A note on hereditary radicals

EDMUND R. PUCZYŁOWSKI

To denote that I is an ideal (left ideal) of a ring A we will write $I \triangleleft A$ ($I \triangleleft A$).

Lemma 1. If A is an S-radical ring and for some integer n, $A^{n+2}=0$ then $A^{n+1} \in S$.

Proof. It is easy to see that for any $a \in A^n$ the mapping $f_a: A \to A^{n+1}$ defined by $f_a(x) = ax$ is a ring homomorphism. But $f_a(A) = aA \triangleleft A^{n+1}$. Thus $aA \in S$ and $A^{n+1} = \sum_{a \in A^n} aA \in S$.

Proposition 1. If S is a radical such that any zero-S-ring is in \overline{S} then $\overline{S}=h_s$.

Proof. Let $J \triangleleft I \triangleleft A$. If J^* is the ideal of A generated by J and $A \in \overline{S}$ then J^* and $(J^*)^3$ are in S. Thus by Lemma 1 $(J^*)^2 \in S$. Now the assumption implies $J + (J^*)^2 \in S$. Since, by Andrunakievich lemma, $(J^*)^3 \subseteq J$, similarly, we obtain that $J \cap (J^*)^2 \in S$. This and the fact that $(J + (J^*)^2)/(J^*)^2 \approx J/((J^*)^2 \cap J)$ implies $J \in S$. Thus if $A \in \overline{S}$ then $A \in \overline{S}$, so $\overline{S} = \overline{S} = h_S$.

Of course for any radical S the radical \overline{S} satisfies the assumption of Proposition 1, so we have

Received July 22, 1980, and in revised form, May 5, 1981.

Corollary 1. For any radical S, $h_s = \overline{S}$.

Remark. It is easy to check ([1]) that for any radical S, $h_S = aS = \{A | \text{ every accessible subring of } A \text{ is in } S \}$. Thus, by Corollary 1, $aS = \overline{S}$ for any radical S.

Now we prove

Proposition 2. For any radical S, $lh_S = \tilde{S}$.

Proof. If K < L < A then LK < A and LK < K. Thus if $A \in \tilde{S}$ then $I = LK \in \tilde{S}$. Now if R < K then R + I < L and, since $A \in \tilde{S}$, $R + I \in S$. Also $R \cap I \in S$ as $R \cap I < I$ and $I \in \tilde{S}$. These and the fact that $(R+I)/I \approx R/(R \cap I)$ imply $R \in S$. Hence if $A \in \tilde{S}$ then $L \in \tilde{S}$, so the radical \tilde{S} is left hereditary. This and the fact that $lh_S \subseteq \tilde{S}$ ends the proof.

Example. Let Q be the field of rational numbers, Z the ring of integers and R the ring of all 2×2-matrices of the form $\begin{pmatrix} a, b \\ 0, 0 \end{pmatrix}$ where $a, b \in Q$. Then $I = \left\{ \begin{pmatrix} 0, b \\ 0, 0 \end{pmatrix} \middle| b \in Q \right\}$ is an ideal of R and $J = \left\{ \begin{pmatrix} 0, z \\ 0, 0 \end{pmatrix} \middle| z \in Z \right\}$ an ideal of I. Let S be the lower radical determined by $\{R, I\}$. Since R and I are divisible rings, all S-rings are divisible. Thus $J \notin S$ and $R \notin \overline{S}$. Since $R \in \overline{S}'$ and $\overline{S} \subseteq \overline{S}$ therefore $\overline{S} \neq \overline{S}$ and $\overline{S} \neq \overline{S}$.

The above example shows that generally $lh_S \neq \tilde{S}$. In the following proposition we will describe some radicals for which $lh_S = \tilde{S}$.

Proposition 3. For a radical S we have $lh_s = \tilde{S}$, provided a) S contains all zero-rings, or b) L < A and $A \in S$ imply L = AL.

Proof. Let $A \in \tilde{S}$ and K < L < A. Since LK < A, we have $LK \in S$. But LK < Kand $(K/LK)^2 = 0$, so if S satisfies a) then $K \in S$. If S satisfies b) then $K = LK \in S$ as K < L and $L \in S$. Thus in both cases $K \in S$. In consequence $L \in \tilde{S}$ and \tilde{S} is left hereditary. Hence $lh_S = \tilde{S}$.

Now we will show that there exist non-hereditary radicals satisfying condition b) of the proposition above. Let us define for any class M of rings the class $M_1 = \{A \in M | \text{ if } L < A \text{ then } AL = L\}$. We have

Proposition 4. If a class S is radical then so is S_1 .

Proof. Certainly the class S_1 is homomorphically closed and any ring which is the sum of a chain of S_1 -ideals is in S_1 . So it suffices to prove that if $I \lhd A$ and I, A/I are in S_1 then A is in S_1 . Let $L \lhd A$. Then $I(L \cap I) = L \cap I$. Also (A/I)((L+I)/I) = (L+I)/I, so AL+I=L+I. Thus if $l \in L$ then l=m+i for some $m \in AL$, $i \in I$. But since $AL \subseteq L$, $i \in L \cap I$. Thus the equality $I(L \cap I) = L \cap I$ implies $i \in AL$ and $l \in AL$. Hence L = AL and the result follows.

Corollary 2. Let S be the lower radical determined by a class M. If $M=M_1$ then $S=S_1$.

Proof. Since $M \subseteq S$ therefore $M = M_1 \subseteq S_1$. Now by Proposition 4, S_1 is a radical class containing M, so $S \subseteq S_1$.

Let $M = \{R\}$, where R is the ring of the Example. Then $M = M_1$ and by Corollary 2 the lower radical S determined by M satisfies condition b) of Proposition 3. It is easy to see that any non-zero S-ring contains a non-zero idempotent element. Thus S is not hereditary as R contains a non-zero nilpotent ideal.

References

- L. C. A. VAN LEEUWEN and R. WIEGANDT, Constructions and compositions of radical and semisimple classes, Ann. Univ. Sci. Budapest, 21 (1978), 65-75.
- [2] E. R. PUCZYŁOWSKI, Hereditariness of strong and stable radicals, Glasgow Math. J., 23 (1982), 85-90.
- [3] F. SZÁSZ and R. WIEGANDT, On hereditary radicals, Period. Math. Hungar., 3 (1973), 235-241.
- [4] R. WIEGANDT, Radical and semisimple classes of rings, Queen's Papers in Pure and Applied Mathematics, No. 37 (Kingston, Ontario, 1974).

INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY, PKIN 00—901 WARSAW, POLAND