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When is a contraction quasi-similar to an isometry?

PEI YUAN WU

In this paper we answer the question in the title for contractions with finite
defect indices. More precisely, we show that if 7" is a contraction with finite defect
indices then T is quasi-similar to an isometry if and only if T is of class C|, and there
exists a bounded analytic function @ such that Q6,;=4I for some outer function &,
where @ denotes the characteristic function of T. This condition is analogous to the
one for a contraction similar to an isometry (cf. [3], Theorem 2.4.). We will also derive
some related results.

In the following all the operators are acting on complex, separable Hilbert
spaces. The main reference is the book of Sz.-NAGY and Foias [2]. Recall that for
operators T; and T, on H, and H,, respectively, T;<T, denotes that T, is a quasi-
affine transform of T,, that is, there exists a one-to-one operator X: H, ~H, with
dense range (called quasi-affinity) such that T,X=XT,. T, and T, are quasi-similar
(Ty~T,) if TZy<T, and T,<T;.

For a contraction T, let dy=rank (/—T*T)/2 and dp=rank (I—-TT*)/2
denote its defect indices and let @ denote its characteristic function. For any n=1,
let S, denote the unilateral shift on HZ. The next lemma characterizes those contrac-
tions which are quasi-similar to a unilateral shift.

Lemma 1. Let T be a contraction with finite defect indices. Then the following
statements are equivalent:

(1) T is quasi-similar to a unilateral shift;

(2) T is of class Cyy and there exists a bounded analytic function Q such that
QO =481 for some outer function J.

Proof. Let n=d; and m=dp..
(1)=(2). That T is of c}ass C,, follows from [8], Lemma 1. Consider the func-
tional model of T, that is, consider T being acting on $=H2 S O HZ by Tf=P(e"f)
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for f€$, where P denotes the (orthogonal) projection onto $. Note that T must
be quasi-similar to S, _,. Indeed, this follows from the uniqueness of the Jordan
model of T (cf. [4], Theorem 4). Let ¥: H:_ —$ be the quasi-affinity intertwining
S,,-,and T. Then Y is given by Yg=P(Pg) for gc H,_ , where @ is an mX(m—n)
matrix valued bounded analytic function. Note that ran ¥Y=$9 if and only if
®H? _,+OrH? is dense in HZ. Let ¥ denote the mXn matrix valued function
[®, ©4]. Since ®HZ_, + O, H?=WH?, we conclude from above that ¥ is an outer

function. Let ¥# denote the algebraic adjoint of the matrix of ¥. Say, xp‘=[ Q] ,

where Q' is (m—n)Xm matrix valued and Q is nXm matrix valued. Since ¥4 ¥ =4I,
where d=det¥ is an outer function, we infer that Q@,;=41 as asserted.

(2)=(1). Consider the functional model of T and consider Q as a multiplica-
tion operator from H? to HZ. Let S=ker Q. Define X:H—+RK by Xf=3f—0O,Qf
for f€H and Y:K-9 by Yg=Pg for gefR. Note that QXf=Q5f— QO Qf=
=Q6f—6Qf=0 for any f€$. Hence X indeed maps § to K. Let S=§,|R. It is
easily verified that X and Y intertwine T and S. Moreover, we have XYg=XPg=
=X(g—Ow)=0(g—0O;w)— 0, 2(g—Ow)=0g—0OQg=0g=06(S>g for any
geR, where weH?, and YXf=Y(0f—O.Qf)=P(f)—0=6(T)f for any f€9.
Since 6(S) and 6(T') are quasi-affinities, so are X and Y. This shows that T is quasi-
similar to S, a unilateral shift, completing the proof.

We remark that the proof of (2)=(1) in the preceding lemma holds even without
the finiteness assumption on the defect indices of 7. Also note that Lemma 1 par-
tially generalizes [4], Proposition 2 (for the case dr=1 and dx=2) and [6], Theorem
3.1 (for the case dr+«—dr=1). Next we consider contractions quasi-similar to iso-
metries. We need the following lemma.

Lemma 2. Let T be a contraction with finite defect indices. Then the following
statements are equivalent:

(1) T is quasi-similar to an isometry;

(2) the completely non-unitary (c.nu.) part of T is quasi-similar to an isometry.

Proof. We have only to show (1)=(2). Assume that T is quasi-similar to the
isometry V. By [8], Lemma 1, T is of class C,.. Let V=U®S, where U is unitary
and Sisa unilateral shift, and let T=T,®T,, where T; is unitary and T, is c.n.u.

Let T,= ] be the triangulation of type [ ] Then T, is of class C,; and

0 T,
has finite defect indices. By [9], Theorem 2.1, T2~T36BT4. Hence UpS~T,8T,
~T,&T;®T,. Note that U and T, T are of class Cyy, S and T, are of class Cj,
(cf. [9], Lemma 3.2) and the defect indices of T, are finite. It follows from the proof of
[8], Theorem 6 that T, T3~ U and T,<S. Hence S must be the Jordan model of
T, (cf. [8], Lemma 3), that is, S=S,,_,, where m=drs and n=dy. Thus S has
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finite defect indices and we infer from [8], Theorem 6 again that 7,~S. On the other
hand, the C,; contraction T, is quasi-similar to a unitary operator (cf. [2], p. 72).
We conclude from above that T, is quasi-similar to an isometry, completing the proof.

T
Theorem 3. Let T be a contraction with finite defect indices and let T =[ . *]

0 T,
be the triangulation of type [C(;l C* ] Then the following statements are equivalent:
-0

(1) T is quasi-similar to an isometry;

(2) T, is quasi-similar to a unitary operator and T, is quasi-similar to a unilateral
shift;

(3) T is of class C,. and there exists a bounded analytic function Q such that
QO,=46I for some outer function 9.

Proof. By Lemma 2, it suffices to consider c.n.u. T.

(1)=(2) is proved in Lemma 2.

(2)=(3). By [8], Lemma 1, both T, and T, are of class C,.. A simple calculation
shows that 7" must also be of class C;.. Let ©@,=0,0, be the canonical factorization
T, *
07T,
of Ty and T, are the purely contractive parts of ®, and 0,, respectively. Lemma 1
implies that there exists a bounded analytic function Q, such that Q,0,=§,7 for
some outer function §,. On the other hand, T; is of class Cy, implies that @, is outer
(from both sides). Let 2, be the algebraic adjoint of the matirx of @, and let Q=
©,Q, and =6, det ©,. Then QO=0,Q,0,0,=0Q,56,0,=451, where § is outer.

(3)=(1). As above, let @,;=0,0,; be the factorization corresponding  to

T=[§1 ;] From Q0O;=0I we have 0,20, Q,=0,6Q,=0d(det @,)I, where Q,
2

is the algebraic adjoint of ©,. It follows that (©;Q)©,=41. Since T, is of class Cy,
(cf. [9], Lemma 3.2), we infer from Lemma 1 that T, is quasi-similar to a unilateral
shift. On the other hand, T, is quasi-similar to a unitary operator and T~T;®7T,
(cf. [9], Theorem 2.1). We conclude that T is quasi-similar to an isometry as asserted.

corresponding to the triangulation T'= ] Then the characteristic functions

Note that the isometry quasi-similar to 7 is unique up to unitary equivalence
(cf. {11, Theorem 3.1). It also follows from the preceding proof that if T is c.n.u.,
then the isometry quasi-similar to T has an absolutely continuous unitary part. We
may contrast Theorem 3 with the corresponding results for contractions similar to
isometries: a contraction 7' is similar to an isometry if and only if there is a bounded
analytic function  such that Q@ =1 (cf. [3], Theorem 2.4); a c.n.u. T is similar to
an isometry if and only if T is similar to a unitary operator and T is 51m11ar toa
unilateral shift (cf. [5], Theorem 2).
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Corollary 4. Let T be a c.n.u. contraction with finite defect indices and let $,
be an invariant subspace for T.

(V) If T is quasi-similar to an isometry, so is T|9,.

(2) If T is quasi-similar to a unilateral shift, so is T|9,.

Proof. (1) By [8], Lemma 1, T is of class C,.. Hence T'|9, is also of class C;,..
Let @;=0,0, be the corresponding regular factorization and let 2 be such that
Q0 ,=41 for some outer 6. Then (26,)@,=4I and by Theorem 3 we conclude
that T'|$, is quasi-similar to an isometry.

(2) By [8], Lemma 1, T is of class Cy,. It is easy to check that T'|9, is also of
class Cyy. Similar arguments as above finish the proof.

Corollary 5. Let T be a c.n.u. contraction on 9 with finite defect indices. If T
is quasi-similar to an isometry V on K, then there exist quasi-affinities X:9—~K and
Y:K~9 which intertwine T and V and such that XY=06(V) and YX=6(T) for
some outer function 9.

Proof. Let T=[T1 *] be the triangulation of type [C01 g ] As before,
-0

0T,
since T is of class C,, with finite defect indices, we have T'~T,®T,;. Let V=U&S
be the isometry quasi-similar to T, where U is unitary and S is a unilateral shift.
As shown in the proof of Lemma 2, T;~U nad T,~S. Note that all these three
quasi-similarities can be implemented by quasi-affinities satisfying the corresponding
properties in the conclusion of our assertion (cf. [9], Theorem 2.1, [7], Lemma 2.1
and proof of Lemma 1). Hence the same holds for the quasi-similarity of 7 and V.

For an operator T, let Lat T, Lat”T and Hyperlat T denote, respectively, the
lattices of invariant subspaces, bi-invariant subspaces and hyperinvariant subspaces
of T. The next lemma will be needed in the proof of Theorem 7. It can be proved
in the same fashion as [7], Lemma 2.3.

Lemma 6. Let V be an isometry with an absolutely continuous unitary part and
let McLatV. If § is an outer function, then S(V|N) is a quasi-affinity on N.

Theorem 7. Let T be a c.n.u. contraction with finite defect indices. If T is quasi-
similar to an isometry V, then LatT=LatV, Lat” T=Lat”V and Hyperlat T'=
Hyperlat V. :

Proof. Note that T is of class C,. by [8], Lemma 1. We may assume that T is
not of class C;, for otherwise the conclusion has already been proved in [7], Theo-
rem 2.2.

Let X and Y be the quasi-affinities as in Corollary 5. For MecLat T and Ne
€Lat ¥, consider the mappings M —~XM and N—-YRN. Using Lemma 6, we can
easily verify that they implement the lattice isomorphisms between Lat T and Lat V.
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From [9], Theorem 3.13 and Lemma 3.11, we infer that Lat T=Lat” T and Lat V=
=Lat” V. Hence to complete the proof, it suffices to show that (i) MMcHyperlat T
implies XM ¢Hyperlat ¥ and (i) MeHyperlat ¥ implies YR¢Hyperlat 7. We
only verify (i) and leave the verification of (ii) to the readers. Let MeHyperlat T
and We{V}). Then YWX€{T} and hence YWXMEM. Applying X on both
sides, we obtain S(FWXM=XYWXMS X M. Since §(V)WXM is a quasi-affi-
nity on WX (by Lemma 6), we conclude that WXMM S XM. This shows that
meHyperlat V, completing the proof.

Corollary 8. Let T be a c.n.u. contraction with finite defect indices. If T is
quasi-similar to q unilateral shift, then Lat T=Lat"T={ran W: W¢{T}'}, where {T}
denotes the commutant of T.

Proof. This follows easily from Theorem 7 and the fact that a unilateral shift
S satisfies Lat S=Lat” S={ran Z: Z¢{SY}}.
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