and $\left\|f-1_{z} f\right\|,\left\|g-1_{z} g\right\|<\varepsilon$. Using the triangle inequality, $\left\|f_{\varepsilon}-g_{e}\right\| \leqq \sum_{i \in J}\left|\left\|1_{z_{i}} f\right\|_{\ell^{2}}-\left\|1_{z_{i}} g\right\|_{\varepsilon^{2}}\right|=$ (since $\left\|1_{s_{t}} f\right\|_{\varepsilon^{2}}=\left\|1_{s_{t}} g\right\|_{\ell^{8}}$ for all $i)=\sum_{i \in J} \mid\left\|1_{z_{i}} f\right\|_{i^{2}}-\left\|1_{S_{i}} f\right\|_{\varepsilon^{2}}+\left\|1_{S_{i}} g\right\|_{\varepsilon^{8}}-\left\|1_{z_{i}} g\right\|_{\varepsilon^{2}} \leqq\left(\sum_{i \in J}\left(\left\|1_{S_{i}} f-1_{z_{i}} f\right\|_{\varepsilon^{2}}=\| 1_{S_{i}} g-\right.\right.$ $\left.-1_{Z_{i}} g \|_{\varepsilon_{\Omega}}\right)<2 \varepsilon$. Thus $\quad\|f\|=\|g\|\left|\leqq\left\|f-1_{z} f\right\|+\| \| 1_{z} f\|=\| 1_{z} g\|\mid+\| g-1_{z} g \| \leqq 4 \varepsilon\right.$.
(iv): By (8^{\prime}), to every number $n \in \mathbb{N}$, we can choose Z_{n} finite $\subset X$ such that $\left\|f-1_{Z_{n}} f\right\|<\frac{1}{n}$. We may assume without loss of generality $Z_{1} \subset Z_{2} \subset \ldots$. Then set $\mathscr{I}_{n} \equiv\left\{i \in \mathscr{I}: Z_{n} \cap S_{i} \neq \emptyset\right\}, g_{n} \equiv \sum_{i \in \mathscr{S}_{n}} 1_{S_{t}} g$. By (ii) and the finiteness of the sets $\mathscr{I}_{n}, g_{n} \in E$ $\forall n \in \mathbf{N}$. If $n>m$ then $\left\|g_{n}-g_{m}\right\|=\left\|\sum_{i \in \mathcal{S}_{n}} 1_{S_{i}} g\right\|=\left(\right.$ by (iii)) $=\left\|\sum_{i \in \mathcal{S}_{n} \backslash \mathcal{S}_{m}} 1_{S_{i}} f\right\| \leqq$ (since $\left.\left|\sum_{i \in \mathcal{S}_{n} \backslash \mathcal{g}_{m}} 1_{s_{i}} f\right| \leqq\left|f-1_{z_{m}} f\right|\right) \leqq\left\|f-1_{z_{m}} f\right\|<\frac{1}{m}$. Thus $\left\{g_{n}\right\}_{n}$ is a Cauchy sequence in E. For all $x \in X, \lim _{n \rightarrow \infty} g_{n}(x)=g(x)$ whence $g=\lim _{n \rightarrow \infty} g_{n}$.
(v) First let $\ell \in \log ^{*} A u t B$. If $j, k \in \mathscr{I}, j \neq k, x \in S_{j}, y \in S_{k}$ then by the definition of the classes S_{i} and by Lemma 3.6 (i), $\left\langle\ell\left(1_{x}\right), 1_{y}^{*}\right\rangle=0$. This fact shows $\ell\left(H_{j}\right) \subset H_{j}$
$\forall j \in \mathscr{I}$. Thus by setting $\left.\ell_{j} \equiv \ell\right|_{H_{j}}$ we obviously have $\left\|\ell_{j}\right\| \leqq\|\ell\|$ and $\ell=\underset{j \in \mathcal{g}}{\oplus} \ell_{j}$. Furthermore, [11, Lemma] establishes $\ell_{j} \in i \cdot\left\{\right.$ self-adj. H_{j}-op.-s\} $\forall j \in \mathscr{I}$.

The converse statement is immediate from (ii) since then we have $\exp (\ell)=$ $=\underset{j \in{ }^{j}}{\oplus} \exp \left(\ell_{j}\right)$ and, by assumption, all the operators $\exp \left(\ell_{j}\right)$ are H_{j}-unitary here.
3.10. Corollary. For some subset $\mathscr{I}_{0} \subset \mathscr{I}$, by writing $X_{0} \equiv \bigcup_{i \in \mathcal{S}_{0}} S_{i}$, we have $E_{0}=1_{x_{0}} E$ (where $E_{0} \equiv \mathbf{C} \cdot[$ Aut $B]\{0\}$ cf. Introduction).

Proof. Set $Z \equiv\left\{x \in X: \exists c \in E_{0} \quad c(x) \neq 0\right\}$. Clearly $E_{0} \subset 1_{z} E$. On the other hand, if $x \in Z, c \in E_{0}$ and $c(x) \neq 0$ then, by (v), the linear field $\ell \equiv\left[f \mapsto i \cdot f(x) 1_{x}\right]$ satisfies $1_{X \backslash\{x\}} c+e^{t t} c(x) 1_{x}=\exp (t \ell) \in E_{0} \forall t \in \mathbf{R}$ whence $E_{0} \supset \operatorname{Span}\left\{1_{x}: x \in Z\right\}=1_{z} E$ i.e. $E_{0}=1_{z} E$. Suppose now $x \in Z, c \in E_{0}, c(x) \neq 0$ and $x \in S_{i}$. Let $y \in S_{i} \backslash\{x\}$ and $\ell_{1} \equiv[f \mapsto$ $\left.i f(x) 1_{y}+i f(y) 1_{x}\right]$. As in the previous case, $c_{1} \equiv \ell_{1}(c)=\left.\frac{d}{d t}\right|_{0} \exp \left(t \ell_{1}\right) c \in E_{0}$ since by (v), $\ell_{1} \in \log ^{*}$ Aut B. However, $c_{1}(y)=i c(x) \neq 0$ i.e. $y \in S_{i}$. Thus $S_{i} \subset Z$.

Next we turn our attention to the quadratic part of $\log ^{*} A u t B$.
In the sequel we shall use the notations \mathscr{I}_{0}, X_{0} introduced in Corollary 3.10. Recall that for any $c \in E_{0}$, there is a unique symmetric bilinear form $q_{c}: E \times E \rightarrow E$ with $\left[f \mapsto c+q_{c}(f, f)\right] \in \log ^{*}$ Aut B and that the mapping $c \mapsto q_{c}$ is conjugate-linear and continuous. Since the finitely supported functions are dense in E, to get the complete description of $\log ^{*}$ Aut B it is enough to determine only the values $\left\langle q_{1_{x_{1}}}\left(1_{x_{2}}, 1_{x_{3}}\right), 1_{x_{4}}\right\rangle\left(x_{1} \in X_{0}, x_{2}, x_{3}, x_{4} \in X\right)$. To this task, the projection principle provides an essential reduction.
3.11. Lemma. Let $x_{1}, \ldots, x_{n} \in X, x_{1} \in X_{0}$ and $\beta_{j k}^{l} \equiv\left\langle q_{1_{x_{1}}}\left(1_{x_{j}}, 1_{x_{k}}\right), 1_{x_{1}}^{*}\right\rangle$. Then
(i) $\beta_{j k}^{l}=0$ if $\{1, \ell\} \neq\{j, k\}$,
(ii) $\beta_{11}^{1}=-1$,
(iii) $\beta_{12}^{2} \in[-1,0]$ and $1_{\left\{x_{1}, x_{2}\right\}} B=\left\{\zeta_{1} 1_{x_{1}}+\zeta_{2} 1_{x_{2}}:\left|\zeta_{1}\right|^{2}+\left|\zeta_{2}\right|^{-1 / \beta}<1\right\}$ if $\beta_{12}^{2}=0$ or $1_{\left\{x_{1}, x_{2}\right\}} B=\left\{\zeta_{1} 1_{x_{1}}+\zeta_{2} 1_{x_{2}}: \max \left(\left|\zeta_{1}\right|,\left|\zeta_{2}\right|\right)<1\right\}$ in case of $\beta_{12}^{2}=0$,
(iv) $\beta_{12}^{2}=-1 / 2$ if $x_{1} \sim x_{2} \neq x_{1}$ and $\beta_{12}^{2}=0$ if $x_{1} \times x_{2} \in X_{0}$;
(v) if $x_{1}, \ldots, x_{n} \in X_{0}$ and $x_{i} \times x_{j}$ for $i \neq j$ then $\left\|\zeta_{1} 1_{x_{1}}+\ldots+\zeta_{n} 1_{x_{n}}\right\|=\max \left(\left|\zeta_{1}\right|\right.$, $\left.\ldots,\left|\zeta_{n}\right|\right)$ for all $\zeta_{1}, \ldots, \zeta_{n} \in \mathbf{C}$.

Proof. (i) Consider the band projection $P: f \mapsto 1_{\left\{x_{1}, \ldots, x_{n}\right\}} f$. By the projection principle, $\left[f \mapsto 1_{x_{1}}+P q_{1_{x}}(f, f)\right] \in \log ^{*}$ Aut $P B$. Applying [11, Lemma] to $P B$, we obtain

$$
0=\|f\|^{2} \overline{\left\langle 1_{x_{1}}, \Phi\right\rangle}+\left\langle P q_{1_{x}}(f, f), \Phi\right\rangle \Leftarrow\|f\| \cdot\|\Phi\|=\langle f, \Phi\rangle \quad \forall f \in P E, \Phi \in(P E)^{*} .
$$

Introducing the same function $p: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}_{+}$and set $C \subset \mathbf{R}_{+}^{n}$ as in the proof of Lemma 3.6,

$$
\begin{gather*}
0=p\left(\varrho_{1}, \ldots, \varrho_{n}\right)^{2}\left\langle 1_{x_{1}}, \sum_{j=1}^{n} \frac{\partial p}{\partial \varrho_{j}} e^{-i \vartheta_{j}} l_{x_{j}}^{*}\right\rangle+ \tag{12}\\
+\left\langle q_{1_{x}}\left(\sum_{j=1}^{n} \varrho_{j} e^{i s_{j}} 1_{x_{j}}, \sum_{k=1}^{n} \varrho_{k} e^{i s_{k}} 1_{x_{k}}\right), \sum_{\ell=1}^{n} \frac{\partial p}{\partial \varrho_{\ell}} e^{-i \vartheta_{C}} 1_{x_{\ell}}^{*}\right\rangle
\end{gather*}
$$

for all $\varrho \in \mathbf{R}_{+}^{n} \backslash C$ and $\vartheta \in \mathbf{R}^{n}$. Thus

$$
p^{2} \frac{\partial p}{\partial \varrho_{1}} e^{i \vartheta_{1}}+\left(\sum_{j, k, \ell=1}^{n} \beta_{j k}^{\ell} \varrho_{j} \varrho_{k} \frac{\partial p}{\partial \varrho_{\ell}} e^{i\left(\vartheta_{j}+\vartheta_{k}-\vartheta_{\ell}\right)}\right)=0 \quad\left(\varrho \notin C, \vartheta \in \mathbf{R}^{n}\right) .
$$

Therefore (for fixed $\varrho \in \mathbf{R}_{+}^{n} \backslash C$) the rational expression $p^{2} \frac{\partial p}{\partial \varrho_{1}} z_{1}+\sum_{j, k, \ell=1}^{n} \beta_{j k} \varrho_{j} \varrho_{k}$. $\cdot \frac{\partial p}{\partial \varrho_{\ell}} z_{j} z_{k} z_{\ell}^{-1}$ vanishes on $\partial_{0} \Delta^{n}$ i.e. its homogeneous parts are 0 -s. Hence only the coefficients of the form $\beta_{1 k}^{1}\left(=\beta_{k 1}^{1}\right)$ may differ from 0.
(ii) is immediate from (12^{\prime}) if we take $n=1$ because then $p\left(\varrho_{1}\right)=\varrho_{1}$.

For the proof of (iii) and (iv), consider the case $n=2$. From (12') and (ii) we then see

$$
\begin{equation*}
\left(p^{2}-\varrho_{1}^{2}\right) \frac{\partial p}{\partial \varrho_{1}}+2 \varrho_{1} \varrho_{2} \frac{\partial p}{\partial \varrho_{2}} \beta_{12}^{2}=0 \quad\left(\varrho \in \mathbf{R}_{+}^{n} \backslash C\right) \tag{12"}
\end{equation*}
$$

Since $p(0, \varrho)=p(\varrho, 0)$ and since the function p is increasing and convex, $\forall \varrho \in$ $\in[0,1) \exists!t \geqq 0 \quad p(\varrho, t)=1$. Thus the function $t:[0,1) \rightarrow \mathbf{R}_{+}$is welldefined by $p(\varrho, t(\varrho))=1$. Observe that now t is a decreasing concave function and $t(0)=0$. By the implicite function theorem, $t^{\prime}\left(\varrho_{1}\right)=-\frac{\partial p / \partial \varrho_{1}}{\partial p / \partial \varrho_{2}}$ whenever $\left(\varrho_{1}, t\left(\varrho_{1}\right)\right) \notin C$. Thus, since C is a cone with measure 0 in \mathbf{R}_{+}^{2}, (12") implies

$$
t^{\prime}(\varrho)\left(1-\varrho^{2}\right)=2 \varrho t(\varrho) \beta_{12}^{2} \quad \text { for almost every } \quad \varrho \in(0,1)
$$

Since $t^{\prime} \leqq 0$, we have $\beta_{12}^{2} \leqq 0$. If $\beta_{12}^{2}=0$ then $t(\varrho)=t(0)=1 \forall \varrho \in[0,1)$. In this case, $p\left(\varrho_{1}, \varrho_{2}\right) \leqq 1$ if $\varrho_{1}<1$ and $\varrho_{2} \leqq t\left(\varrho_{1}\right)=1$ or $\varrho_{1}=1$ and $\varrho_{2} \leqq 1$, i.e. $p\left(\varrho_{1}, \varrho_{2}\right)=\max \left(\varrho_{1}, \varrho_{2}\right)$. If $\beta_{12}^{2}<0$ then the solution of ($12^{\prime \prime \prime}$) with initial value $t(0)=1$ is $t(\varrho)=\left(1-\varrho^{2}\right)^{-\beta_{12}^{2}}$. Thus by setting $K \equiv\left\{\left(\varrho_{1}, \varrho_{2}\right): p\left(\varrho_{1}, \varrho_{2}\right) \leqq 1\right\}$,

$$
\begin{equation*}
K=\left\{\left(\varrho_{1}, \varrho_{2}\right): \varrho_{1}^{2}+\varrho_{2}^{-1 / \beta_{12}^{2}} \leqq 1\right\} . \tag{13}
\end{equation*}
$$

The convexity of the function p entails that K is convex whence $\beta_{12}^{2} \geqq-1$ yielding (iii).
(iv): If $x_{1} \sim x_{2} \neq x_{1}$ then $p\left(\varrho_{1}, \varrho_{2}\right)=\left(\varrho_{1}^{2}+\varrho_{2}^{2}\right)^{1 / 2}$ (cf. Proposition 3.9 (ii)), that is, by (13), we have $\beta_{12}^{2}=-\frac{1}{2}$.

On the other hand, suppose $x_{1} \nsim x_{2} \in X_{0}$ and $\beta_{12}^{2} \neq 0$. Since $x_{2} \in X_{0}$, all the previous considerations can be carried out by interchanging x_{1} and x_{2}. Thus by (iii),

$$
\left.\begin{array}{rl}
1_{\left(x_{1}, x_{2}\right)} B & =\left\{\zeta_{1} 1_{x_{1}}+\zeta_{2} 1_{x_{2}}:\left|\zeta_{1}\right|^{2}+\left|\zeta_{2}\right|^{-1 /\left\langle a_{1_{x_{1}}}\right.}\left(1_{x_{1}}, x_{x_{2}}\right), l_{x_{2}}^{*}\right\rangle \\
& =\left\{\zeta_{1} 1_{x_{1}}+\zeta_{2} 1_{x_{2}}:\left|\zeta_{2}\right|^{2}+\left|\zeta_{1}\right|^{-1 /\left\langle a_{1_{1}}\right.}\left(\mathrm{l}_{x_{2}}, 1_{x_{1}}\right), 1_{\left.x_{1}\right\rangle}\right\rangle
\end{array} 1\right\} .
$$

This is possible only if $\beta_{12}^{2}=-\frac{1}{2}=\left\langle q_{1_{x_{1}}}\left(1_{x_{2}}, 1_{x_{1}}\right), 1_{x_{1}}^{*}\right\rangle$ thus $p\left(\varrho_{1}, \varrho_{2}\right)=\left(\varrho_{1}^{2}+\varrho_{2}^{2}\right)^{-1 / 2}$. If S_{i} denotes the equivalence class (w.r.t. ~) of x_{1} then by Proposition 3.9 (iii), $\left\|f+1_{x_{2}}\right\|=\| \| f\left\|_{\varepsilon^{2}} \cdot 1_{x_{1}}+\varrho 1_{x_{2}}\right\|=p\left(\|f\|_{\varepsilon^{2}}, \varrho\right)=\left\|f+\varrho 1_{x_{2}}\right\|_{\varepsilon^{2}}$ for arbitrary $f \in H_{i}$ whence it follows $x_{2} \in S_{i}$ i.e. $x_{1} \sim x_{2}$. The obtained contradiction proves (iv).
(v): Let $y_{1}, \ldots, y_{n} \in X_{0}$ be pairwise non- \sim-equivalent. Now for arbitrarily fixed $f, c \in 1_{\left\{y_{1}, \ldots, y_{n}\right\}} E$,

$$
q_{c}(f, f)=\sum_{m=1}^{n} \overline{c\left(y_{m}\right)} q_{1_{y_{m}}}(f, f)=\sum_{m=1}^{n} \overline{c\left(y_{m}\right)} \sum_{j, k, l=1}^{n} f\left(y_{j}\right) f\left(y_{k}\right)\left\langle q_{1_{y_{m}}}\left(1_{y_{j}}, 1_{y_{j}}\right), 1_{y_{\ell}}^{*}\right\rangle 1_{y_{\ell}} .
$$

Applying (i) and (iii) to $x_{1} \equiv y_{m}, x_{k} \equiv y_{k}$ and $x_{j} \equiv y_{j}$, hence we obtain

$$
q_{c}(f, f)=-\sum_{m=1}^{n} \overline{c\left(y_{m}\right)} f\left(y_{m}\right)^{2} 1_{y_{m}}=-\bar{c} \cdot f^{2}
$$

Therefore the solution of the initial value problem $\left\{\frac{d}{d t} f_{t}=c-q_{c}\left(f_{t}, f_{t}\right), f_{0}=0\right\}$ is $f_{t}=\tanh (t c)$. Hence $\left\{\sum_{m=1}^{n} \varrho_{m} 1_{y_{m}}: \varrho_{1}, \ldots, \varrho_{n} \in[0,1)\right\} \subset\left\{\exp \left[f \mapsto c+q_{c}(f, f)\right](0)\right.$: $\left.c \in 1_{\left\{y_{1}, \ldots, y_{n}\right\}} E\right\} \subset[$ Aut $B]\{0\} \subset B$. Then $\max _{m=1}^{n} \varrho_{m} \leqq\left\|\sum_{m=1}^{n} \varrho_{m} 1_{y_{m}}\right\| \leqq 1$ whenever ϱ_{1}, \ldots, $\varrho_{n} \in[0,1]$. Consequently $\left\|\sum_{m=1}^{n} \varrho_{m} 1_{y_{m}}\right\|=1 \quad$ whenever $\quad \max _{m=1}^{n}\left|\varrho_{m}\right|=1 \quad$ whence $\left\|\sum_{j=1}^{n} \zeta_{j} 1_{y_{j}}\right\|=\max _{m=1}^{n}\left|\zeta_{m}\right|$. The proof is complete.

From Lemma 3.11 (i) and the symmetry of the bilinear mappings q_{c} follows directly that introducing the functions

$$
w_{x_{1}}\left(x_{2}\right) \equiv\left\{\begin{array}{ll}
-1 / 2 & \text { if } \quad x_{1}=x_{2} \\
\left\langle q_{1_{x}}\left(l_{x_{1}}, l_{x_{2}}\right), l_{x_{2}}^{*}\right\rangle & \text { if } \quad x_{1} \neq x_{2}
\end{array} \quad\left(x_{1} \in X_{0}, x_{2} \in X\right),\right.
$$

we have

$$
\begin{array}{ll}
q_{1_{x}}\left(1_{x}, 1_{x}\right)=2 w_{x}(x) 1_{x} & \text { for all } x \in X_{0}, \\
q_{1_{x}}\left(1_{x}, 1_{y}\right)=w_{x}(y) 1_{y} & \text { if } \quad x \in X_{0}, y \in X \backslash\{x\}, \\
q_{1_{x}}\left(1_{y}, 1_{z}\right)=0 & \text { if } \\
x \notin\{y, z\}, x \in X_{0} .
\end{array}
$$

Hence

$$
\begin{equation*}
q_{1_{x}}(f, g)=f(x) w_{x} g+g(x) w_{x} f \quad\left(x \in X_{0}\right) \tag{14}
\end{equation*}
$$

whenever the function $f \in E$ is finitely supported. Moreover by (8^{\prime}) and Lemma 3.11 (iii), (14) holds for every $f \in E$.

For sake of brevity, in what follows we shall write $f^{(i)}$ instead of the function $1_{s_{i}} f$.
3.12. Lemma. (i) $w_{x}^{(i)}=-\frac{1}{2} 1_{S_{t}}$ whenever $x \in S_{i}\left(i \in \mathscr{I}_{0}\right)$,
(ii) $w_{x}^{(i)}=0$ whenever $x \notin S_{i} \quad\left(i \in \mathscr{I}_{0}\right)$,
(iii) There exists a unique matrix $\left(\gamma_{i j}\right)_{i \in \mathfrak{g}_{0}, j \in \mathcal{S} \backslash \mathcal{S}_{0}}$ consisting of numbers belonging to $[0,1]$ such that $w_{x}^{(j)}=-\gamma_{i j} 1_{S_{j}}$ whenever $x \in S_{i} \subset X_{0}$ and $j \in \mathscr{I} \mathscr{I}_{0}$.

Proof. (i) and (ii) are contained in Lemma 3.11 (iv).
(iii): Let $x, x^{\prime} \in S_{i}$ and $y, y^{\prime} \in S_{j}$ where $i \in \mathscr{I}_{0}, j \notin \mathscr{I}_{0}$. From Proposition 3.9 (v) it follows the existence of an E-unitary operator U such that $1_{x},=U 1_{x}$ and $1_{y^{\prime}}=U 1_{y_{1}}$. From the elementary theory of Lie-groups it is well-known that $U v U^{-1} \in \log ^{*}$ Aut B for every $v \in \log ^{*} A u t B$. In particular, $\left[f \rightarrow U\left(1_{x}+q_{1_{x}}\left(U^{-1} f, U^{-1} f\right)\right)\right] \in \log ^{*} A u t B$ whence $q_{1_{x^{\prime}}}(f, f)=q_{U 1_{x}}(f, f)=q_{1_{x}}\left(U^{-1} f, U^{-1} f\right)$. Therefore $\left\langle q_{1_{x^{\prime}}}\left(1_{x^{\prime}}, 1_{y^{\prime}}\right), 1_{y^{\prime}}^{*}\right\rangle=$ $\left.=\left\langle U q_{1_{x}}\left(U^{-1} 1_{x^{\prime}}, U^{-1} 1_{y^{\prime}}\right), 1_{y^{\prime}}^{*}\right\rangle=\left\langle U q_{1_{x}}\left(1_{x}, 1_{y}\right), 1_{y^{\prime}}^{*}\right)\right\rangle=\left\langle q_{1_{x}}\left(1_{x}, 1_{y}\right), 1_{y}^{*}\right\rangle$ since if $U=\bigoplus_{i \in g} U_{i}$ is the directe decomposition of U provided by Proposition 3.9 (v) and $f \in E$ then $\left\langle U f, 1_{x^{\prime}}^{*}\right\rangle=\left(U_{i} f^{(i)} \mid 1_{x}\right)=\left(f^{(i)} \mid U_{i}^{-1} 1_{x}\right)=\left(f^{(i)} \mid U_{i}^{-1} 1_{x^{\prime}}\right)=\left(f^{(i)} \mid 1_{x}\right)$.

Henceforth we reserve the notation $\left(\gamma_{i j}\right)_{i \in \mathcal{S}_{0}, j \in \mathscr{S}} \backslash \mathcal{S}_{0}$ for the matrix introduced in Lemma 3.12 (iii).
3.13. Corollary. For arbitrary finitely supported $c \in E_{0}$ and $f \in E$,

$$
\begin{equation*}
q_{c}(f, f)=-\sum_{i \in \mathcal{S}_{0}}\left(f^{(i)} \mid c^{(i)}\right) f^{(i)}-2 \sum_{j \in \mathcal{S} \backslash \mathcal{s}_{0}}\left[\sum_{i \in \mathcal{S}_{0}} \gamma_{i j}\left(f^{(i)} \mid c^{(i)}\right)\right] f^{(j)} . \tag{15}
\end{equation*}
$$

Proof. Applying Lemma 3.12. and (14), we can see that if $c \in E_{0}$ and $f \in E$ have finite supports then $q_{c}(f, f)=-\sum_{x \in X_{0}} \overline{c(x)} q_{1_{x}}(f, f) \sum_{i \in \mathcal{S}_{0}} \sum_{x \in S_{i}} 2 \overline{c(x)} f(x)$. $\cdot\left[-\frac{1}{2} f^{(i)}-\sum_{j \notin \mathcal{F}_{0}} \gamma_{i j} f^{(j)}\right]$.

In order to extend (15) to every $c \in E_{0}$ and $f \in E$, we need the following observations.
3.14. Lemma. (i) $E_{0}=\underset{i \in \mathcal{A}_{0}}{c_{0}} H_{i}$ i.e. a function $c: X \rightarrow \mathrm{C}$ belongs to E_{0} if and only if $\forall i \in \mathscr{I}\left\|c^{(i)}\right\|_{\varepsilon^{2}}<\infty$ and $\forall \varepsilon>0 \quad\left\{i \in \mathscr{I}_{0}:\left\|c^{(i)}\right\|_{\varepsilon^{2}} \geqq \varepsilon\right\}$ finite $\subset \mathscr{I}_{0}$ (in the latter case $\left.\|c\|=\sup _{i \in \xi_{0}}\left\|c^{(i)}\right\|_{\ell^{2}}\right)$.
(ii) $\sup _{j \in \mathscr{J} \backslash \sigma_{0}} \sum_{i \in \mathscr{J}_{0}} \gamma_{i j} \leqq 4\|q\|\left(\equiv 4 \sup _{c \in B \cap E_{0}}\left\|q_{c}\right\|=4 \sup _{\substack{c \in B \cap E_{0} \\ f, g \in B}}\left\|q_{c}(f, g)\right\|\right)$.

Proof. (i): Trivial from Proposition 3.9 (v), Lemma 3.11 (v) and the fact that the finitely supported functions are dense in E.
(ii): Let $j \in \mathscr{I} \backslash \mathscr{I}_{0}, i_{1}, \ldots, i_{n} \in \mathscr{I}_{0}, y \in S_{j}$ and $x_{1} \in S_{i_{1}}, \ldots, x_{n} \in S_{i_{n}}$. Consider the functions $c \equiv \sum_{m=1}^{n} 1_{x_{m}}$ and $f \equiv 1_{y}+\sum_{m=1}^{n} 1_{x_{m}}$. By (i) we have $\|c\|=1$ and $\|f\| \leqq 2$. By (15), $\left\langle q_{c}(f, f), 1_{y}^{*}\right\rangle=\sum_{m=1}^{n} \gamma_{i_{m} j}$. At the same time, $\left|\left\langle q_{c}(f, f), 1_{y}^{*}\right\rangle\right| \leqq\|q\| \cdot\|c\| \cdot\|f\|^{2} \cdot\left\|1_{y}^{*}\right\| \leqq$ $\leqq 4\|q\|$.
3.15. Corollary. (15) holds for each $c \in E_{0}$ and $f \in E$.

Proof. The previous lemma shows that the right hand side of (15) makes always sense. Observe that the mapping $Q: E_{0} \times E \ni(c, f) \mapsto\{$ right hand side of (15) \} is real-linear in c and real-quadratic in f. For $\|c\|,\|f\| \leqq 1$ we have $\|Q(c, f)\| \leqq$ $\left\|\sum_{i \in \mathcal{G}_{0}}\left(f^{(i)} \mid c^{(i)}\right) f^{(i)}\right\|+2\left\|\sum_{j \notin \mathscr{F}_{0}}\left(\sup _{k \nsubseteq \mathcal{\Xi}_{0}} \sum_{i \in \mathcal{F}_{0}} \gamma_{i k}\left\|f^{(i)}\right\|_{\varepsilon_{2}} \cdot\left\|c^{(i)}\right\|_{\varepsilon_{2}}\right) f^{(j)}\right\| \leqq\|f\|^{2} \cdot\|c\|+4\|q\| \cdot\|c\| \cdot$ $\cdot\|f\|^{2}$. Thus Q is a continuous map. On the other hand, the relation $Q(c, f)=$ $=+q_{c}(f, f)$ is already established for a dense submanifold of $E_{0} \times E$ by Corollary 3.13 .

In this way we completely know $\log ^{*}$ Aut B. The mappings $\exp [B \ni f \mapsto$ $\left.\mapsto c+q_{c}(f, f)\right]$ are easy to describe: By (15), the equation $\frac{d}{d t} f_{t}=c+q_{c}\left(f_{t}, f_{t}\right)$ is equivalent with

$$
\begin{gather*}
\frac{d}{d t} f_{t}^{(i)}=c^{(i)}-\left(f_{i}^{(i)} \mid c^{(i)}\right) f_{t}^{(i)} \quad\left(i \in \mathscr{I}_{0}\right) \\
\frac{d}{d t} f_{t}^{(j)}=-2 \sum_{i \in \mathscr{S}_{0}} \gamma_{i j}\left(f_{i}^{(i)} \mid c^{(i)}\right) f_{t}^{(j)} \quad\left(j \in \mathscr{I} \backslash \mathscr{I}_{0}\right)
\end{gather*}
$$

If we represent $c^{(i)}$ in the form $c^{(i)} \equiv \varrho_{i} c_{0}^{(i)}$ where $\varrho_{i} \geqq 0,\left\|c_{0}^{(i)}\right\|=1$ and if $f_{0}^{(i)}=$ $=\zeta_{i} c_{0}^{(i)}+f_{\perp}^{(i)}$ where $f_{\perp}^{(i)}$ lying orthogonally to $c_{0}^{(i)}$, one then cheks immediately that for arbitrarily given $f_{0} \in B$, the solution of $\left(16^{\prime}\right)$ is

$$
f_{t}^{(i)}=M_{e_{1} t}\left(\zeta_{i}\right) c_{0}^{(i)}+M_{e_{i}}^{\perp}\left(\zeta_{i}\right) f_{\perp}^{(i)} \quad\left(i \in \mathcal{I}_{0}\right)
$$

where M_{τ} and M_{τ}^{\perp} are the Moebius- and co-Moebius transformations

$$
\begin{equation*}
M_{\tau}(\zeta) \equiv \frac{\zeta+\tanh (\tau)}{1+\zeta \tanh (\tau)}, M_{\tau}^{1}(\zeta) \equiv \frac{\left\{1-(\tanh (\tau))^{2}\right\}^{1 / 2}}{1+\zeta \tanh (\tau)} \quad(\tau \in \mathbf{R},|\zeta|<1) \tag{18}
\end{equation*}
$$

Substituting (17^{\prime}) into ($16^{\prime \prime}$), we obtain

$$
\frac{d}{d t} f_{t}^{(j)}=\left[-2 \sum_{i \in \mathscr{S}_{0}} \gamma_{i j} \varrho_{i} M_{e_{i} t}\left(\zeta_{i}\right)\right] f_{t}^{(J)} \quad\left(j \in \mathscr{I} \backslash \mathscr{J}_{0}\right)
$$

whose solution is given by

$$
\begin{align*}
f_{t}^{(j)} & =\exp \left[-2 \sum_{i \in \mathscr{S}_{0}} \gamma_{i j} \varrho_{i} \int_{0}^{1} M_{e_{i} \tau}\left(\zeta_{i}\right) d \tau\right] f_{0}^{(j)}= \\
& =\left[\prod_{i \in \mathscr{S}_{0}} M_{e_{i} t}^{\perp}\left(\zeta_{i}\right)^{2 \gamma_{i j}}\right] f_{0}^{(j)} \quad\left(j \in \mathscr{I} \backslash \mathscr{I}_{0}\right)
\end{align*}
$$

The fact that the right hand side in (17") makes sense, is guaranteed by Lemma 3.14 (ii). Fortunately, by Lemma 3.14 (i) and (17'),

$$
\begin{gathered}
{[\text { Aut } B]\{0\}=B \cap E_{0}=\left\{\sum_{i \in \mathscr{S}_{0}} \lambda_{i} c_{i}: 0 \leqq \lambda_{i} \leqq 1, c_{i} \in \partial B\left(H_{i}\right) \quad i \in \mathscr{I}_{0} \quad\right. \text { and }} \\
\left.\left[i \mapsto \lambda_{i}\right] \in c_{0}\left(\mathscr{I}_{0}\right)\right\}=\left\{\sum_{i \in \mathscr{S}_{0}} M_{e_{i}}(0) c_{i}: \varrho_{i} \in \mathbf{R}_{+}, c_{i} \in \partial B\left(H_{i}\right) \quad \forall i \in \mathscr{I}_{0} \quad\right. \text { and } \\
\left.\left[i \mapsto \lambda_{i}\right] \in c_{0}\left(\mathscr{I}_{0}\right)\right\}=\left\{\exp \left[f \mapsto c+q_{c}(f, f)\right](0): c \in E_{0}\right\}
\end{gathered}
$$

where $c_{0}\left(\mathscr{I}_{0}\right) \equiv\left\{\mathscr{\mathscr { G }}_{0} \rightarrow \mathrm{C}\right.$ functions vanishing at infinity $\}$. A classical theorem of Cartan asserts that the relations $U \in A u t B$ and $U(0)=0$ entail the linearity of U. Thus given $F \in$ Aut B, if we choose the vector $c \in E_{0}$ so that the automorphism $G \equiv \exp \left[B \ni f \rightarrow-c+q_{(-c)}(f, f)\right]$ satisfies $G(0)=F^{-1}(0)$ then the automorphism $U \equiv F \circ G$ is necessarily linear, i.e. we have $F \in U \cdot \exp \left[f \mapsto c+q_{c}(f, f)\right]$ for suitable $c \in E_{0}$ and linear E-unitary U. Hence we arrive at the following characterization of Aut B :
3.16. Theorem. Let E denote a minimal atomic Banach lattice. The space E is spanned by a family $\left\{H_{i}: i \in \mathscr{I}\right\}$ of its pairwise lattice-orthogonal Hilbertian projection bands such that
(i) the linear members of $\mathrm{Aut}_{0} B(E)$ map $B\left(H_{i}\right)$ onto themselve $(\forall i \in \mathscr{I})$,
(ii) conversely, if for any index $i \in \mathscr{I}, U_{i}$ is an H_{i}-unitary operator then $\left.\underset{i \in \mathcal{S}}{\oplus} U_{i}\right|_{B(E)} \in$ $\in \mathrm{Aut}_{0} B(E)$.

Furthermore there exists a matrix $\left(\gamma_{i j}\right)_{i, j} \in \mathscr{I}$ and an index subfamily $\mathscr{I}_{0} \subset \mathscr{I}$ such that
(iii $E_{0}(\equiv \mathrm{C}[$ Aut $B\{E)]\{0\})=\underset{i \in \mathcal{S}_{0}}{c_{0}} H_{i}$,
(iv) $0 \leqq \gamma_{i j} \leqq 1$ for all $i, j \in \mathscr{I} ; \gamma_{i i}=\frac{1}{2}$ for all $i \in \mathscr{I}_{0} ; \gamma_{i j}=0$ whenever $i, j \notin \mathscr{I}_{0}$ or i and j are distinct elements of \mathscr{I}_{0}.
(v) A mapping $F: B(E) \rightarrow E$ belongs to $\mathrm{Aut}_{0} B(E)$ if and only if, by denoting the band projection onto H_{i} by P_{i}, we have

$$
\begin{aligned}
& P_{i} F(f)=U_{i}\left\{M_{e_{i}}\left(\left(P_{i} f \mid c_{i}^{0}\right)\right) c_{i}^{0}+M_{e_{i}}^{\perp}\left(\left(P_{i} f \mid c_{i}^{0}\right)\right)\left[P_{i} f-\left(P_{i} f \mid c_{i}^{0}\right) c_{i}^{0}\right]\right\} \quad\left(i \in \mathscr{I}_{0}\right), \\
& P_{j} F(f)=\left\{\exp \int_{0}^{1} \sum_{i \in \mathcal{S}_{0}} \gamma_{i j} \varrho_{i} M_{e_{i} \tau}\left(\left(P_{i} f \mid c_{i}^{0}\right)\right) d \tau\right\} U_{j} P_{j} f \quad\left(j \in \mathscr{I} \backslash \mathscr{I}_{0}\right)
\end{aligned}
$$

for suitable H_{j}-unitary operators $U_{j}(j \in \mathscr{I})$, unit vectors $c_{i}^{0} \in H_{i}\left(i \in \mathscr{I}_{0}\right)$ and a function $\left[\mathscr{I}_{0} \ni i \mapsto \varrho_{i}\right.$] assuming values in \mathbf{R}_{+}and vanishing at infinity, respectively (the transformations $M_{e_{i}}, M_{\mathbf{e}_{i}}^{\top}$ are those defined in (18)).

4. Appendix

Linear finite dimensional tensor unit ball automorphisms

Throughout this section H_{1}, \ldots, H_{n} are fixed finite dimensional Hilbert spaces. We are aimed to describe the structure of the linear unitary operators in the space $E \equiv H_{1} \otimes \ldots \otimes H_{n}$.

We shall use the notations $B \equiv B(E), B^{*} \equiv B\left(E^{*}\right)$,

$$
\begin{array}{ll}
K \equiv\left\{F \in \partial B: \exists!\Phi \in \partial B^{*}\right. & \langle F, \Phi\rangle=1\} \\
K^{*} \equiv\left\{\Phi \in \partial B^{*}: \exists F \in K\right. & \langle F, \Phi\rangle=1\}
\end{array}
$$

4.1. Lemma. $K^{*}=\left\{\delta_{e_{1}, \ldots, e_{n}}: e_{1} \in \partial B\left(H_{1}\right), \ldots, e_{n} \in \partial B\left(H_{n}\right)\right\}$.

Proof. Since $\operatorname{dim} E<\infty, \bar{B}$ is compact, thus for any n-linear functional $F \in \partial B$, one can find $e_{1} \in \partial B\left(H_{1}\right), \ldots, e_{n} \in \partial B\left(H_{n}\right)$ with $F\left(e_{1}, \ldots, e_{n}\right)=1$. Hence $K^{*} \subset\left\{\delta_{e_{1}, \ldots, e_{n}}: e_{j} \in \partial B\left(H_{j}\right)\right\}$. On the other hand, every E-unitary operator maps K onto itself and therefore also

$$
\begin{equation*}
U^{*} K^{*}=K^{*} \text { for all } E \text {-unitary operators. } \tag{19}
\end{equation*}
$$

From the compactness of B it follows $K \neq \emptyset$ (indeed: for any smooth norm $\|\cdot\|_{1}$ on $E, \emptyset \neq\left\{F \in \partial B:\|F\|_{1} \leqq\|G\|_{1} \forall G \in \partial B\right\} \subset K$) whence $K^{*} \neq \emptyset$. That is, for some unit vectors $e_{1}^{0} \in H_{1}, \ldots, e_{n}^{0} \in H_{n}$ we have $\delta_{e_{1}^{0}, \ldots, e_{n}^{0}} \in K^{*}$. Now from (19) we obtain $\delta_{U_{1} e_{1}^{0}, \ldots, U_{n} e_{n}^{0}}=\left(U_{1} \otimes \ldots \otimes U_{n}\right)^{*} \delta_{e_{1}^{0}, \ldots, e_{n}^{0} \in K^{*}} \quad$ whenever the U_{j}-s are H_{j}-unitary operators. Thus $\left\{\delta_{e_{1}, \ldots, e_{n}}: e_{j} \in \partial B\left(H_{j}\right)\right\} \supset K^{*}$.
4.2. Lemma. Let $\Phi \equiv \delta_{f_{1}, \ldots, f_{n}}, \psi \equiv \delta_{g_{1}, \ldots, g_{n}}$ and $\Theta \equiv \delta_{h_{1}, \ldots, h_{n}}$ where $0 \neq$ $\neq f_{j}, g_{j}, h_{j} \in H_{j}(j=1, \ldots, n)$ and assume $\Phi+\Psi=\Theta$. Then there exists k such that for each $j \neq k$ we have $f_{j} \| g_{j}$ (i.e. f_{j} and g_{j} are linoarly dependent).

Proof. The statement holds obviously if for some index $m, f_{j} \| h_{j}$ for all $j \neq m$ or $f_{j} \| g_{j}$ for all $j \neq m$. In the contrary case $f_{k} \nVdash g_{k}$ and $f_{m} \nVdash h_{m}$ for some pair of indices $k \neq m$. We may then suppose $k=1$ and $m=2$. First we show that in this case we have $h_{1} \nVdash f_{1}$. Indeed: from $h_{1} \nVdash f_{1}$ it follows that introducing the tensor $\tilde{E} \equiv \tilde{g}_{1} \otimes g_{2} \otimes \ldots \otimes g_{n}$ where $\tilde{g}_{1} \equiv g_{1}-\left\|f_{1}\right\|^{-2}\left(g_{1} \mid f_{1}\right) f_{1}$ the relations $\langle\tilde{E}, \Phi\rangle=\langle\tilde{E}, \Theta\rangle=$ $=0 \neq\langle\tilde{E}, \Psi\rangle$ hold. One can see in the same manner that $h_{2} \nVdash g_{2}$. Since $h_{1} \nVdash f_{1}$, there exists $u_{1} \in H_{1}$ with $f_{1} \perp u_{1} \notin h_{1}$ and since $h_{2} \nVdash g_{2}$ one can find $u_{2} \in H_{2}$ with $g_{2} \perp u_{2} \perp h_{2}$. But then the tensor $T \equiv u_{1} \otimes u_{2} \otimes h_{3} \otimes \ldots \otimes h_{n}$ satisfies $\langle T, \Phi\rangle=$ $=\langle T, \Psi\rangle=0 \neq\langle T, \Theta\rangle$ which is impossible.
4.3. Proposition. Set $r_{j} \equiv \operatorname{dim} H_{j}(j=1, \ldots, n)$ and let $U \in \mathscr{L}(E, E)$ be fixed so that $\left.U\right|_{B} \in \operatorname{Aut}_{0} B$. Then one can choose H_{j}-unitary operators U_{j} such that $U=$ $=U_{1} \otimes \ldots \otimes U_{n}$.

Proof. It is enough to prove the statement only for E-unitary operators lying in a suitable neighbourhood of id_{E} as it is well-known (see e.g. [6]).

To do this, fix $\varepsilon>0$ such that the functionals $\Phi \equiv \delta_{e_{1}, \ldots, e_{n}}, \quad \tilde{\varphi} \equiv \delta_{e_{1}, \ldots, \tilde{e}_{n}}$, $\Psi \equiv \delta_{f_{1}, \ldots, f_{n}}, \widetilde{\Psi} \equiv \delta_{\tilde{f}_{1}, \ldots, \tilde{f}_{n}}\left(\in E^{*}\right)$ fulfil

$$
\begin{equation*}
\exists k \quad e_{k} \perp \tilde{e}_{k}, f_{k} \perp \tilde{f_{k}} \quad \text { and } \quad \forall j \neq k \quad e_{j}\left\|\tilde{f}_{j}, \quad f_{j}\right\| \tilde{f}_{j} \tag{20}
\end{equation*}
$$

whenever we have

$$
\begin{gather*}
\Phi-\widetilde{\Phi}, \Psi-\widetilde{\Psi}_{\in K^{*}},\|\Phi-\widetilde{\Phi}\|=\|\Psi-\widetilde{\Psi}\|=\sqrt{2} \quad \text { and } \quad\|\Phi-\Psi\|,\|\widetilde{\Phi}-\widetilde{\Psi}\|<\varepsilon \tag{21}\\
\left\|e_{j}\right\|=\left\|\tilde{c}_{j}\right\|=\left\|f_{j}\right\|=\left\|\tilde{f}_{j}\right\|=1 \quad(j=1, \ldots, n) \tag{22}
\end{gather*}
$$

A value $\varepsilon>0$ with the above properties in fact exists: Otherwise there would be a sequence $\Phi_{m} \equiv \delta_{e_{1}^{m}, \ldots, e_{n}^{m}}, \widetilde{\Phi}_{m} \equiv \delta_{\tilde{e}_{1}^{m}, \ldots, \tilde{e}_{n}^{m}}, \Psi_{m} \equiv \delta_{f_{1}^{m}, \ldots, f_{n}^{m}}, \widetilde{\Psi}_{m} \equiv \delta_{\tilde{f}_{n}^{m} \ldots, \tilde{f}_{n}^{m}} \quad(m=$ $=1,2, \ldots$) satisfying (21), (22) for $\varepsilon=\frac{1}{m}$ but without property (20). For a suitable index subsequence $\left\{m_{s}\right\}_{s}$ and for some unit vectors $e_{j}, \tilde{e}_{j}, f_{j}, f_{j}$ we have $e_{j}^{m_{s}} \rightarrow e_{j}$, $e_{j}^{m_{s}} \rightarrow e_{j}, f_{j}^{m_{s}} \rightarrow f_{j}, f_{j}^{m_{s}} \rightarrow f_{j}(s \rightarrow \infty, j=1, \ldots, n)$. Then the limits $\Phi, \tilde{\Phi}, \Psi, \tilde{\Psi}$ satisfy $\Phi=\Psi, \widetilde{\Phi}=\widetilde{\Psi},\|\Phi-\widetilde{\Phi}\|=\|\Psi-\widetilde{\Psi}\|=\sqrt{2}$ and the contrary of (20). At the same time we also have $\Phi-\tilde{\Phi}, \Psi-\tilde{\Psi} \in K^{*}$ because of the closedness of K^{*}. Thus by Lemma 4.2; $\exists!k_{0} \forall j \neq k_{0} \quad e_{j} \| \tilde{e}_{j}$. Since $\|\Phi-\tilde{\Phi}\|=\sqrt{2}$, hence $\left\|e_{k_{0}}-\tilde{e}_{k_{0}}\right\|=\sqrt{2}$ i.e. $e_{k_{0}} \perp \tilde{e}_{k_{0}}$. Similarly $\exists!\ell_{0} f_{\ell_{0}} \perp \tilde{f}_{\ell_{0}}$ and $\forall j \neq \ell_{0} f_{j} \| \tilde{f}_{j}$. Since (20) does not hold, necessarily $k_{0} \neq \ell_{0}$. However the relations $\Phi=\Psi, \widetilde{\Phi}=\widetilde{\Psi}$ entail $k_{0}=\ell_{0}$.

Now assume $\left\|U-\operatorname{id}_{E}\right\|<\varepsilon$. Fix an orthonormed basis $\left\{e_{j}^{k}: j=1, \ldots, r_{k}\right\}$ in $H_{k}(k=1, \ldots, n)$, respectively and let us write the functional $U^{*} \delta_{e_{1}^{1}, \ldots, e_{1}^{n}}$ in the form $U^{*} \delta_{e_{1}^{1}, \ldots, e_{1}^{n}}=\delta_{f_{1}^{1}, \ldots, f_{1}^{n}}$ (cf. Lemma 4.1.) where f_{1}^{k} is a fixed unit vector in $H_{k}(k=$ $=1, \ldots, n$). It follows from the choice of ε that for arbitrary index k, the singleton $\left\{f_{1}^{k}\right\}$ can be continued to an orthonormed basis $\left\{f_{j}^{k}: j=1, \ldots, r_{k}\right\}$ of H_{k} in a unique
way so that we have

$$
U^{*} \delta_{e_{1}^{1}, \ldots, e_{1}^{k}-1}^{e_{j}^{k}, e_{1}^{k+1}, \ldots, e_{1}^{n}}=\delta_{f_{1}^{1}, \ldots, f_{1}^{k-1}} f_{j}^{k}, f_{1}^{k+1}, \ldots, f_{1}^{n} \quad\left(j=1, \ldots, r_{k}\right) .
$$

Set $I_{0} \equiv\left\{(1, \ldots, 1, j, 1, \ldots, 1): k=1, \ldots, n ; j=1, \ldots, r_{k}\right\}, \quad I_{1} \equiv \underset{k=1}{\underset{X}{X}}\left\{1, \ldots, r_{k}\right\} \quad$ and let a family $I \subset I_{1}$ of multiindices be called thick if $\forall i \in I, \forall i^{\prime} \in I_{1} \quad i^{\prime} \leqq i \Rightarrow i^{\prime} \in I$.

Observe that for any multiindex $i \equiv\left(i_{1}, \ldots, i_{n}\right) \in I_{1}$ there exists a unique complex number which we shall denote by x_{i} such that $\left|x_{i}\right|=1$ and

$$
\begin{equation*}
U^{*} \delta_{e_{i_{1}}^{1}, \ldots, e_{i_{n}}^{n}}=x_{i} \delta_{f_{i_{1}}^{1}, \ldots, f_{i_{n}}^{n}} \tag{23}
\end{equation*}
$$

Indeed: If not, we can find a minimal (w.r.t. §) $i \in I_{1}$ not satisfying (23). Now $U^{*} \delta_{e_{i_{1}}^{1}, \ldots, e_{i_{n}}}=\delta_{h_{1}, \ldots, h_{n}}$ for some vectors $h_{k} \in \partial B\left(H_{k}\right)(k=1, \ldots, n)$. Since obviously $i \notin I_{0}$, for arbitrarily fixed k, there is $\tilde{k \neq k}$ with $i_{\tilde{k}} \neq 1$. Consider the multiindex j defined by $j_{\ell} \equiv\left[i_{\ell}\right.$ if $\ell \neq k, 1$ if $\left.\ell=k\right](\ell=1, \ldots, n)$. By the minimality of $i, U^{*} \delta_{e_{J_{1}}^{1}}, \ldots, e_{j_{n}}^{n}=$ $=x_{j} \delta_{f_{J_{1}}^{1}, \ldots, f_{j_{n}}^{n}}$. Since $U^{*}\left(\frac{1}{\sqrt{2}} \delta_{e_{i_{1}}^{1}, \ldots, e_{i_{n}}^{n}}+\frac{1}{\sqrt{2}} \delta_{e_{j_{1}}^{1}, \ldots, e_{j_{n}}^{n}}\right) \in K^{*}$, using Lemma 4.2 we can see $h_{k} \| f_{i_{k}}^{k}$ i.e. $h_{k}=\alpha_{k} f_{i_{k}}^{k}$ for suitable $\alpha_{j} \in \partial \Delta(k=1, \ldots, n)$.

Then let I be a maximal thick subset of I_{1} such that $I_{1} \supset I_{0}$ and $x_{i}=1 \forall i \in I$. (Remark: $\varkappa_{i}=1 \forall i \in I_{0}$.) We shall show that necessarily $I=I_{1}$. Hence and from the linearity of the mapping U, (23) immediately yields the statement of the lemma.

Assume $I_{1} \backslash I \neq \varnothing$. Let j be a minimal element of $I_{1} \backslash I$. Observation: $\forall i \in I_{1}$ $j \neq i \leqq j \Rightarrow i \in I$. I.e. the family $I^{\prime} \equiv I \cup\{j\}$ is thick. Therefore it suffices to prove $x_{j}=1$ (which contradicts our assumption). By writing $J \equiv\left\{1, j_{1}\right\} \times \ldots \times\left\{1, j_{n}\right\}$,

$$
\begin{gathered}
U^{*} \delta_{e_{1}^{1}+e_{j_{1}}^{1}, \ldots, e_{1}^{n}+e_{j_{n}}^{n}}=\sum_{i \in J} U^{*} \delta_{e_{i_{1}}^{1}, \ldots, e_{i_{n}}^{n}}=\sum_{i \in J} x_{i} \delta_{f_{1_{1}}^{1}, \ldots, f_{i_{n}}^{n}}= \\
=x_{j} \delta_{f_{J_{1}}^{1}, \ldots, f_{j_{n}}^{n}}+\sum_{i \in J\{j\}} \delta_{f_{i_{1}}^{1}, \ldots, f_{n_{n}}^{n}}=\left(x_{j}-1\right) \delta_{f_{j_{1}}^{1}, \ldots, f_{j_{n}}^{n}}+\delta_{f_{1}^{1}+f_{J_{1}}^{1}, \ldots, f_{1}^{n}+f_{j_{n}}^{n} .}
\end{gathered}
$$

However, the function $U^{*} \delta_{e_{1}^{1}+e_{j_{1}}^{1}, \ldots, e_{1}^{n}+e_{j_{n}}^{n}}$ has the form $\delta_{h_{1}, \ldots, h_{n}}$ whence directly $x_{j}=1$.
4.4. Corollary. The vector fields V being tangent to $\partial B(E)$ are exactly those of the form

$$
V=i \cdot \sum_{j=1}^{n} \mathrm{id}_{H_{1}} \otimes \ldots \otimes \mathrm{id}_{H_{j-1}} \otimes A_{j} \otimes \mathrm{id}_{H_{j+1}} \otimes \ldots \otimes \mathrm{id}_{H_{n}}
$$

where each A_{j} is a self-adjoint H_{j}-operator.
Proof. For every H_{j}-operator U_{j} there is a self-adjoint A_{j} with $U_{j}=\exp \left(i \cdot A_{j}\right)$. Thus by Proposition 4.3, V has the form $V=\left.\frac{d}{d t}\right|_{0} \exp \left(i t \cdot A_{1}\right) \otimes \ldots \otimes \exp \left(i t \cdot A_{n}\right)$.

References

[1] R. Braun-W. Kaup-H. Upmeier, On the automorphisms of circular and Reinhardt domains in complex Banach spaces, Manuscripta Math., 25 (1978), 97-133.
[2] E. Cartan, Sur les domaines bornés homogènes de l'espace de n variables complexes, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 116-162.
[3] C. J. Earl-R. S. Hamilton, A fixed point theorem for holomorphic mappings, Proc. Sympos. Pure Math., 16, Amer. Math. Soc., (Providence R. I., 1970), pp. 61-65.
[4] T. Franzoni, The group of biholomorphic automorphisms in certain J^{*}-algebras, to appear.
[5] T. L. Hayden-T. J. Suffridge, Biholomorphic maps in Hilbert space have fixed points, Pacific J. Math., 38 (1971), 419-422.
[6] G. Hochschild, The Structure of Lie Groups, Holden Day (San Francisco, 1966).
[7] W. Kaup, Algebraic characterization of symmetric Banach manifolds, Math. Ann., 228 (1979), 39-64.
[8] W. Kaup-H. Upmeier, Banach spaces with biholomorphically equivalent unit balls are isomorphic, Proc. Amer. Math. Soc., 58 (1976), 129-133.
[9] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker (New York, 1970).
[10] H. Schaeffer, Banach Lattices and Positive Operators, Springer Verlag (Berlin, 1974).
[11] L. L. Stachó, A short proof that the biholomorphic automorphisms of the unit ball in certain L^{p}-spaces are linear, Acta Sci. Math., 41 (1979), 381-383.
[12] L. L. Stachó, Holomorphic Maps and Fixed Points, Dissertation, Scuola Normale Superiore, Pisa, 1979.
[13] T. Sunada, On bounded Reinhardt domains, Proc. Japan Acad., 50 (1974), 119-123.
[14] P. Thullen, Zu den Abbildungen durch analytische Funktionen mehrerer komplexer Veränderlichen. Die Invarianz des Mittelpunktes von Kreiskörpern, Math. Ann., 104 (1931), 244-259.
[15] H. Upmeier, Über die Automorphismen-Gruppen beschränkter Gebiete in Banachräumen, Dissertation, Tübingen, 1975.
[16] E. Vesentini, Variations on a theme of Carathéodory, Ann. Scuola Norm. Sup. Pisa (4), 6 (1979), 39-68.
[17] E. Vesentini-T. Franzoni, Holomorphic maps and invariant distances, North Holland (Ams-terdam-New York, 1980).
[18] J. P. ViguÉ, Sur le groupe des automorphismes analytiques d'un domaine borné d'un espace de Banach complexe, C. R. Acad. Sci. Paris, A 282 (1976), 111-114; 211-213.

[^0]: Received March 13, 1981.

[^1]: ${ }^{1}$ Without danger of confusion, we write simply (.|.) for the inner product in any of H_{1}, \ldots, H_{n}. For $A_{j} \in \mathscr{L}\left(H_{j}, H_{j}\right)$ and $e_{j} \in H_{j}(j=1, \ldots, n)$, we define $A_{1} \otimes \ldots \otimes A_{n} \equiv\left[H_{1} \otimes \ldots \otimes H_{n} \ni\right.$ $\left.\ni F \mapsto F\left(A_{1} f_{1}, \ldots, A_{n} f_{n}\right)\right], e_{1} \otimes \ldots \otimes e_{n} \equiv\left[\left(f_{1}, \ldots, f_{n}\right) \mapsto\left(f_{1} \mid e_{1}\right) \ldots\left(f_{n} \mid e_{n}\right)\right]$ and $\delta_{0_{1}, \ldots, e_{n}} \equiv\left[F \mapsto F\left(e_{1}, \ldots, e_{n}\right)\right.$, respectively.

[^2]: ${ }^{2}$ Proof: Given $\varepsilon>0$, by (8), there are Z finite $\subset X, g \in 1_{z} f$ with $\|f-g\|<\varepsilon / 2$. Now $Z \subset Y_{1}, Y_{2}$ finite $\subset X$ implies $\| f-g| | \geqq\left|f-1_{z} f\right| \geqq w\left|\left(f-1_{z} f\right)\right| \geqq\left|w\left(1_{Y_{1} \cup Y_{2}} f-1_{y_{f}} f\right)\right|(j=1,2)$ i.e. by triangle inequality $\varepsilon \geqq\left\|w 1_{Y_{1}} f-w 1_{Y_{2}} f\right\|$. Thus $\left\{w 1_{Y} f\right\}_{Y \text { fintio }}$ is a Cauchy net in E. Hence for some $h \in E^{2}$, $w 1_{Y} f \rightarrow h$. But $h(x)=\left\langle h, 1_{x}^{*}\right\rangle=\lim _{Y}\left\langle w 1_{y} f, 1_{x}\right\rangle=w(x) f(x) \forall x$.
 ${ }^{5}$ In the same way as in [11, Lemma], one can see that if a linear vector field ℓ on Banach space F belongs to $\log ^{*}$ Aut $B(F)$ then $\operatorname{Re}\langle\ell(f), \Phi\rangle=0 \Leftarrow\langle f, \Phi\rangle=\|f\|\|\Phi\| \quad \forall f \in F, \Phi \in F^{*}$.

 Proof: Since ℓ is tangent to $\partial B(F)$, we have $\ell(f) \in(H-f)$ whenever $\|f\|=1$ and H is a real hyperplane in F supporting $B(f)$ at f. But the general form of such a supporting hyperplane is $H=\{h \in F: \operatorname{Re}\langle h, \Phi\rangle=1\}$ where $\Phi \in F^{*}$ with $\|\Phi\|=\langle f, \Phi\rangle=1$.

