

When is a contraction quasi-similar to an isometry?

PEI YUAN WU

In this paper we answer the question in the title for contractions with finite defect indices. More precisely, we show that if T is a contraction with finite defect indices then T is quasi-similar to an isometry if and only if T is of class C_1 , and there exists a bounded analytic function Ω such that $\Omega\Theta_T=\delta I$ for some outer function δ , where Θ_T denotes the characteristic function of T . This condition is analogous to the one for a contraction similar to an isometry (cf. [3], Theorem 2.4.). We will also derive some related results.

In the following all the operators are acting on complex, separable Hilbert spaces. The main reference is the book of Sz.-NAGY and FOIAŞ [2]. Recall that for operators T_1 and T_2 on H_1 and H_2 , respectively, $T_1 \prec T_2$ denotes that T_1 is a *quasi-affine transform* of T_2 , that is, there exists a one-to-one operator $X: H_1 \rightarrow H_2$ with dense range (called *quasi-affinity*) such that $T_2X=XT_1$. T_1 and T_2 are *quasi-similar* ($T_1 \sim T_2$) if $T_1 \prec T_2$ and $T_2 \prec T_1$.

For a contraction T , let $d_T=\text{rank } (I-T^*T)^{1/2}$ and $d_{T^*}=\text{rank } (I-TT^*)^{1/2}$ denote its *defect indices* and let Θ_T denote its characteristic function. For any $n \geq 1$, let S_n denote the unilateral shift on H_n^2 . The next lemma characterizes those contractions which are quasi-similar to a unilateral shift.

Lemma 1. *Let T be a contraction with finite defect indices. Then the following statements are equivalent:*

- (1) *T is quasi-similar to a unilateral shift;*
- (2) *T is of class C_{10} and there exists a bounded analytic function Ω such that $\Omega\Theta_T=\delta I$ for some outer function δ .*

Proof. Let $n=d_T$ and $m=d_{T^*}$.

(1) \Rightarrow (2). That T is of class C_{10} follows from [8], Lemma 1. Consider the functional model of T , that is, consider T being acting on $\mathfrak{H} \equiv H_m^2 \ominus \Theta_T H_n^2$ by $Tf = P(e^{it}f)$

Received April 10, 1981.

This research was partially supported by National Science Council of Taiwan, China.

for $f \in \mathfrak{H}$, where P denotes the (orthogonal) projection onto \mathfrak{H} . Note that T must be quasi-similar to S_{m-n} . Indeed, this follows from the uniqueness of the Jordan model of T (cf. [4], Theorem 4). Let $Y: H_m^2 \rightarrow \mathfrak{H}$ be the quasi-affinity intertwining S_{m-n} and T . Then Y is given by $Yg = P(\Phi g)$ for $g \in H_m^2$, where Φ is an $m \times (m-n)$ matrix valued bounded analytic function. Note that $\text{ran } Y = \mathfrak{H}$ if and only if $\Phi H_{m-n}^2 + \Theta_T H_n^2$ is dense in H_m^2 . Let Ψ denote the $m \times n$ matrix valued function $[\Phi, \Theta_T]$. Since $\Phi H_{m-n}^2 + \Theta_T H_n^2 = \Psi H_m^2$, we conclude from above that Ψ is an outer function. Let Ψ^A denote the algebraic adjoint of the matrix of Ψ . Say, $\Psi^A = \begin{bmatrix} \Omega' \\ \Omega \end{bmatrix}$, where Ω' is $(m-n) \times m$ matrix valued and Ω is $n \times m$ matrix valued. Since $\Psi^A \Psi = \delta I$, where $\delta = \det \Psi$ is an outer function, we infer that $\Omega \Theta_T = \delta I$ as asserted.

(2) \Rightarrow (1). Consider the functional model of T and consider Ω as a multiplication operator from H_m^2 to H_n^2 . Let $\mathfrak{R} = \ker \Omega$. Define $X: \mathfrak{H} \rightarrow \mathfrak{R}$ by $Xf = \delta f - \Theta_T \Omega f$ for $f \in \mathfrak{H}$ and $Y: \mathfrak{R} \rightarrow \mathfrak{H}$ by $Yg = Pg$ for $g \in \mathfrak{R}$. Note that $\Omega Xf = \Omega \delta f - \Omega \Theta_T \Omega f = \Omega \delta f - \delta \Omega f = 0$ for any $f \in \mathfrak{H}$. Hence X indeed maps \mathfrak{H} to \mathfrak{R} . Let $S = S_m|_{\mathfrak{R}}$. It is easily verified that X and Y intertwine T and S . Moreover, we have $XYg = XPg = X(g - \Theta_T w) = \delta(g - \Theta_T w) - \Theta_T \Omega(g - \Theta_T w) = \delta g - \Theta_T \Omega g = \delta g = \delta(S)g$ for any $g \in \mathfrak{R}$, where $w \in H_n^2$, and $YXf = Y(\delta f - \Theta_T \Omega f) = P(\delta f) - 0 = \delta(T)f$ for any $f \in \mathfrak{H}$. Since $\delta(S)$ and $\delta(T)$ are quasi-affinities, so are X and Y . This shows that T is quasi-similar to S , a unilateral shift, completing the proof.

We remark that the proof of (2) \Rightarrow (1) in the preceding lemma holds even without the finiteness assumption on the defect indices of T . Also note that Lemma 1 partially generalizes [4], Proposition 2 (for the case $d_T=1$ and $d_{T^*}=2$) and [6], Theorem 3.1 (for the case $d_{T^*}-d_T=1$). Next we consider contractions quasi-similar to isometries. We need the following lemma.

Lemma 2. *Let T be a contraction with finite defect indices. Then the following statements are equivalent:*

- (1) *T is quasi-similar to an isometry;*
- (2) *the completely non-unitary (c.n.u.) part of T is quasi-similar to an isometry.*

Proof. We have only to show (1) \Rightarrow (2). Assume that T is quasi-similar to the isometry V . By [8], Lemma 1, T is of class $C_{1,1}$. Let $V = U \oplus S$, where U is unitary and S is a unilateral shift, and let $T = T_1 \oplus T_2$, where T_1 is unitary and T_2 is c.n.u. Let $T_2 = \begin{bmatrix} T_3 & * \\ 0 & T_4 \end{bmatrix}$ be the triangulation of type $\begin{bmatrix} C_{1,1} & * \\ 0 & C_{0,0} \end{bmatrix}$. Then T_3 is of class $C_{1,1}$ and has finite defect indices. By [9], Theorem 2.1, $T_2 \sim T_3 \oplus T_4$. Hence $U \oplus S \sim T_1 \oplus T_2 \sim T_1 \oplus T_3 \oplus T_4$. Note that U and $T_1 \oplus T_3$ are of class $C_{1,1}$, S and T_4 are of class $C_{1,0}$ (cf. [9], Lemma 3.2) and the defect indices of T_4 are finite. It follows from the proof of [8], Theorem 6 that $T_1 \oplus T_3 \sim U$ and $T_4 \prec S$. Hence S must be the Jordan model of T_4 (cf. [8], Lemma 3), that is, $S = S_{m-n}$, where $m = d_{T_4^*}$ and $n = d_{T_4}$. Thus S has

finite defect indices and we infer from [8], Theorem 6 again that $T_4 \sim S$. On the other hand, the C_{11} contraction T_3 is quasi-similar to a unitary operator (cf. [2], p. 72). We conclude from above that T_2 is quasi-similar to an isometry, completing the proof.

Theorem 3. *Let T be a contraction with finite defect indices and let $T = \begin{bmatrix} T_1 & * \\ 0 & T_2 \end{bmatrix}$ be the triangulation of type $\begin{bmatrix} C_{\cdot 1} & * \\ 0 & C_{\cdot 0} \end{bmatrix}$. Then the following statements are equivalent:*

- (1) *T is quasi-similar to an isometry;*
- (2) *T_1 is quasi-similar to a unitary operator and T_2 is quasi-similar to a unilateral shift;*
- (3) *T is of class C_{11} and there exists a bounded analytic function Ω such that $\Omega\Theta_T = \delta I$ for some outer function δ .*

Proof. By Lemma 2, it suffices to consider c.n.u. T .

(1) \Rightarrow (2) is proved in Lemma 2.

(2) \Rightarrow (3). By [8], Lemma 1, both T_1 and T_2 are of class C_{11} . A simple calculation shows that T must also be of class C_{11} . Let $\Theta_T = \Theta_2 \Theta_1$ be the canonical factorization corresponding to the triangulation $T = \begin{bmatrix} T_1 & * \\ 0 & T_2 \end{bmatrix}$. Then the characteristic functions of T_1 and T_2 are the purely contractive parts of Θ_1 and Θ_2 , respectively. Lemma 1 implies that there exists a bounded analytic function Ω_2 such that $\Omega_2 \Theta_2 = \delta_2 I$ for some outer function δ_2 . On the other hand, T_1 is of class C_{11} implies that Θ_1 is outer (from both sides). Let Ω_1 be the algebraic adjoint of the matrix of Θ_1 and let $\Omega = \Omega_1 \Omega_2$ and $\delta = \delta_2 \det \Theta_1$. Then $\Omega \Theta_T = \Omega_1 \Omega_2 \Theta_2 \Theta_1 = \Omega_1 \delta_2 \Theta_1 = \delta I$, where δ is outer.

(3) \Rightarrow (1). As above, let $\Theta_T = \Theta_2 \Theta_1$ be the factorization corresponding to $T = \begin{bmatrix} T_1 & * \\ 0 & T_2 \end{bmatrix}$. From $\Omega \Theta_T = \delta I$ we have $\Theta_1 \Omega \Theta_T \Omega_1 = \Theta_1 \delta \Omega_1 = \delta (\det \Theta_1) I$, where Ω_1 is the algebraic adjoint of Θ_1 . It follows that $(\Theta_1 \Omega) \Theta_2 = \delta I$. Since T_2 is of class C_{10} (cf. [9], Lemma 3.2), we infer from Lemma 1 that T_2 is quasi-similar to a unilateral shift. On the other hand, T_1 is quasi-similar to a unitary operator and $T \sim T_1 \oplus T_2$ (cf. [9], Theorem 2.1). We conclude that T is quasi-similar to an isometry as asserted.

Note that the isometry quasi-similar to T is unique up to unitary equivalence (cf. [1], Theorem 3.1). It also follows from the preceding proof that if T is c.n.u., then the isometry quasi-similar to T has an absolutely continuous unitary part. We may contrast Theorem 3 with the corresponding results for contractions similar to isometries: a contraction T is similar to an isometry if and only if there is a bounded analytic function Ω such that $\Omega \Theta_T = I$ (cf. [3], Theorem 2.4); a c.n.u. T is similar to an isometry if and only if T_1 is similar to a unitary operator and T_2 is similar to a unilateral shift (cf. [5], Theorem 2).

Corollary 4. *Let T be a c.n.u. contraction with finite defect indices and let \mathfrak{H}_1 be an invariant subspace for T .*

- (1) *If T is quasi-similar to an isometry, so is $T|\mathfrak{H}_1$.*
- (2) *If T is quasi-similar to a unilateral shift, so is $T|\mathfrak{H}_1$.*

Proof. (1) By [8], Lemma 1, T is of class C_{11} . Hence $T|\mathfrak{H}_1$ is also of class C_{11} . Let $\Theta_T = \Theta_2 \Theta_1$ be the corresponding regular factorization and let Ω be such that $\Omega \Theta_T = \delta I$ for some outer δ . Then $(\Omega \Theta_2) \Theta_1 = \delta I$ and by Theorem 3 we conclude that $T|\mathfrak{H}_1$ is quasi-similar to an isometry.

(2) By [8], Lemma 1, T is of class C_{10} . It is easy to check that $T|\mathfrak{H}_1$ is also of class C_{10} . Similar arguments as above finish the proof.

Corollary 5. *Let T be a c.n.u. contraction on \mathfrak{H} with finite defect indices. If T is quasi-similar to an isometry V on \mathfrak{K} , then there exist quasi-affinities $X: \mathfrak{H} \rightarrow \mathfrak{K}$ and $Y: \mathfrak{K} \rightarrow \mathfrak{H}$ which intertwine T and V and such that $XY = \delta(V)$ and $YX = \delta(T)$ for some outer function δ .*

Proof. Let $T = \begin{bmatrix} T_1 & * \\ 0 & T_2 \end{bmatrix}$ be the triangulation of type $\begin{bmatrix} C_{11} & * \\ 0 & C_{10} \end{bmatrix}$. As before, since T_1 is of class C_{11} with finite defect indices, we have $T \sim T_1 \oplus T_2$. Let $V = U \oplus S$ be the isometry quasi-similar to T , where U is unitary and S is a unilateral shift. As shown in the proof of Lemma 2, $T_1 \sim U$ and $T_2 \sim S$. Note that all these three quasi-similarities can be implemented by quasi-affinities satisfying the corresponding properties in the conclusion of our assertion (cf. [9], Theorem 2.1, [7], Lemma 2.1 and proof of Lemma 1). Hence the same holds for the quasi-similarity of T and V .

For an operator T , let $\text{Lat } T$, $\text{Lat}'' T$ and $\text{Hyperlat } T$ denote, respectively, the lattices of invariant subspaces, bi-invariant subspaces and hyperinvariant subspaces of T . The next lemma will be needed in the proof of Theorem 7. It can be proved in the same fashion as [7], Lemma 2.3.

Lemma 6. *Let V be an isometry with an absolutely continuous unitary part and let $\mathfrak{N} \in \text{Lat } V$. If δ is an outer function, then $\delta(V|\mathfrak{N})$ is a quasi-affinity on \mathfrak{N} .*

Theorem 7. *Let T be a c.n.u. contraction with finite defect indices. If T is quasi-similar to an isometry V , then $\text{Lat } T \cong \text{Lat } V$, $\text{Lat}'' T \cong \text{Lat}'' V$ and $\text{Hyperlat } T \cong \text{Hyperlat } V$.*

Proof. Note that T is of class C_{11} by [8], Lemma 1. We may assume that T is not of class C_{11} , for otherwise the conclusion has already been proved in [7], Theorem 2.2.

Let X and Y be the quasi-affinities as in Corollary 5. For $\mathfrak{M} \in \text{Lat } T$ and $\mathfrak{N} \in \text{Lat } V$, consider the mappings $\mathfrak{M} \rightarrow \overline{X\mathfrak{M}}$ and $\mathfrak{N} \rightarrow \overline{Y\mathfrak{N}}$. Using Lemma 6, we can easily verify that they implement the lattice isomorphisms between $\text{Lat } T$ and $\text{Lat } V$.

From [9], Theorem 3.13 and Lemma 3.11, we infer that $\text{Lat } T \cong \text{Lat}'' T$ and $\text{Lat } V \cong \text{Lat}'' V$. Hence to complete the proof, it suffices to show that (i) $\mathfrak{M} \in \text{Hyperlat } T$ implies $\overline{X\mathfrak{M}} \in \text{Hyperlat } V$ and (ii) $\mathfrak{N} \in \text{Hyperlat } V$ implies $\overline{Y\mathfrak{N}} \in \text{Hyperlat } T$. We only verify (i) and leave the verification of (ii) to the readers. Let $\mathfrak{M} \in \text{Hyperlat } T$ and $W \in \{V\}'$. Then $YWX \in \{T\}'$ and hence $\overline{YWX\mathfrak{M}} \subseteq \overline{\mathfrak{M}}$. Applying X on both sides, we obtain $\overline{\delta(V)WX\mathfrak{M}} = \overline{XYWX\mathfrak{M}} \subseteq \overline{X\mathfrak{M}}$. Since $\delta(V)|\overline{WX\mathfrak{M}}$ is a quasi-affinity on $\overline{WX\mathfrak{M}}$ (by Lemma 6), we conclude that $\overline{WX\mathfrak{M}} \subseteq \overline{X\mathfrak{M}}$. This shows that $\overline{X\mathfrak{M}} \in \text{Hyperlat } V$, completing the proof.

Corollary 8. *Let T be a c.n.u. contraction with finite defect indices. If T is quasi-similar to a unilateral shift, then $\text{Lat } T = \text{Lat}'' T = \overline{\{\text{ran } W : W \in \{T\}'\}}$, where $\{T\}'$ denotes the commutant of T .*

Proof. This follows easily from Theorem 7 and the fact that a unilateral shift S satisfies $\text{Lat } S = \text{Lat}'' S = \overline{\{\text{ran } Z : Z \in \{S\}'\}}$.

References

- [1] T. B. HOOVER, Quasi-similarity of operators, *Illinois J. Math.*, **16** (1972), 678—686.
- [2] B. SZ.-NAGY and C. FOIAŞ, *Harmonic analysis of operators on Hilbert space*, North Holland — Akadémiai Kiadó (Amsterdam—Budapest, 1970).
- [3] B. SZ.-NAGY and C. FOIAŞ, On the structure of intertwining operators, *Acta Sci. Math.*, **35** (1973), 225—254.
- [4] B. SZ.-NAGY and C. FOIAŞ, Jordan model for contractions of class C_+ , *Acta Sci. Math.*, **36** (1974), 305—322.
- [5] P. B. WU, On nonorthogonal decompositions of certain contractions, *Acta Sci. Math.*, **37** (1975), 301—306.
- [6] P. Y. WU, On contractions of class C_{++} , *Acta Sci. Math.*, **42** (1980), 205—210.
- [7] P. Y. WU, On a conjecture of Sz.-NAGY and FOIAŞ, *Acta Sci. Math.*, **42** (1980), 331—338.
- [8] P. Y. WU, On the quasi-similarity of hyponormal contractions, *Illinois J. Math.*, **25** (1981), 498—503.
- [9] P. Y. WU, Approximate decompositions of certain contractions, *Acta Sci. Math.*, **44** (1982), 137—149.