Approximate decompositions of certain contractions

PEI YUAN WU

In this paper we obtain an approximate decomposition for contractions the outer factors of whose characteristic functions admit scalar multiples. We show that such a contraction is quasi-similar to the direct sum of its $C_{.1}$ and $C_{.0}$ parts. This class of operators includes, among other things, weak contractions and C_{1}. contractions with at least one defect index finite. In particular, our result generalizes the $C_{0}-C_{11}$ decomposition for weak contractions. Applying this to C_{1}. contractions, we obtain that any C_{1}. contraction with at least one defect index finite is completely injection-similar to an isometry. As consequences, we are able to characterize, among C_{1}. contractions, those which are cyclic, have commutative commutants or satisfy the double commutant property.

In Section 1 below we first fix the notation and review some basic facts needed in the subsequent discussions. Then in Section 2 we prove the approximate decomposition and some of its consequences. In Section 3 we restrict ourselves to C_{1}. contractions.

1. Preliminaries. In this paper all the operators are acting on complex, separable Hilbert spaces. We will use extensively the contraction theory of Sz.-NAGY and Foraş. The main reference is their book [8].

Let T be a contraction on the Hilbert space H. Denote by $\mathfrak{D}_{T}=\overline{\operatorname{ran}\left(I-T^{*} T\right)^{1 / 2}}$ and $\mathfrak{D}_{T^{*}}=\overline{\operatorname{ran}\left(I-T T^{*}\right)^{1 / 2}}$ the defect spaces and $d_{T}=\operatorname{rank}\left(I-T^{*} T\right)^{1 / 2}$ and $d_{T^{*}}=$ $=$ rank $\left(I-T T^{*}\right)^{1 / 2}$ the defect indices of $T . T$ is completely non-unitary (c.n.u.) if there exists no non-trivial reducing subspace on which T is unitary. T is of class C_{1}. (resp. C..$_{1}$) if $T^{n} x \rightarrow 0$ (resp. $T^{* n} x \rightarrow 0$) for any $x \neq 0 ; T$ is of class C_{0}. (resp. $C_{.0}$) if $T^{n} x \rightarrow 0\left(\right.$ resp. $T^{* n} x \rightarrow 0$) for any $x . C_{\alpha \beta}=C_{\alpha} . \cap C_{. \beta}$ for $\alpha, \beta=0,1$. Let $T=$ $=\left[\begin{array}{cc}T_{1} & X \\ 0 & T_{2}\end{array}\right]$ be the canonical triangulation of type $\left[\begin{array}{ll}C_{\cdot 1} & * \\ 0 & C_{\cdot 0}\end{array}\right]$ on $H=H_{1} \oplus H_{2}$. If T is c.n.u., then this triangulation corresponds to the canonical factorization $\Theta_{T}=$

[^0]$=\Theta_{2} \Theta_{1}$ of the characteristic function $\left\{\mathcal{D}_{T}, \mathfrak{D}_{T^{*}}, \Theta_{T}(\lambda)\right\}$ of T, where $\left\{\mathfrak{D}_{T}, \mathscr{y}\right.$, $\left.\Theta_{1}(\lambda)\right\}$ and $\left\{\mathfrak{F}, \mathcal{D}_{T *}, \Theta_{2}(\lambda)\right\}$ are the outer and inner factors of Θ_{T}, respectively. Moreover, the characteristic functions of T_{1} and T_{2} are the purely contractive parts of Θ_{1} and Θ_{2}, respectively. For c.n.u. T, we will consider its functional model, that is, consider T being defined on the space $H=\left[H^{2}\left(\mathcal{D}_{T^{*}}\right) \oplus \overline{\Delta_{T} L^{2}\left(\mathcal{D}_{T}\right)}\right] \ominus\left\{\Theta_{T} w \oplus \Delta_{T} w\right.$: $\left.w \in H^{2}\left(\mathcal{D}_{\mathrm{T}}\right)\right\}$ by $T(f \oplus g)=P\left(e^{i t} f \oplus e^{i t} g\right)$, where $\Delta_{T}=\left(I-\Theta_{T}^{*} \Theta_{T}\right)^{1 / 2}$ and P denotes the (orthogonal) projection onto H. Then H_{1} and H_{2} can be represented as
$$
H_{1}=\left\{\Theta_{2} u \oplus v: u \in H^{2}(\mathfrak{F}), v \in \overline{\Delta_{T} L^{2}\left(\mathcal{D}_{T}\right)}\right\} \ominus\left\{\Theta_{T} w \oplus \Delta_{T} w: w \in H^{2}\left(\mathcal{D}_{T}\right)\right\}
$$
and
$$
H_{2}=\left[H^{2}\left(\mathfrak{D}_{T^{*}}\right) \ominus \Theta_{2} H^{2}(\mathfrak{F})\right] \oplus\{0\} .
$$

A contractive analytic function $\left\{\mathcal{D}, \mathfrak{D}_{*}, \Theta(\lambda)\right\}$ is said to admit the scalar multiple $\delta(\lambda)$ if $\delta(\lambda) \not \equiv 0$ is a scalar-valued analytic function and there exists a contractive analytic function $\left\{\mathcal{D}_{*}, \mathcal{D}, \Omega(\lambda)\right\}$ such that $\Omega(\lambda) \Theta(\lambda)=\delta(\lambda) I_{\mathfrak{D}}$ and $\Theta(\lambda) \Omega(\lambda)=$ $=\delta(\lambda) I_{D_{*}}$ for all λ in $D=\{\lambda:|\lambda|<1\}$.

For an arbitrary operator T on H, let $\{T\}^{\prime},\{T\}^{\prime \prime}$ and Alg T denote its commutant, double commutant and the weakly closed algebra generated by T and I. Let Lat T, Lat " T and Hyperlat T denote the lattices of invariant subspaces, bi-invariant subspaces and hyperinvariant subspaces of T, respectively. Let μ_{T} denote the multiplicity of T, that is, the least cardinal number of a subset K of H for which $H=$ $=\bigvee_{n \leqq 0} T^{n} K . T$ is cyclic if $\mu_{T}=1$. For operators T_{1} and T_{2} on H_{1} and H_{2}, respectively, $T_{1} \stackrel{\mathrm{i}}{\prec} T_{2}$ (resp. $T_{1} \prec T_{2}$) denotes that there exists an injection $X: H_{1} \rightarrow H_{2}$ (resp. an injection $X: H_{1} \rightarrow H_{2}$ with dense range, called quasi-affinity) such that $T_{2} X=X T_{1}$. $T_{1} \prec T_{2}$ denotes that there exists a family $\left\{X_{\alpha}\right\}$ of injections $X_{\alpha}: H_{1} \rightarrow H_{2}$ such that $H_{2}=V_{\alpha} X_{\alpha} H_{1}$ and $T_{2} X_{\alpha}=X_{\alpha} T_{1}$ for each $\alpha . T_{1}$ and T_{i} are quasi-similar $\left(T_{1} \sim T_{i}\right)$ if $T_{1} \prec T_{2}$ and $T_{2} \prec T_{1}$; they are injection-similar $\left(T_{1} \sim T_{2}\right)$ if $T_{1} \prec T_{2}$ and $T_{2} \prec T_{1}$; they are completely injection-similar $\left(T_{1} \stackrel{\mathrm{ci}}{\sim} T_{2}\right)$ if $T_{1} \stackrel{\text { ci }}{\prec} T_{2}$ and $T_{2} \stackrel{\text { ci }}{\prec} T_{1}$. Note that $T_{1} \prec T_{2}$ implies that $\mu_{T_{1}} \geqq \mu_{T_{2}}$.
2. Approximate decomposition. We start with the following major result.

Theorem 2.1. Let T be a contraction on H and let $T=\left[\begin{array}{ll}T_{1} & X \\ 0 & T_{2}\end{array}\right]$ on $H=H_{1} \oplus H_{2}$ be the canonical triangulation of type $\left[\begin{array}{ll}C_{.1} & * \\ 0 & C_{.0}\end{array}\right]$. If the characteristic function of T_{1} admits a scalar multiple, then $T \sim T_{1} \oplus T_{2}$. Moreover, if T is c.n.u., then there exist quasi-affinities $Y: H \rightarrow H_{1} \oplus H_{2}$ and $Z: H_{1} \oplus H_{2} \rightarrow H$ which intertwine T and $T_{1} \oplus T_{2}$ and such that $Y Z=\delta\left(T_{1} \oplus T_{2}\right)$ and $Z Y=\delta(T)$ for some outer function δ.

Proof. Let $T=U \oplus T^{\prime}$ be decomposed as the direct sum of a unitary operator U and a c.n.u. contraction T^{\prime}. Let $T^{\prime}=\left[\begin{array}{ll}T_{1}^{\prime} & * \\ 0 & T_{2}^{\prime}\end{array}\right]$ be of type $\left[\begin{array}{ll}C_{.1} & * \\ 0 & C_{.0}\end{array}\right]$. Then

$$
T=\left[\begin{array}{ccc}
U & 0 & 0 \\
0 & T_{1}^{\prime} & * \\
0 & 0 & T_{2}^{\prime}
\end{array}\right]
$$

where $\left[\begin{array}{ll}U & 0 \\ 0 & T_{1}^{\prime}\end{array}\right]$ is of class $C_{.1}$ and T_{2}^{\prime} is of class $C_{.0}$. Hence by the uniqueness of the canonical triangulation, we have $T_{1}=U \oplus T_{1}^{\prime}$ and $T_{2}=T_{2}^{\prime}$ (cf. [8], p. 73). Note that the characteristic functions of T_{1} and T_{1}^{\prime} coincide. Therefore the characteristic function of T_{1}^{\prime} also admits a scalar multiple. If we can show that $T^{\prime} \sim T_{1}^{\prime} \oplus T_{2}^{\prime}$, then $T=$ $=U \oplus T^{\prime} \sim U \oplus T_{1}^{\prime} \oplus T_{2}^{\prime}=T_{1} \oplus T_{2}$. Hence without loss of generality, we may assume that T is c.n.u. As remarked before, we can consider the functional model of T. Let δ be an outer scalar multiple of Θ_{1} (cf. [8], p. 217) and let $\left\{\mathscr{F}, \mathfrak{D}_{T}, \Omega(\lambda)\right\}$ be a contractive analytic function such that $\Omega \Theta_{1}=\delta I_{\mathcal{D}_{r}}$ and $\Theta_{1} \Omega=\delta I_{\mathfrak{F}}$. Define the operator S : $H_{2} \rightarrow H_{1} \quad$ by $\quad S(u \oplus 0)=P\left(0 \oplus\left(-\Delta_{T} \Omega \Theta_{2}^{*} u\right)\right)$ for $u \oplus 0 \in H_{2}$. Note that $0 \oplus\left(-\Delta_{T} \Omega \Theta_{2}^{*} u\right)$ is orthogonal to H_{2} and therefore $P\left(0 \oplus\left(-\Delta_{T} \Omega \Theta_{2}^{*} u\right)\right)$ is indeed in H_{1}.

We first check that $T_{1} S-S T_{2}=\delta\left(T_{1}\right) X$. Note that for $u \oplus 0 \in H_{2}$, we have

$$
\begin{gathered}
T_{2}(u \oplus 0)=\left(e^{i t} u \oplus 0\right)-\left(\Theta_{T} w \oplus \Delta_{T} w\right)-\left(\Theta_{2} u^{\prime} \oplus v^{\prime}\right)= \\
=\left(e^{i t} u-\Theta_{T} w-\Theta_{2} u^{\prime}\right) \oplus\left(-\Delta_{T} w-v^{\prime}\right)=\left(e^{i t} u-\Theta_{T} w-\Theta_{2} u^{\prime}\right) \oplus 0
\end{gathered}
$$

for some $w \in H^{2}\left(\mathfrak{D}_{T}\right)$ and $\Theta_{2} u^{\prime} \oplus v^{\prime} \in H_{1}$, where the last equality follows from the fact that $T_{2}(u \oplus 0) \in H_{2}$. Moreover, $X(u \oplus 0)=\Theta_{2} u^{\prime} \oplus v^{\prime}$. Hence

$$
\begin{aligned}
& \quad\left(T_{1} S-S T_{2}\right)(u \oplus 0)= \\
& =T_{1} P\left(0 \oplus\left(-\Delta_{T} \Omega \Theta_{2}^{*} u\right)\right)-S\left(\left(e^{i t} u-\Theta_{T} w-\Theta_{2} u^{\prime}\right) \oplus 0\right)= \\
& =P\left(0 \oplus\left(-e^{i t} \Delta_{T} \Omega \Theta_{2}^{*} u\right)\right)-P\left(0 \oplus\left(-\Delta_{T} \Omega \Theta_{2}^{*}\left(e^{i t} u-\Theta_{T} w-\Theta_{2} u^{\prime}\right)\right)\right)= \\
& =P\left(0 \oplus\left(-\Delta_{T} \Omega \Theta_{2}^{*} \Theta_{T} w-\Delta_{T} \Omega \Theta_{2}^{*} \Theta_{2} u^{\prime}\right)\right)=P\left(0 \oplus\left(-\Delta_{T} \delta w-\Delta_{T} \Omega u^{\prime}\right)\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\delta\left(T_{1}\right) X(u \oplus 0) & =\delta\left(T_{1}\right)\left(\Theta_{2} u^{\prime} \oplus v^{\prime}\right)=P\left(\delta \Theta_{2} u^{\prime} \oplus \delta v^{\prime}\right)=P\left(\Theta_{T} \Omega u^{\prime} \oplus \delta v^{\prime}\right)= \\
& =P\left(0 \oplus\left(\delta v^{\prime}-\Delta_{T} \Omega u^{\prime}\right)\right)
\end{aligned}
$$

Since $-\Delta_{T} w-v^{\prime}=0$, we obtain that $T_{1} S-S T_{2}=\delta\left(T_{1}\right) X$ as asserted.
Let $\quad Y=\left[\begin{array}{lr}\delta\left(T_{1}\right) & S \\ 0 & I\end{array}\right]: H \rightarrow H_{1} \oplus H_{2} \quad$ and $\quad Z=\left[\begin{array}{l}I \\ I \\ 0\end{array} \delta-S\left(T_{2}\right)\right]: H_{1} \oplus H_{2} \rightarrow H$, where V is the operator which appears in the triangulation of $\delta(T)$ with respect to $H_{1} \oplus H_{2}$:
$\delta(T)=\left[\begin{array}{ll}\delta\left(T_{1}\right) V \\ 0 & \delta\left(T_{2}\right)\end{array}\right]$. We complete the proof in several steps. In each step the first statement is proved.
(i) $Y T=\left(T_{1} \oplus T_{2}\right) Y$.

$$
\begin{aligned}
\boldsymbol{Y T} & =\left[\begin{array}{cc}
\delta\left(T_{1}\right) & S \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
T_{1} & X \\
0 & T_{2}
\end{array}\right]=\left[\begin{array}{cc}
\delta\left(T_{1}\right) T_{1} & \delta\left(T_{3}\right) X+S T_{2} \\
0 & T_{2}
\end{array}\right]= \\
& =\left[\begin{array}{cc}
T_{1} \delta\left(T_{1}\right) & T_{1} S \\
0 & T_{2}
\end{array}\right]=\left[\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right]\left[\begin{array}{ll}
\delta\left(T_{1}\right) & S \\
0 & I
\end{array}\right]=\left(T_{1} \oplus T_{2}\right) Y .
\end{aligned}
$$

(ii) $Z\left(T_{1} \oplus T_{2}\right)=T Z$. Since

$$
\begin{aligned}
\delta(T) T & =\left[\begin{array}{cc}
\delta\left(T_{1}\right) & V \\
0 & \delta\left(T_{2}\right)
\end{array}\right]\left[\begin{array}{cc}
T_{1} & X \\
0 & T_{2}
\end{array}\right]=\left[\begin{array}{cc}
\delta\left(T_{1}\right) T_{1} & \delta\left(T_{1}\right) X+V T_{2} \\
0 & \delta\left(T_{2}\right) T_{2}
\end{array}\right]= \\
& =T \delta(T)=\left[\begin{array}{cc}
T_{1} & X \\
0 & T_{2}
\end{array}\right]\left[\begin{array}{cc}
\delta\left(T_{1}\right) & V \\
0 & \delta\left(T_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
T_{1} \delta\left(T_{1}\right) & T_{1} V+X \delta\left(T_{2}\right) \\
0 & T_{2} \delta\left(T_{2}\right)
\end{array}\right]
\end{aligned}
$$

we have $\delta\left(T_{1}\right) X+V T_{2}=T_{1} V+X \delta\left(T_{2}\right)$. From $T_{1} S-S T_{2}=\delta\left(T_{1}\right) X$ we obtain that $T_{1} S-S T_{2}+V T_{2}=T_{1} V+X \delta\left(T_{2}\right)$. A simple computation using this relation shows that $Z\left(T_{1} \oplus T_{2}\right)=T Z$.
(iii) $Z Y=\delta(T)$.

$$
Z Y=\left[\begin{array}{ll}
I & V-S \\
0 & \delta\left(T_{2}\right)
\end{array}\right]\left[\begin{array}{cc}
\delta\left(T_{1}\right) & S \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
\delta\left(T_{1}\right) & S+V-S \\
0 & \delta\left(T_{2}\right)
\end{array}\right]=\delta(T)
$$

(iv) $Y Z=\delta\left(T_{1} \oplus T_{2}\right)$. Since

$$
Y Z=\left[\begin{array}{cc}
\delta\left(T_{1}\right) & S \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
I & V-S \\
0 & \delta\left(T_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
\delta\left(T_{1}\right) & \delta\left(T_{1}\right)(V-S)+S \delta\left(T_{2}\right) \\
0 & \delta\left(T_{2}\right)
\end{array}\right]
$$

to complete the proof, it suffices to show that $\delta\left(T_{1}\right)(V-S)+S \delta\left(T_{2}\right)=0$. Note that $Y T=\left(T_{1} \oplus T_{2}\right) Y$ implies that $Y \delta(T)=\delta\left(T_{1} \oplus T_{2}\right) Y$. But

$$
Y \delta(T)=\left[\begin{array}{cc}
\delta\left(T_{1}\right) & S \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
\delta\left(T_{1}\right) & V \\
0 & \delta\left(T_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
\delta\left(T_{1}\right)^{2} & \delta\left(T_{1}\right) V+S \delta\left(T_{2}\right) \\
0 & \delta\left(T_{2}\right)
\end{array}\right]
$$

and

$$
\delta\left(T_{1} \oplus T_{2}\right) Y=\left[\begin{array}{cc}
\delta\left(T_{1}\right) & 0 \\
0 & \delta\left(T_{2}\right)
\end{array}\right]\left[\begin{array}{cc}
\delta\left(T_{1}\right) & S \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
\delta\left(T_{1}\right)^{2} & \delta\left(T_{1}\right) S \\
0 & \delta\left(T_{2}\right)
\end{array}\right] .
$$

We conclude that $\delta\left(T_{1}\right) V+S \delta\left(T_{2}\right)=\delta\left(T_{1}\right) S$ as asserted.
(v) Y and Z are quasi-affinities. Since δ is outer, $\delta\left(T_{1}\right)$ and $\delta\left(T_{2}\right)$ are quasi-affinities (cf. [8], p. 118). It can be easily checked that Y and Z are also quasi-affinities.

It is interesting to contrast the preceding result with [14], Theorem 1, where the problem when T is similar to $T_{1} \oplus T_{2}$ was considered. Here we make a weaker
assumption to obtain a (necessarily) weaker conclusion. Indeed, the intertwining operators Y and Z constructed here are closely related to the invertible intertwining operator appearing in the proof of [14], Theorem 1.

Corollary 2.2. Let $T=\left[\begin{array}{cc}T_{1} & X \\ 0 & T_{2}\end{array}\right]$ be as in Theorem 2.1. Assume that T is c.n.u. Then Lat $T \cong \operatorname{Lat}\left(T_{1} \oplus T_{2}\right), \quad \operatorname{Lat}^{\prime \prime} T \cong \operatorname{Lat}^{\prime \prime}\left(T_{1} \oplus T_{2}\right)$ and Hyperlat $T \cong \mathrm{Hy}-$ perlat ($T_{1} \oplus T_{2}$).

Proof. Let Y and Z be the operators constructed in the proof of Theorem 2.1. For $K \in \operatorname{Lat} T$ and $L \in \operatorname{Lat}\left(T_{1} \oplus T_{2}\right)$, consider the mappings $K \rightarrow \overline{Y K}$ and $L \rightarrow \overline{Z L}$. It is easily checked that they are inverses to each other and preserve the lattice operations. Hence Lat $T \cong$ Lat $\left(T_{1} \oplus T_{2}\right)$. To complete the proof, it suffices to show that (i) $K \in \operatorname{Lat}^{\prime \prime} T$ implies that $\overline{Y K} \in \mathrm{Lat}^{\prime \prime}\left(T_{1} \oplus T_{2}\right)$ and (ii) $K \in$ Hyperlat T implies that $\overline{Y K} \in$ Hyperlat $\left(T_{1} \oplus T_{2}\right)$. Then by a symmetric argument we also obtain that $L \in$ \in Lat" $^{\prime \prime}\left(T_{1} \oplus T_{2}\right)$ and $L \in$ Hyperlat $\left(T_{1} \oplus T_{2}\right)$ imply that $\overline{Z L} \in \operatorname{Lat}^{\prime \prime} T$ and $\overline{Z L} \epsilon$ \in Hyperlat T, respectively.

To prove (i), let $S \in\left\{T_{1} \oplus T_{2}\right\}^{\prime \prime}$. We first check that $Z S Y \in\{T\}^{\prime \prime}$. Indeed, $Y V Z \in$ $\in\left\{T_{1} \oplus T_{2}\right\}^{\prime}$ for any $V \in\{T\}^{\prime}$. Hence $Z S Y V Z=Z Y V Z S=\delta(T) V Z S=V \delta(T) Z S=$ $=V Z \delta\left(T_{1} \oplus T_{2}\right) S=V Z S \delta\left(T_{1} \oplus T_{2}\right)=V Z S Y Z$. It follows that $Z S Y V=V Z S Y$, and therefore $Z S Y \in\{T\}^{\prime \prime}$ as asserted. Since $K \in \operatorname{Lat}^{\prime \prime} T$, we have $\overline{Z S Y K} \subseteq K$. Hence $\overline{Y Z S Y K} \subseteq \overline{Y K}$. But $\overline{Y Z S Y K}=\overline{\delta\left(T_{1} \oplus T_{2}\right) S Y K}=\overline{S Y \delta(T) K}=\overline{S Y K}$. We conclude that $\overline{S Y K} \subseteq \overline{Y K}$ which shows that $\overline{Y K} \in \operatorname{Lat}^{\prime \prime}\left(T_{1} \oplus T_{2}\right)$. An analogous but easier argument than above shows that (ii) is also true. This completes the proof.

Corollary 2.3. Let $T=\left[\begin{array}{cc}T_{1} & X \\ 0 & T_{2}\end{array}\right]$ be as in Theorem 2.1. Then there exist biinvariant subspaces K_{1} and K_{2} of T such that $K_{1} \vee K_{2}=H, K_{1} \cap K_{2}=\{0\}, T \mid K_{1}$ is of class C_{11} and $T \mid K_{2}$ is of class $C_{.0}$. Moreover, K_{1} and K_{2} can be chosen such that $K_{1}=H_{1}$ and $T \mid K_{2} \sim T_{2}$.

Proof. As in the proof of Theorem 2.1, we may assume that T is c.n.u. Let Y and Z be the operators constructed there, and let $K_{1}=\overline{Z\left(H_{1} \oplus 0\right)}$ and $K_{2}=\overline{Z\left(0 \oplus H_{2}\right)}$. Then $K_{1}, K_{2} \in \mathrm{Lat}{ }^{\prime \prime} T, K_{1} \vee K_{2}=H$ and $K_{1} \cap K_{2}=\{0\}$ by Corollary 2.2. From the definition of Z, it is easily seen that $K_{1}=H_{1}$. On the other hand, since $Z \mid 0 \oplus H_{2}$: $0 \oplus H_{2} \rightarrow K_{2}$ and $Y \mid K_{2}: K_{2} \rightarrow 0 \oplus H_{2}$ are quasi-affinities which intertwine $0 \oplus T_{2}$ and $T \mid K_{2}$, we have $T \mid K_{2} \sim T_{2}$. Moreover, it is easy to check that in this case $T \mid K_{2}$ must also be of class $C_{.0}$, completing the proof.

We remark that if $T=\left[\begin{array}{cc}T_{1}^{\prime} & X^{\prime} \\ 0 & T_{2}^{\prime}\end{array}\right]$ is the type $\left[\begin{array}{ll}C_{0} & * \\ 0 & C_{1}\end{array}\right]$ canonical triangulation of the contraction T and if the characteristic function of T_{2}^{\prime} admits a scalar multiple, then, by considering T^{*}, we obtain results analogous to Theorem 2.1 and Corol-
laries 2.2. and 2.3. Also note that weak contractions and C_{1}. contractions with $d_{T}<\infty$ (cf. Lemma 3.2. below) are among the operators satisfying the assumption of Theorem 2.1. When applied to weak contractions, Theorem 2.1 yields the following result which has been obtained before in [15].

Corollary 2.4. Let T be a c.n.u. weak contraction and let T_{1} and T_{1}^{\prime} be its C_{11} and C_{0} parts. Then $T_{1} \sim T \oplus T_{1}^{\prime}$.

Proof. Let $T=\left[\begin{array}{cc}T_{1} & X \\ 0 & T_{2}\end{array}\right]$ and $T=\left[\begin{array}{cc}T_{1}^{\prime} & X \\ 0 & T_{2}^{\prime}\end{array}\right]$ be the triangulations of types $\left[\begin{array}{ll}C_{\cdot 1} & * \\ 0 & C_{\cdot 0}\end{array}\right]$ and $\left[\begin{array}{ll}C_{0} & * \\ 0 & C_{1} .\end{array}\right]$, respectively. Since the characteristic functions of T_{1} and T_{2}^{\prime} admit scalar multiples (cf. [8], p. 325 and p. 217), by Theorem 2.1 and the remark above we have $T_{1} \oplus T_{2} \sim T \sim T_{1}^{\prime} \oplus T_{2}^{\prime}$. Note that T_{1} and T_{2}^{\prime} are of class C_{11} and T_{2} and T_{1}^{\prime} are of class C_{0}, it is routine to check that $T_{1} \sim T_{2}^{\prime}$ and $T_{2} \sim T_{1}^{\prime}$ (cf. proof of [15], Theorem 1). Hence $T \sim T_{1} \oplus T_{1}^{\prime}$ as asserted.

Note that Corollary 2.2. generalizes the corresponding results for $\mathrm{Lat}^{\prime \prime} T$ and Hyperlat T when T is a c.n.u. weak contraction with finite defect indices (cf. [18], Corollary 4.2. and [17], Theorem 3). Indeed, in this case $\mathrm{Lat}^{\prime \prime} T \cong \mathrm{Lat}^{\prime \prime}\left(T_{1} \oplus T_{2}\right)=$ $\mathrm{Lat}^{\prime \prime} T_{1} \oplus \mathrm{Lat}^{\prime \prime} T_{2} \cong \mathrm{Lat}^{\prime \prime} T_{1} \oplus \mathrm{Lat}^{\prime \prime} T_{1}^{\prime}=\mathrm{Lat}^{\prime \prime}\left(T_{1} \oplus T_{1}^{\prime}\right)$ and similarly for Hyperlat T, where T_{1}^{\prime} denotes the C_{0} part of T.

As for Corollary 2.3, it generalizes the $C_{0}-C_{11}$ decomposition for c.n.u. weak contractions (cf. [8], pp. 331-332). To verify this, we have to show that, in the context of Corollary 2.3, if T is a c.n.u. weak contraction, then $T \mid K_{2}$ is the C_{0} part of T. Since $T \mid K_{2} \sim T_{2}$ is of class C_{0}, we have $K_{2} \subseteq H_{1}^{\prime} \equiv\left\{x \in H: T^{n} x \rightarrow 0\right.$ as $\left.n \rightarrow \infty\right\}$. On the other hand, since $T_{2} \sim T \mid H_{1}^{\prime} \equiv T_{1}^{\prime}$ (cf. proof of Corollary 2.4), we have $T \mid K_{2} \sim$ $\sim T_{1}^{\prime}$. Note that $\sigma\left(T_{1}^{\prime}\right) \cong \sigma(T)$ (cf. [8], p. 332). Hence T_{1}^{\prime} is a weak C_{0} contraction. Let $W: H_{1}^{\prime} \rightarrow K_{2}$ be a quasi-affinity intertwining T_{1}^{\prime} and $T \mid K_{2}$ and let $V: K_{2} \rightarrow H_{1}^{\prime}$ be the restriction of the identity operator. Then $V W$ is an injection in $\left\{T_{1}^{\prime}\right\}^{\prime}$. We infer from [1], Corollary 2.8 that $V W$ is a quasi-affinity. It follows that $K_{2}=H_{1}^{\prime}$ whence $T \mid K_{2}$ is the C_{0} part of T.
3. C_{1}. contractions. In this section we restrict ourselves to C_{1}. contractions with at least one defect index finite. We will show that they are completely injection-similar to isometries and characterize various algebras of operators associated with them. We start with the following lemma.

Lemma 3.1. Let T be a c.n.u. C_{1}. contraction with $d_{T}=d_{T^{*}}<\infty$. Then T is of class C_{11}.

Proof. Since T is of class C_{1}, its characteristic function $\left\{\mathfrak{D}_{T}, \mathcal{D}_{T^{*}}, \Theta_{T}(\lambda)\right\}$ is a *-outer function. Hence $\Theta_{T}(\lambda)^{*}: \mathfrak{D}_{T^{*}} \rightarrow \mathfrak{D}_{T}$ has dense range for all λ in D (cf.
[8], p. 191). We conclude from the assumption $d_{T}=d_{T^{*}}<\infty$ that $\operatorname{det} \Theta_{T} \neq 0$. By [8], Theorem VII. 6. 3 we infer that T is of class C_{11}.

Lemma 3.2. Let T be a C_{1}. contraction with $d_{T}<\infty$ and let $T=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ be of type $\left[\begin{array}{ll}C_{\cdot 1} & * \\ 0 & C_{\cdot 0}\end{array}\right]$. Then T_{1} and T_{2} are of classes C_{11} and C_{10}, respectively.

Proof. Obviously, T_{1} is of class C_{11}. As in the proof of Theorem 2.1, we may assume that T is c.n.u. Let $T_{2}=\left[\begin{array}{ll}T_{3} & * \\ 0 & T_{4}\end{array}\right]$ be the triangulation of type $\left[\begin{array}{ll}C_{0} & * \\ 0 & C_{1}\end{array}\right]$. Note that T_{3} is of class C_{00}. Indeed, since T_{2} is of class $C_{.0}$, we have $T_{2}^{* n}=$ $=\left[\begin{array}{ll}T_{3}^{* n} & 0 \\ * & T_{4}^{* n}\end{array}\right] \rightarrow 0$ strongly. It follows that $T_{3}^{* n} \rightarrow 0$ strongly. Hence T_{3} is of class $C_{.0}$ and thus of class C_{00}. We have

$$
T=\left[\begin{array}{ccc}
T_{1} & * & * \\
0 & T_{3} & * \\
0 & 0 & T_{4}
\end{array}\right] .
$$

Let $\quad T^{\prime}=\left[\begin{array}{ll}T_{1} & * \\ 0 & T_{3}\end{array}\right]$ with the corresponding regular factorization $\Theta_{T}=\Theta_{3} \Theta_{1}$, where $\left\{\mathfrak{D}_{T^{\prime}}, \mathfrak{D}_{T^{* *}}, \Theta_{T^{\prime}}(\lambda)\right\}$ is factored as the product of $\left\{\mathfrak{D}_{T^{\prime}}, \mathfrak{F}, \Theta_{1}(\lambda)\right\}$ and $\{\mathfrak{F}$, $\left.\mathcal{D}_{T^{*} *}, \Theta_{3}(\lambda)\right\}$. Since T_{1} and T_{3} are of classes C_{11} and C_{00}, the purely contractive parts of Θ_{1} and Θ_{3} are outer and inner from both sides, respectively (cf. [8], p. 257). We deduce that $\operatorname{dim} \mathfrak{D}_{T^{\prime}}=\operatorname{dim} \mathfrak{F}$ and $\operatorname{dim} \mathfrak{F}=\operatorname{dim} \mathfrak{D}_{T^{*} *}$ (cf. [8], p. 192). It follows that $\operatorname{dim} \mathfrak{D}_{T^{\prime}}=\operatorname{dim} \mathfrak{D}_{T^{\prime} *}$, that is, $d_{T^{\prime}}=d_{T^{\prime *}}$. Note that T^{\prime} is of class C_{1}. and $d_{T^{\prime}} \leqq d_{T}<\infty$. Hence by Lemma 3.1, T^{\prime} is of class C_{11}. This implies that T_{3} is of class $C_{.1}$, contradicting the fact that T_{3} is of class C_{00}. We conclude that T_{2} itself must be of class C_{1}. and therefore of class C_{10}.

If T is a C_{1}. contraction with $d_{T}<\infty$, then as shown above T_{1} is of class C_{11} and has finite defect indices. Hence its characteristic function admits a scalar multiple (cf. [8], p. 318) and therefore Theorem 2.1 is applicable. In particular, we have the following corollary.

Corollary 3.3. Let T and S be C_{1}. contractions with finite defect indices and let $T=\left[\begin{array}{ll}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ and $S=\left[\begin{array}{ll}S_{1} & * \\ 0 & S_{2}\end{array}\right]$ be the triangulations of type $\left[\begin{array}{ll}C_{\cdot 1} & * \\ 0 & C_{\cdot}\end{array}\right]$. Then $T \sim S$ if and only if $T_{1} \sim S_{1}$ and $T_{2} \sim S_{2}$.

Proof. The conclusion follows easily from the preceding remark and [22], Theorem 6.

Lemma 3.4. Let $\quad T=U_{1} \oplus \ldots \oplus U_{p} \oplus S_{q} \quad$ on \quad ' $H=L^{2}\left(E_{1}\right) \oplus \ldots \oplus L^{2}\left(E_{p}\right) \oplus H_{q}^{2}$, where $0 \leqq p, q \leqq \infty, E_{j}^{\prime} s$ are Borel subsets of the unit circle satisfying $E_{1} \supseteqq E_{2} \supseteqq \ldots \supseteqq$ $\supseteqq E_{p} \neq \varnothing, U_{j}$ denotes the operator of multiplication by $e^{i t}$ on $L^{2}\left(E_{j}\right), j=1, \ldots, p$, and S_{q} denotes the unilateral shift on H_{q}^{2}. Then $\mu_{T}=p+q$.

Proof. Let $U=U_{1} \oplus \ldots \oplus U_{p}$. It is well known that $\mu_{U}=p$ and $\mu_{S_{q}}=q$. Hence $\mu_{T} \leqq \mu_{U}+\mu_{S_{q}}=p+q$. On the other hand, for almost all $e^{i t}$ in E_{p}, consider $H_{t}=\left\{h\left(e^{i t}\right): h \in H\right\}$. Obviously, $H_{t}=\mathbf{C}^{p+q}$. We assume that $N \equiv \mu_{T}<\infty$ for otherwise the assertion is trivial. Let $K=\left\{h_{1}, \ldots, h_{N}\right\}$ be a set of vectors in H such that $H=\bigvee_{k=0}^{\infty} T^{k} K$. Then $H=\left\{p_{1}(T) h_{1}+\ldots+p_{N}(T) h_{N}: p_{1}, \ldots, p_{N} \text { polynomials }\right\}^{-}$. We deduce that $H_{t}=\left\{p_{1}\left(e^{i t}\right) h_{1}\left(e^{i t}\right)+\ldots+p_{N}\left(e^{i t}\right) h_{N}\left(e^{i t}\right): p_{1}, \ldots, p_{N} \text { polynomials }\right\}^{-}$for almost all $e^{i t}$ in E_{p}, that is, H_{t} is spanned by the set of N vectors $\left\{h_{1}\left(e^{i t}\right), \ldots, h_{N}\left(e^{i t}\right)\right\}$. Hence we must have $p+q \leqq N$, and thus $\mu_{T}=N=p+q$.

Now we are ready to show the complete injection-similarity of C_{1}. contractions with isometries. The next theorem not only generalizes [20], Theorem 2.1 but the proof is much simpler.

Theorem 3.5. Let T be a C_{1}. contraction with $d_{T}<\infty$. Then T is completely injection-similar to an isometry. If T is c.n.u., then $U \oplus S_{m-ı} \stackrel{\text { ci }}{\prec}\left\langle\prec U \oplus S_{m-n}\right.$, where $m=d_{T^{*}}, n=d_{T}, U$ denotes the operator of multiplication by $e^{i t}$ on $\overline{\Delta_{T} L_{n}^{2}}$ and S_{m-n} denotes the unilateral shift on H_{m-n}^{2}. In particular, $p+m-n \leqq \mu_{T} \leqq p+2(m-n)$, where $p=\mu_{U}$.

Proof. We may assume that T is c.n.u.. Let $T=\left[\begin{array}{cc}T_{1} & X \\ 0 & T_{2}\end{array}\right]$ be the triangulation of type $\left[\begin{array}{ll}C \cdot 1 & * \\ 0 & C_{\cdot 0}\end{array}\right]$ with the corresponding factorization $\Theta_{T}=\Theta_{\mathbf{2}} \Theta_{\mathbf{1}}$. By the remark before Corollary 3.3 , we have $T \sim T_{1} \oplus T_{2}$. Note that T_{1}, being of class C_{11}, is quasi-similar to U on $\overline{\Delta_{1} L_{n}^{2}}=\overline{\Delta_{T} L_{n}^{2}}$, where $\Delta_{1}=\left(I-\Theta_{1}^{*} \Theta_{1}\right)^{1 / 2}$ (cf. [8], pp. 71—72). On the other hand, since the characteristic function of T_{2} is the purely contractive part of Θ_{2}, we infer that $d_{T_{2}}=n-r$ and $d_{T_{2}^{*}}=m-r$ for some r with $0 \leqq r \leqq n$. Hence for the C_{10} contraction T_{2} we have $S_{m-n}<T_{2}<S_{m-n}$ (cf. [7], Theorem 3). We conclude that $U \oplus S_{m-n} \stackrel{\text { ci }}{\prec} T \prec U \oplus S_{m-n}$. Finally we verify the assertion concerning μ_{T}. Note that $T \prec U \oplus S_{m-n}$ implies that $\mu_{T} \geqq \mu_{U_{\oplus} S_{m-n}}=p+m-n$ by Lemma 3.4. On the other hand, we have $\mu_{T}=\mu_{T_{1} \oplus T_{2}} \leqq \mu_{T_{1}}+\mu_{T_{2}} \leqq p+2(m-n)$ (cf. [10], Theorem 2). This completes the proof.

Unfortunately, we are yet unable to show the uniqueness of the isometry completely injection-similar to T although its unitary part is indeed unique. This follows from the following lemma.

Lemma 3.6. For $j=1,2$, let $V_{j}=U_{j} \oplus S_{j}$ be an isometry, where U_{j} is a unitary operator and S_{j} is a unilateral shift. If $V_{1} \stackrel{\mathrm{i}}{\sim} V_{2}$, then $U_{1} \cong U_{2}$.

Proof. Assume that $V_{j}=U_{j} \oplus S_{j}$ is acting on $H_{j}=K_{j} \oplus L_{j}, j=1$, 2. Let X : $H_{1} \rightarrow H_{2}$ and $Y: H_{2} \rightarrow H_{1}$ be the injections which intertwine V_{1} and V_{2}. We claim that $X K_{1} \subseteq K_{2}$. Indeed, for any x in K_{1} and $n \geqq 0, x=U_{1}^{n} y_{n}$ for some $y_{n} \in K_{1}$. Hence $X x=X U_{1}^{n} y_{n}=X V_{1}^{n} y_{n}=\ddot{V} V_{2}^{n} X y_{n} \subseteq V_{2}^{n} H_{2}$ for any $n \geqq 0$. It follows that $X x \in \bigcap_{n=0}^{\infty} V_{2}^{n} H_{2}=$ $=K_{2}$, as asserted. Similarly, we have $Y K_{2} \subseteq K_{1}$. Thus $U_{1} \sim U_{2}$. We conclude that U_{1} and U_{2} are unitarily equivalent to direct summands of each other (cf. [3], Lemma 4.1). By the third test problem in [5], this implies that $U_{1} \cong U_{2}$.

We conjecture that if $V_{1} \sim V_{2}$ and $\mu_{U_{1}}<\infty$ then $V_{1} \cong V_{2}$.
The next two theorems characterize those $\overrightarrow{C_{1}}$. contractions which are cyclic or have commutative commutants. Analogous results have been obtained before for $C_{.0}$ contractions (cf. [23], Theorems 1.3 and 1.5).

Theorem 3.7. Let T be a c.n.u. C_{1}. contraction with $d_{T}<\infty$. Then the following statements are equivalent:
(1) T is cyclic;
(2) T is of class C_{11} and $T \sim M_{E}$ or T is of class C_{10} and $T \sim S$, where M_{E} denotes the operator of multiplication by $e^{i t}$ on $L^{2}(E), E$ being a Borel subset of the unit circle, and S denotes the simple unilateral shift.

The proof is the same as the one for [20], Theorem 3.2.
Corollary 3.8, Let T be a c.n.u. C_{1}. contraction with $d_{T}<\infty$. If T is cyclic, so is T^{*} but not conversely.

Proof. If T is cyclic, then $T \sim M_{E}$ or $T \sim S$. Hence $T^{*} \sim M_{E}^{*}$ or $T^{*} \sim S^{*}$. In either case, T^{*} is cyclic. The converse example is given by $T=S \oplus S$ (cf. [4], Problem 126).

Theorem 3.9. Let T be a c.n.u. C_{1}. contraction with $d_{T}<\infty$. Then the following statements are equivalent:
(1) $\{T\}^{\prime}=\{T\}^{\prime \prime}$;
(2) T is of class C_{11} and $T \sim M_{E}$ or T is of class C_{10} and $d_{T *}-d_{T}=1$.

Proof. (2) $\Rightarrow(1)$. If T is of class C_{11} and $T \sim M_{E}$, then obviously T is cyclic. Hence (1) follows from [9], Theorem 1. On the other hand, if T is of class C_{10} and $d_{T *}-d_{T}=1$, then (1) follows from [23], Theorem 1.5.
(1) $\Rightarrow(2)$. Let $T=\left[\begin{array}{ll}T_{1} & X \\ 0 & T_{2}\end{array}\right]$ on $H=H_{1} \oplus H_{2}$ be the triangulation of type
$\left[\begin{array}{ll}C_{\cdot} & * \\ 0 & C_{\cdot 0}\end{array}\right]$. As proved in Theorem 3.5, $T_{1} \sim U$, the operator of multiplication by $e^{i t}$ on $\overline{\Delta_{T} L_{n}^{2}}$, and $T_{2}<S_{m-n}$, where $m=d_{T^{*}}$ and $n=d_{T}$. We consider the following two cases:
(i) If $m=n$, then $T=T_{1}$ is of class C_{11} by Lemma 3.1. Note that there are quasi-affinities $Y: H \rightarrow \overline{\Delta_{T} L_{n}^{2}}$ and $Z: \overline{\Delta_{T} L_{n}^{2}} \rightarrow H$ which intertwine T and U and such that $Y Z=\delta(U)$ and $Z Y=\delta(T)$ for some outer function δ (cf. [21], Lemma 2.1). It is easily verified that $\{T\}^{\prime}=\{T\}^{\prime \prime}$ implies that $\{U\}^{\prime}=\{U\}^{\prime \prime}$. Therefore U is cyclic (cf. [6], §3) and so $T \sim M_{E}$ for some Borel subset E.
(ii) If $m \neq n$, then there exist finitely many operators $Z_{i}: H_{m-n}^{2} \rightarrow \overline{\Delta_{T} L_{n}^{2}}$ which intertwine S_{m-n} and U and such that $\bigvee_{i} \operatorname{ran} Z_{i}=\overline{\Delta_{T} L_{n}^{2}}$ (cf. [2], pp. 299-300). Hence there exist $Y_{i}: H_{2} \rightarrow H_{1}$ which intertwine T_{2} and T_{1} and such that \bigvee_{i} ran $Y_{i}=H_{1}$. On the other hand, using Theorem 2.1 and the assumption $\{T\}^{\prime}=\{T\}^{\prime \prime}$ we infer that $\left\{T_{1} \oplus T_{2}\right\}^{\prime}=\left\{T_{1} \oplus T_{2}\right\}^{\prime \prime}$. Thus any operator $Y: H_{2} \rightarrow H_{1}$ which intertwines T_{2} and T_{1} must be 0 . We conclude from above that $H_{1}=\{0\}$, that is, T is of class C_{10}. Moreover, $\{T\}^{\prime}=\{T\}^{\prime \prime}$ implies that $m-n=1$ (cf. [23], Theorem 1.5).

Corollary 3.10. Let T be a c.n.u. C_{1}. contraction with $d_{T}<\infty$. If T is cyclic, then $\{T\}^{\prime}=\{T\}^{\prime \prime}$ but not conversely.

Proof. The converse example is given in [10], pp. 321-322.
We remark that Corollaries 3.8 and 3.10 have been obtained before by Sz.-NAGY and Foiass [9], Theorem 1 and [6].

In the final part of this paper, we determine when a C_{1}. contraction satisfies the double commutant property. Since a c.n.u. C_{1}. contraction T with $d_{T}<\infty$ is completely injection-similar to an isometry with an absolutely continuous unitary part, to motivate we first consider for such isometries. The next lemma partially generalizes [12], Theorem 3.3.

Lemma 3.11. Let $V=U \oplus S$ be an isometry on $H=H_{1} \oplus H_{2}$, where U is a unitary operator and S is a unilateral shift. Assume that U is absolutely continuous. Then the following statements are equivalent:
(1) $S \neq 0$;
(2) V is not unitary;
(3) $\{V\}^{\prime \prime}=\left\{\varphi(V): \varphi \in H^{\infty}\right\}$.

Proof. (1) \Leftrightarrow (2). Trivial.
(1) \Rightarrow (3). Let $T \in\{V\}^{\prime \prime}$. Then $T=T_{1} \oplus T_{2}$ where $T_{1} \in\{U\}^{\prime \prime}$ and $T_{2} \in\{S\}^{\prime \prime}$. Since $S \neq 0$, there exists $\varphi \in H^{\infty}$ such that $T_{2}=\varphi(S)$. As before, there are (possibly infinitely many) operators $Z_{i}: H_{2} \rightarrow H_{1}$ which intertwine S and U and such that
$\bigvee \operatorname{ran} Z_{i}=H_{1}$ (cf. [2], pp. 299-300). Hence $\varphi(U) Z_{i}=Z_{i} \varphi(S)=Z_{i} T_{2}$ for all i. $\stackrel{i}{\text { On }}$ the other hand, since $Y_{i} \equiv\left[\begin{array}{ll}0 & Z_{i} \\ 0 & 0\end{array}\right] \in\{V\}^{\prime}$, we have $T Y_{i}=Y_{i} T$. A simple computation shows that $T_{1} Z_{i}=Z_{i} T_{2}$. Thus $T_{1} Z_{i}=\varphi(U) Z_{i}$ for all i. We conclude that $T_{1}=\varphi(U)$ and hence $T=\varphi(V)$.
$(3) \Rightarrow(1)$. If $S=0$, then $V=U$ is a unitary operator. Hence $\{V\}^{\prime \prime}=\{\psi(V)$: $\left.\psi \in L^{\infty}\right\}$, which is certainly not equal to $\left\{\varphi(V): \varphi \in H^{\infty}\right\}$.

Next we show that C_{1}. contractions share similar properties. We need the following lemma.

Lemma 3.12. Let T be a contraction on H and let $T=\left[\begin{array}{ll}T_{1} & X \\ 0 & T_{2}\end{array}\right]$ on $H=H_{1} \oplus H_{2}$ be the triangulation of type $\left[\begin{array}{ll}C_{\cdot 1} & * \\ 0 & C_{\cdot 0}\end{array}\right]$. Then H_{1} is hyperinvariant for T.

Proof. Note that $H_{2}=\left\{x \in H: T^{* n} x \rightarrow 0\right\}$ (cf. [8], p. 73). For $S \in\{T\}^{\prime}$, we have $T^{* n} S^{*} x=S^{*} T^{* n} x \rightarrow 0$ as $n \rightarrow \infty$ for any $x \in H_{2}$. This shows that $S^{*} H_{2} \subseteq H_{2}$. It follows that $S H_{1} \subseteq H_{1}$, whence H_{1} is hyperinvariant for T.

Theorem 3.13. Let T be a c.n.u. C_{1}. contraction with $d_{T}<\infty$. Let $m=d_{T^{*}}$ and $n=d_{T}$. Then the following statements are equivalent:
(1) $m \neq n$;
(2) T is not of class C_{11};
(3) $\{T\}^{\prime \prime}=\left\{\varphi(T): \varphi \in H^{\infty}\right\}$.

Proof. (1) \Leftrightarrow (2). This follows from Lemma 3.1 and the fact that C_{11} contractions have equal defect indices.
$(1) \Rightarrow(3)$. As in the proof of Theorem 3.9, if $m \neq n$ then there exist finitely many operators $Y_{i}: H_{2} \rightarrow H_{1}$ which intertwine T_{2} and T_{1} and such that $V \operatorname{ran} Y_{i}=H_{1}$. Let $W \in\{T\}^{\prime \prime}$. By Lemma 3.12, $W=\left[\begin{array}{ll}W_{1} & * \\ 0 & W_{2}\end{array}\right]$ on $H=H_{1} \oplus H_{2}$. Obviously, $W_{2} \in\left\{T_{2}\right\}^{\prime}$. We check that actually $W_{2} \in\left\{T_{2}\right\}^{\prime \prime}$. Let $R \in\left\{T_{2}\right\}^{\prime}$, and let Y and Z be the operators constructed in the proof of Theorem 2.1. It is easily seen that $Z(I \oplus R) Y \in$ $\in\{T\}^{\prime}$. Hence $Z(I \oplus R) Y W=W Z(I \oplus R) Y$. A simple computation shows that $\delta\left(T_{2}\right) R W_{2}=W_{2} \delta\left(T_{2}\right) R=\delta\left(T_{2}\right) W_{2} R$. Since $\delta\left(T_{2}\right)$ is an injection, we have $R W_{2}=$ $=W_{2} R$ whence $W_{2} \in\left\{T_{2}\right\}^{\prime \prime}$ as asserted. Thus there exists $\varphi \in H^{\infty}$ such that $W_{2}=$ $=\varphi\left(T_{2}\right)$ (cf. [13], Theorem 1). We have $\varphi\left(T_{1}\right) Y_{i}=Y_{i} \varphi\left(T_{2}\right)=Y_{i} W_{2}$ for all i. On the other hand, since $X_{i} \equiv\left[\begin{array}{ll}0 & Y_{i} \\ 0 & 0\end{array}\right] \in\{T\}^{\prime}$, we have $W X_{i}=X_{i} W$. It follows that $W_{1} Y_{i}=$ $=Y_{i} W_{2}$ whence $W_{1} Y_{i}=\varphi\left(T_{1}\right) Y_{i}$ for all i. We conclude that $W_{1}=\varphi\left(T_{1}\right)$. Thus W is triangulated as $\left[\begin{array}{ll}\varphi\left(T_{1}\right) & * \\ 0 & \varphi\left(T_{2}\right)\end{array}\right]$. But we also have $\varphi(T)=\left[\begin{array}{ll}\varphi\left(T_{1}\right) & * \\ 0 & \varphi\left(T_{2}\right)\end{array}\right]$. Hence
$W-\varphi(T)=\left[\begin{array}{ll}0 & Q \\ 0 & 0\end{array}\right] \in\{T\}^{\prime \prime}$, say. To complete the proof, it suffices to show that $Q=0$. To this end, let $S: H_{2} \rightarrow H_{1}$ be the operator defined in the proof of Theorem 2.1 and let $A=\left[\begin{array}{ll}\delta\left(T_{1}\right) & S \\ 0 & 0\end{array}\right]$. It is clear that $A \in\{T\}^{\prime}$. Hence $A(W-\varphi(T))=(W-\varphi(T)) A$.
A simple computation shows that $\delta\left(T_{1}\right) Q=0$. Since $\delta\left(T_{1}\right)$ is an injection, we conclude that $Q=0$, completing the proof.
$(3) \Rightarrow(2)$. If T is of class C_{11}, then $\{T\}^{\prime \prime}$ has been given in [19], Lemma 2. We will show that it is not the same as $\left\{\varphi(T): \varphi \in H^{\infty}\right\}$. Note that T is quasi-similar to the operator $U=U_{1} \oplus \ldots \oplus U_{p}$ on $K=L^{2}\left(E_{1}\right) \oplus \ldots \oplus L^{2}\left(E_{p}\right)$, where $0 \leqq p \leqq n, E_{j}=$ $=\left\{e^{i t}:\right.$ rank $\left.\Delta_{T}\left(e^{i t}\right) \supseteqq j\right\}$ are Borel subsets of the unit circle satisfying $E_{1} \supseteqq E_{2} \supseteqq \ldots \supseteqq$ $\supseteq E_{p} \neq \emptyset$ and U_{j} denotes the operator of multiplication by $e^{i t}$ on $L^{2}\left(E_{j}\right), j=1,2, \ldots$ \ldots, p (cf. [16], Theorem 2). Let $\delta=\operatorname{det} \Theta_{T}$ and Ω be the algebraic adjoint of Θ_{T}. Since $\delta \not \equiv 0$, there exists some $\varepsilon>0$ such that $F=\left\{e^{i t} \in E_{1}:\left|\delta\left(e^{i t}\right)\right| \geqq \varepsilon\right\}$ has positive Lebesgue measure. Let $G \subseteq F$ be such that G and $F \backslash G$ both have positive Lebesgue measure. Let

$$
V=P\left[\begin{array}{cc}
0 & 0 \\
-\chi_{G} \frac{1}{\delta} \Delta_{T} \Omega & \chi_{G}
\end{array}\right]
$$

It is easily checked that $V \in\{T\}^{\prime \prime}$ (cf. [19], Lemma 2). If $V=\varphi(T)$ for some $\varphi \in H^{\infty}$, then $\chi_{G}=\varphi$ on $\overline{\Delta_{T} L_{n}^{2}}$. In particular, $\chi_{G}=\varphi$ a.e. on E_{1}. This is certainly impossible. We conclude that $\{T\}^{\prime \prime} \neq\left\{\varphi(T): \varphi \in H^{\infty}\right\}$.

Corollary 3.14. Let T be a c.n.u. C_{1}. contraction with $d_{T}<d_{T *} \leqq \infty$. If T is cyclic, then $\{T\}^{\prime}=\left\{\varphi(T): \varphi \in H^{\infty}\right\}$.

Proof. This follows from Corollary 3.10 and Theorem 3.13.
The preceding corollary has been obtained before in [11], Lemma 1.
Corollary 3.15. Let T be a c.n.u. C_{1}. contraction with $d_{T}<\infty$. Then the following statements are equivalent:
(1) $\{T\}^{\prime \prime}=\operatorname{Alg} T$;
(2) either $d_{T} \neq d_{T^{*}}$ or $d_{T}=d_{T^{*}}$ and $\Theta_{T}\left(e^{i t}\right)$ is isometric for $e^{i t}$ in a set of positive Lebesgue measure.

Proof. The assertion follows from Theorem 3.13 and [18], Theorem 3.8.

References

[1] H. Bercovici, C_{0}-Fredholm operators. I, Acta Sci. Math., 41 (1979), 15-31.
[2] R. G. Douglas, On the hyperinvariant subspaces for isometries, Math. Z., 107 (1968), 297-300.
[3] R. G. Douglas, On the operator equation $S^{*} X T=X$ and related topics, Acta Sci. Math., 30 (1969), 19-32.
[4] P. R. Halmos, A Hilbert space problem book, van Nostrand (Princeton, New Jersey, 1967).
[5] R. V. Kadison and I. M. Singer, Three test problems in operator theory, Pacific J. Math., 7 (1957), 1101-1106.
[6] B. Sz.-Nagy, Cyclic vectors and commutants, Linear operator and approximation, Birkhäuser (Basel-Stuttgart, 1972), 62-67.
[7] B. Sz.-NaGy, Diagonalization of matrices over H^{∞}, Acta Sci. Math., 38 (1976), 223-238.
[8] B. Sz.-NaGy and C. Foiaş, Harmonic analysis of operators on Hilbert space, North Holland Akadémiai Kiadó (Amsterdam-Budapest, 1970).
[9] B. Sz.-Nagy and C. Foiaş, Vecteurs cycliques et commutativité des commutaṇts, Acta Sci. Math., 32 (1971), 177-183.
[10] B. Sz.-Nagy and C. Foias, Jordan model for contractions of class C.0, Acta Sci. Math., 36 (1974), 305-322.
[11] B. Sz.-Nagy and C. Foiaş, Vecteurs cycliques et commutativité des commutants. II, Acta Sci. Math., 39 (1977), 169-174.
[12] T. R. Turner, Double commutants of isometries, Tôhoku Math. J., 24 (1972), 547-549.
[13] M. Uchiyama, Double commutants of C. ${ }^{0}$ contractions. II, Proc. Amer. Math. Soc., 74 (1979), 271-277.
[14] P. Y. Wu, On nonorthogonal decompositions of certain contractions, Acta Sci. Math., 37 (1975), 301—306.
[15] P. Y. Wu, Quasi-similarity of weak contractions, Proc. Amer. Math. Soc., 69 (1978), 277-282.
[16] P. Y. Wu, Jordan model for weak contractions, Acta Sci. Math., 40 (1978), 189-196.
[17] P. Y. Wu, Hyperinvariant subspaces of weak contractions, Acta Sci. Math., 41 (1979), 259-266.
[18] P. Y. Wu, Bi-invariant subspaces of weak contractions, J. Operator Theory, 1 (1979), 261-272.
[19] P. Y. Wu, C ${ }_{11}$ contractions are reflexive, Proc. Amer. Math. Soc., 77 (1979), 68-72.
[20] P. Y. Wu, On contractions of class C_{1}, , Acta Sci. Math., 42 (1980), 205-210.
[21] P. Y. Wu, On a conjecture of Sz.-Nagy and Foiaş, Acta Sci. Math., 42 (1980), 331-338.
[22] P. Y. Wu, On the quasi-similarity of hyponormal contractions, Illinois J. Math., 25 (1981), 498-503.
[23] P. Y. Wu, C.o contractions: cyclic vectors, commutants and Jordan models, J. Operator Theory, 5 (1981), 53-62.

[^0]: Received February 25, 1981.
 This research was partially supported by National Science Council of Taiwan, China.

