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A note on hereditary radicals

EDMUND R. PUCZYLOWSKI

All rings in this paper are associative. Fundamental definitions and properties
of radicals may be found in [4]. It is known ([3]) that to any radical S there exist
a unique maximal hereditary radical hg and a unique maximal left hereditary radical
Ihg contained in S. Of course hsC S={A| any ideal of 4 is in S} and /hsCS §={4|
any left ideal of A4 is in S}. It is easy to see that S and S are radicals and S is here-
ditary (left hereditary) if and only if S=35(S=35). The radicals § and § were in-
troduced in [2] to 1nvest1gate hereditariness of strong and similar radlcals Obviously

hsS SCS 8§ and IhsS Sc C §. Inthe note we prove that hs==S and lhg= S and that there
exists a radical S such that hs=8 and Ihs=S.
To denote that 7 is an ideal (left ideal) of a ring 4 we will write J<a4 (I<A).

Lemma 1. If A is an S-radical ring and for some integer n, A"**=0 then
A S.

Proof. It is easy to see that for any a€A4" the mapping f,: A—~A"*! defined
by f,(x)=ax is a ring homomorphism. But f,(4)=ad<14"*'. Thus ad€S and
A"tl= 3 ade€S.

acAar

Proposition 1. If S is a radical such that any zero-S-ring is in S then S=h.

Proof. Let J<l<aA. If J* is the ideal of 4 generated by J and A€S then
J* and (J*)® are in S. Thus by Lemma 1 (J*)*¢S. Now the assumption implies
J+(J*)%€S. Since, by Andrunakievich lemma, (J*)*CJ, similarly, we obtain that
JN(*2eS. This and the fact that (J+(J*)?2)/(J*2~J/((J*)?NJ) implies JES.
Thus if A¢S then A4¢€S, so S=S=hs.

Of course for any radical S the radical S satisfies the assumption of Proposition
1, so we have
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Corollary 1. For any radical S, hs=S

Remark. It is easy to check ({1]) that for any radical S, hs=aS={4| every
accessible subring of 4 is in S}. Thus, by Corollary 1, aS=S8 for any radical S.
Now we prove

Proposition 2. For any radical S, Ihs=S:.

Proof. If K<L<A then LK<A and LK<K. Thus if A¢S then I=LKeS.

Now if R<K then R+I<L and, since A€§ R+IeS. Also RNIES as RNI<]
and I€8. These and the fact that (R+D/I=R/(RNI) imply ReS. Hence if

AES then LES so the radical § is left hereditary. This and the fact that thQS
ends the proof.

Example. Let Q be the field of rational numbers, Z the ring of integers and R

, b 0,b
0 0) where a, b€ Q. Then I= {(O, OJleQ}

is an ideal of Rand J= {[0 O)I z€Z } an ideal of 1. Let .S be the lower radical deter-

the ring of all 2 X 2-matrices of the form [

mined by {R,I}. Since R and I are divisible rings, all S-rmgs are divisible. Thus
J¢S and R¢S. Since ReS and SCS therefore §»S and §=38.

The above example shows that generally Ihg=S. In the following proposition
we will describe some radicals for which Ihg=S.

Proposition 3. For a radical S we have lhs=S, provided a) S contains all
zero-rings, or b) L<A and A€S imply L=AL.

Proof. Let A¢S and K<L<4. Since LK<A, we have LK¢S. But LK<k
and (K/LK)*=0, so if S satisfies a) then K€S. If S satisfies b) then K=LK¢cS
as K<L and L€S. Thus in both cases K€S. In consequence L€S and-Sis left
hereditary. Hence lhs=S.

Now we will show that there exist non-hereditary radicals satisfying condition
b) of the proposition above. Let us define for any class M of rings the class M, =
{AeM| if L<A then AL=L}. We have

Proposition 4. If a class S is radical then so is S;.

Proof. Certainly the class S, is homomorphically closed and any ring which
is the sum of a chain of §;-ideals is in S;. So it suffices to prove that if I<a4 and
LA/l are in S; then 4 is in S;. Let L<A. Then I(LNI)=LNI. Also
A/ (L+D/N)=(L+D)I, so AL+I=L+I. Thus if lcL then I=m+i for some
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meAL, icl. But since ALCSL, icLNI Thus the equality I(LNI)=LNI
implies i€AL and l€AL. Hence L=AL and the result follows.

Corollary 2. Let S be the lower radical determined by a class M. If M=M,
then S=S,.

Proof. Since MS S therefore M=M,<S S,. Now by Proposition 4, S, is a
* radical class containing M, so SESS,.

Let M={R}, where R is the ring of the Example. Then M =M, and by Corol-
lary 2 the lower radical S determined by M satisfies condition b) of Proposition 3.
It is easy to see that any non-zero S-ring contains a non-zero idempotent element.
Thus S is not hereditary as R contains a non-zero nilpotent ideal.
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