A note on hereditary radicals

EDMUND R. PUCZYłOWSKI

All rings in this paper are associative. Fundamental definitions and properties of radicals may be found in [4]. It is known ([3]) that to any radical S there exist a unique maximal hereditary radical h_{S} and a unique maximal left hereditary radical $l h_{S}$ contained in S. Of course $h_{S} \subseteq \bar{S}=\{A \mid$ any ideal of A is in $S\}$ and $l h_{S} \subseteq \tilde{S}=\{A \mid$ any left ideal of A is in $S\}$. It is easy to see that \bar{S} and \tilde{S} are radicals and S is hereditary (left hereditary) if and only if $S=\bar{S}(S=\tilde{S})$. The radicals \bar{S} and \tilde{S} were introduced in [2] to investigate hereditariness of strong and similar radicals. Obviously $h_{S} \subseteq \bar{S} \subseteq \bar{S}$ and $l h_{S} \subseteq \tilde{\tilde{S}} \subseteq \tilde{S}$. In the note we prove that $h_{S}=\bar{S}$ and $l h_{S}=\tilde{\tilde{S}}$, and that there exists a radical S such that $h_{s} \neq \bar{S}$ and $l h_{S} \neq \tilde{S}$.

To denote that I is an ideal (left ideal) of a ring A we will write $I \triangleleft A(I<A)$.
Lemma 1. If A is an S-radical ring and for some integer $n, A^{n+2}=0$ then $A^{n+1} \in S$.

Proof. It is easy to see that for any $a \in A^{n}$ the mapping $f_{a}: A \rightarrow A^{n+1}$ defined by $f_{a}(x)=a x$ is a ring homomorphism. But $f_{a}(A)=a A \triangleleft A^{n+1}$. Thus $a A \in S$ and $A^{n+1}=\sum_{a \in A^{n}} a A \in S$.

Proposition 1. If S is a radical such that any zero-S-ring is in \bar{S} then $\bar{S}=h_{S}$.
Proof. Let $J \triangleleft I \triangleleft A$. If J^{*} is the ideal of A generated by J and $A \in \bar{S}$ then J^{*} and $\left(J^{*}\right)^{3}$ are in S. Thus by Lemma $1\left(J^{*}\right)^{2} \in S$. Now the assumption implies $J+\left(J^{*}\right)^{2} \in S$. Since, by Andrunakievich lemma, $\left(J^{*}\right)^{3} \cong J$, similarly, we obtain that $J \cap\left(J^{*}\right)^{2} \in S$. This and the fact that $\left(J+\left(J^{*}\right)^{2}\right) /\left(J^{*}\right)^{2} \approx J /\left(\left(J^{*}\right)^{2} \cap J\right)$ implies $J \in S$. Thus if $A \in \bar{S}$ then $A \in \bar{S}$, so $\bar{S}=\bar{S}=h_{S}$.

Of course for any radical S the radical \bar{S} satisfies the assumption of Proposition 1, so we have

[^0]Corollary 1. For any radical $S, h_{S}=\bar{S}$.
Remark. It is easy to check ([1]) that for any radical $S, h_{S}=a S=\{A \mid$ every accessible subring of A is in $S\}$. Thus, by Corollary 1 , $a S=\bar{S}$ for any radical S.

Now we prove
Proposition 2. For any radical $S, l h_{S}=\tilde{\tilde{S}}$.
Proof. If $K<L<A$ then $L K<A$ and $L K \triangleleft K$. Thus if $A \in \tilde{\tilde{S}}$ then $I=L K \in \tilde{S}$. Now if $R<K$ then $R+I<L$ and, since $A \in \tilde{\tilde{S}}, R+I \in S$. Also $R \cap I \in S$ as $R \cap I<I$ and $I \in \tilde{S}$. These and the fact that $(R+I) / I \approx R /(R \cap I)$ imply $R \in S$. Hence if $A \in \tilde{\tilde{S}}$ then $L \in \tilde{\tilde{S}}$, so the radical $\tilde{\tilde{S}}$ is left hereditary. This and the fact that $l h_{s} \subseteq \tilde{\tilde{S}}$ ends the proof.

Example. Let Q be the field of rational numbers, Z the ring of integers and R the ring of all 2×2-matrices of the form $\binom{a, b}{0,0}$ where $a, b \in Q$. Then $I=\left\{\left.\binom{0, b}{0} \right\rvert\,, b \in Q\right\}$ is an ideal of R and $J=\left\{\left.\binom{0, z}{0,0} \right\rvert\, z \in Z\right\}$ an ideal of I. Let S be the lower radical determined by $\{R, I\}$. Since R and I are divisible rings, all S-rings are divisible. Thus $J \notin S$ and $R \notin \bar{S}$. Since $R \in \tilde{S}^{\prime}$ and $\tilde{S} \subseteq \bar{S}$ therefore $\tilde{S} \neq \tilde{\tilde{S}}$ and $\bar{S} \neq \bar{S}$.

The above example shows that generally $l h_{s} \neq \tilde{S}$. In the following proposition we will describe some radicals for which $l h_{S}=\tilde{S}$.

Proposition 3. For a radical S we have $l h_{S}=\tilde{S}$, provided a) S contains all zero-rings, or b) $L<A$ and $A \in S$ imply $L=A L$.

Proof. Let $A \in \tilde{S}$ and $K<L<A$. Since $L K<A$, we have $L K \in S$. But $L K \triangleleft K$ and $(K / L K)^{2}=0$, so if S satisfies a) then $K \in S$. If S satisfies b) then $K=L K \in S$ as $K<L$ and $L \in S$. Thus in both cases $K \in S$. In consequence $L \in \tilde{S}$ and \tilde{S} is left hereditary. Hence $l h_{S}=\tilde{S}$.

Now we will show that there exist non-hereditary radicals satisfying condition b) of the proposition above. Let us define for any class M of rings the class $M_{1}=$ $\{A \in M \mid$ if $L<A$ then $A L=L\}$. We have

Proposition 4. If a class S is radical then so is S_{1}.
Proof. Certainly the class S_{1} is homomorphically closed and any ring which is the sum of a chain of S_{1}-ideals is in S_{1}. So it suffices to prove that if $1 \triangleleft A$ and $I, A / I$ are in S_{1} then A is in S_{1}. Let $L<A$. Then $I(L \cap I)=L \cap I$. Also $(A / I)((L+I) / I)=(L+I) / I$, so $A L+I=L+I$. Thus if $l \in L$ then $l=m+i$ for some
$m \in A L, i \in I$. But since $A L \subseteq L, \quad i \in L \cap I$. Thus the equality $I(L \cap I)=L \cap I$ implies $i \in A L$ and $l \in A L$. Hence $L=A L$ and the result follows.

Corollary 2. Let S be the lower radical determined by a class M. If $M=M_{1}$ then $S=S_{1}$.

Proof. Since $M \subseteq S$ therefore $M=M_{1} \subseteq S_{1}$. Now by Proposition 4, S_{1} is a radical class containing M, so $S \subseteq S_{1}$.

Let $M=\{R\}$, where R is the ring of the Example. Then $M=M_{1}$ and by Corollary 2 the lower radical S determined by M satisfies condition b) of Proposition 3. It is easy to see that any non-zero S-ring contains a non-zero idempotent element. Thus S is not hereditary as R contains a non-zero nilpotent ideal.

References

[I] L. C. A. van Leeuwen and R. Wiegandt, Constructions and compositions of radical and semisimple classes, Ann. Univ. Sci. Budapest, 21 (1978), 65-75.
[2] E. R. Puczytowski, Hereditariness of strong and stable radicals, Glasgow Math. J., 23 (1982), 85-90.
[3] F. Szász and R. Wiegandt, On hereditary radicals, Period. Math. Hungar., 3 (1973), 235-241.
[4] R. Wiegandt, Radical and semisimple classes of rings, Queen's Papers in Pure and Applied Mathematics, No. 37 (Kingston, Ontario, 1974).

[^0]: Received July 22, 1980, and in revised form, May 5, 1981.

