Injection-similar isometries

L. KÉRCHY

1. To construct canonical models for contractions of classes C_{11} and C_{0} on complex separable Hilbert spaces B. Sz.-NAGY and C. FoIAs generalized the notion of similarity (cf. [3, ch. II, sec. 3] and [4]). They called an operator $T_{1} \in \mathscr{L}\left(\mathfrak{F}_{1}\right)$ a quasi-affine transform of the operator $T_{2} \in \mathscr{L}\left(\mathfrak{H}_{2}\right), T_{1} \prec T_{2}$, if there exists a quasiaffinity (an injection with dense range) $X \in \mathscr{L}\left(\mathfrak{G}_{1}, \mathfrak{S}_{2}\right)$ which intertwines these operators, that is, $X T_{1}=T_{2} X . T_{1}$ and T_{2} are said to be quasi-similar, $T_{1} \sim T_{2}$, if they are quasi-affine transforms of each other, $T_{1} \prec T_{2}$ and $T_{2} \prec T_{1}$. Finding Jordan-models for contractions of class $C_{._{0}}$ even quasi-similarity proved to be insufficient. Therefore Sz .-NAGY and FoIAŞ [5] introduced the notion of injection-similarity. Operators $T_{1} \in \mathscr{L}\left(\mathfrak{H}_{1}\right)$ and $T_{2} \in \mathscr{L}\left(\mathfrak{H}_{2}\right)$ are injection-similar, $T_{1}{ }^{\mathbf{i}} T_{2}$, if they can be injected into each other, $T_{1} \stackrel{\text { i }}{<} T_{2}$ and $T_{2} \stackrel{\text { i }}{<} T_{1}$, that is, there are injections $X \in \mathscr{L}\left(\mathfrak{H}_{1}, \mathfrak{H}_{2}\right)$ and $Y \in \mathscr{L}\left(\mathfrak{H}_{2}, \mathfrak{H}_{1}\right)$ such that $X T_{1}=T_{2} X$ and $Y T_{2}=T_{1} Y . \quad T_{1}$ and T_{2} are completely injection-similar, $T_{1} \stackrel{\text { c.i }}{\sim} T_{2}$, if they can be completely injected into each other, $T_{1}{ }^{\text {c.i }}<T_{2}$ and $T_{2}{ }_{2}^{\text {c.i }} T_{1}$, that is, there exist families of intertwining injections $\left\{X_{\alpha}\right\}_{\alpha} \subseteq$ $\subseteq \mathscr{L}\left(\mathfrak{H}_{1}, \mathfrak{H}_{2}\right)$ and $\left\{Y_{\beta}\right\}_{\beta} \subseteq \mathscr{L}\left(\mathfrak{H}_{2}, \mathfrak{H}_{1}\right)$ such that $\bigvee_{\alpha} \operatorname{ran} X_{\alpha}=\mathfrak{S}_{2}$ and $\bigvee_{\beta} \operatorname{ran} Y_{\beta}=\mathfrak{Y}_{1}$.

Recently P. Y. Wu [1] has shown that every contraction T of class C_{1}., with at least one defect index finite, $d_{T}<\infty$, is completely injection-similar to an isometry. More precisely he proved that

$$
U \oplus S^{(\alpha)} \stackrel{\text { c.i }}{\prec} T \prec U \oplus S^{(\alpha)} .
$$

Here U is a unitary operator of the form $U=U_{1} \oplus U_{2}$, where U_{1} is the unitary part of the contraction T (cf. [3, Th. I.3.2]), and U_{2} denotes the operator of multiplication by $e^{i t}$ on the space $\left(\Delta_{T} L^{2}\left(\mathfrak{D}_{T}\right)\right)^{-}\left(\Lambda_{T}\left(e^{i t}\right)=\left(I-\Theta_{T}\left(e^{i t}\right)^{*} \Theta_{T}\left(e^{i t}\right)\right)^{1 / 2}\right.$, where Θ_{T} is the characteristic function of T). On the other hand $S^{(\alpha)}$ is the unilateral shift of multiplicity $\alpha=d_{r^{*}}-d_{T}$.

As for uniqueness of this isometry, Wu has shown that the unitary parts of injection-similar isometries are unitarily equivalent. Moreover he made the conjecture that injection-similar isometries are really unitarily equivalent, at least in the case, when their unitary parts have finite multiplicities. (Hoover [7] proved that quasisimilarity even implies unitary equivalence between isometries.)

In the present paper we give a negative answer to this conjecture and describe the isometries being completely injection-similar to the contraction T above. We follow the notation and terminology of [3]. For arbitrary operators $T_{1} \in \mathscr{L}\left(\mathfrak{S}_{1}\right)$ and $T_{2} \in \mathscr{L}\left(\mathfrak{S}_{2}\right), \mathscr{F}\left(T_{1}, T_{2}\right)$ will denote the set of intertwining operators, that is, $\mathscr{I}\left(T_{1}, T_{2}\right)=\left\{X \in \mathscr{L}\left(\mathfrak{H}_{1}, \mathfrak{S}_{2}\right) \mid T_{2} X=X T_{1}\right\}$.
2. We recall that every isometry V has a unique decomposition $V=U \oplus S^{(\alpha)}$ such that U is a unitary operator and $S^{(\alpha)}$ denotes the direct sum of α copies of the simple unilateral shift $S .\left(S^{(\alpha)}\right.$ is a completely non-unitary (c. n. u.) isometry with multiplicity α.) (Cf. [3, Th. I.1.1.]) The following proposition shows that Wu's conjecture has an affirmative answer, if V is a c. n. u. isometry or U is a singular unitary (s. u.) operator (the spectral measure of U is singular with respect to Lebesgue measure).

Proposition 1. Let V_{1} and V_{2} be injection-similar isometries, $V_{1} \stackrel{i}{\sim} V_{2}$. Let us assume that V_{1} is c.n.u. or its unitary part is a s.u. operator. Then these operators are unitarily equivalent, $V_{1} \cong V_{2}$.

Proof. Let V_{1} and V_{2} act on the Hilbert spaces \mathfrak{S}_{1} and \mathfrak{S}_{2}, respectively. Let us consider the canonical decompositions of these operators: $V_{1}=U_{1} \oplus S^{(\alpha)}, V_{2}=$ $=U_{2} \oplus S^{(\beta)}$ on the spaces $\mathfrak{S}_{1}=\boldsymbol{\Omega}_{1} \oplus \mathfrak{L}_{1}$ and $\mathfrak{S}_{2}=\boldsymbol{\Omega}_{2} \oplus \mathfrak{L}_{2}$. We know by [1, Lemma 3.6] that $U_{1} \cong U_{2}$. If V_{1} is c. n. u., then $\Re_{1}=\{0\}$, and so we obtain that $S^{(\alpha)}=$ $=V_{1} \stackrel{i}{\sim} V_{2}=S^{(\beta)}$. Now [5, Th. 5/6] results that $S^{(\alpha)} \cong S^{(\beta)}$. Consequently in this case we have that $V_{1} \cong V_{2}$.

Let us assume now that $\Omega_{1} \neq\{0\}$ and U_{1} is a s. u. operator. Let us suppose further that for instance $\mathscr{S}_{1} \neq\{0\}$. (The case $\mathscr{L}_{1}=\mathscr{I}_{2}=\{0\}$ is trivial.) Let $X \in$ $\in \mathscr{I}\left(V_{1}, V_{2}\right)$ be an injection, and consider the matrix $\left[\begin{array}{ll}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right]$ of X with respect to the decompositions above. It follows easily that $X_{12} \in \mathscr{I}\left(S^{(\alpha)}, U_{2}\right)$. Having denoted by $S_{b}^{(\alpha)}$ the minimal unitary dilation of $S^{(\alpha)}$, we define an operator $Y \in \mathscr{I}\left(S_{b}^{(\alpha)}, U_{2}\right)$ by the equation $Y\left(S_{b}^{(\alpha)}\right)^{-n} f:=U_{2}^{-n} X_{12} f\left(f \in \mathscr{I}_{1}, n \geqq 0\right)$ and by taking bounded closure. Since, being a bilateral shift, $S_{b}^{(\alpha)}$ is an absolutely continuous unitary (a.c. u.) operator, we infer by [8, Theorem 3] that $Y=0$. Taking into account that $X_{12}=Y \mid \mathcal{Q}_{1}$, it follows that $X_{12}=0$. We conclude that $X_{22} \in \mathscr{I}\left(S^{(\alpha)}, S^{(\beta)}\right)$ is an injection. In particular we infer that $\mathscr{L}_{2} \neq\{0\}$, and so a similar argument shows that we have $S^{(\beta)} \stackrel{i}{<} S^{(\alpha)}$
also. Therefore $S^{(\alpha)} \stackrel{i}{\sim} S^{(\beta)}$, and [5, Th. 5/6] implies again $S^{(\alpha)} \cong S^{(\beta)}$. The proof is completed.
3. In this section we shall see that the setting is contrary to the one in section 2 , if the isometry V is not c.n.u. and its unitary part is not a s. u. operator. The following lemma plays an essential role in the sequel.

Lemma 2. Let E be a measurable set on the unit circle $C=\{z \in \mathbf{C}| | z \mid=1\}$, and let M_{E} denote the operator of multiplication by $e^{i t}$ on the space $L^{2}(E)$. (We consider the normalized Lebesgue measure m on C.) If $m(E)>0$, then we have

$$
M_{E} \oplus S \prec M_{E}
$$

Proof. Let $\varphi_{1} \in L^{\infty}(E)$ be a function such that $\varphi_{1}\left(e^{i t}\right) \neq 0 \quad$ a. e. and $\int_{E} \log \left|\varphi_{1}\left(e^{i t}\right)\right| d m=-\infty$. On the other hand let $\varphi_{2} \in L^{\infty}(E)$ be a function such that $\left|\varphi_{2}\left(e^{i t}\right)\right|=1$ a.e. . We consider S as the operator of multiplication by $e^{i t}$ on the Hardy space H^{2}. Now let us define the operator X as follows: $X: L^{2}(E) \oplus H^{2} \rightarrow L^{2}(E)$, $X: f \oplus g \mapsto \varphi_{1} f+\varphi_{2}(g \mid E)$. It is obvious that $X \in \mathscr{I}\left(M_{E} \oplus S, M_{E}\right)$ is a quasi-surjection.

Let us assume now that $X(f \oplus g)=0$. Let us suppose further that $g \neq 0$. Then we have $g\left(e^{i t}\right) \neq 0$ a. e., and so $f\left(e^{i t}\right) \neq 0$ a. e. on E. From the assumption it immediately follows that $\left|\varphi_{1}\left(e^{i t}\right)\right| \cdot\left|f\left(e^{i t}\right)\right|=\left|g\left(e^{i t}\right)\right|$ a. e. on E. But this implies

$$
\log \left|\varphi_{1}\left(e^{i t}\right)\right|=\log \left|g\left(e^{i t}\right)\right|-\log \left|f\left(e^{i t}\right)\right| \geqq \log \left|g\left(e^{i t}\right)\right|+1-\left|f\left(e^{i t}\right)\right|
$$

and so we infer that

$$
-\infty=\int_{\boldsymbol{E}} \log \left|\varphi_{1}\left(e^{i t}\right)\right| d m \geqq \int_{\boldsymbol{E}} \log \left|g\left(e^{i t}\right)\right| d m+m(E)-\int_{\boldsymbol{E}}\left|f\left(e^{i t}\right)\right| d m>-\infty
$$

(cf. [3, ch. III]). This being a contradiction we conclude that $g=0$ and this results $f=0$. Therefore X is a quasi-affinity, and so $M_{E} \oplus S<M_{E}$.

Corollary 3. Let M_{E} be as before. Then for any $\alpha=1,2, \ldots ; \infty$ we have

$$
M_{E} \oplus S^{(\alpha)} \prec M_{E}
$$

Proof. By induction we immediately infer that the statement holds for every natural number. Let us now assume that $\alpha=\infty$. Let $\left\{E_{n}\right\}_{n=1}^{\infty}$ be a sequence of pairwise disjoint measurable subsets of E such that $\bigcup_{n=1}^{\infty} E_{n}=E$ and $m\left(E_{n}\right)>0$ for every n. Then we have $M_{E} \oplus S^{(\infty)} \cong \underset{n=1}{\infty}\left(M_{E_{n}} \oplus S\right)<\underset{n=1}{\oplus} M_{E_{n}} \cong M_{E}$ by Lemma 2, and the proof is finished.

Corollary 4. Let $V \in \mathscr{L}(\mathfrak{H})$ be a non-c. n. u. isometry, and let us assume that its unitary part $U \in \mathscr{L}(\Omega)(\Omega \neq\{0\})$ is not a s. u. operator. Then we have:
(i) $V \stackrel{i}{\sim} U$, more precisely $U \stackrel{i}{<} V \prec U$;
(ii) if even $\mathfrak{G} \ominus\{\neq\{0\}$ holds, then $V \sim U \oplus S$, more precisely $U \oplus S<V \prec$ $<U \oplus S$.

Proof. After decomposing U into the direct sum of its singular and its absolutely continuous parts, $U=U_{s} \oplus U_{a}$, and considering the functional model of U_{a} (cf. [9]), we conclude these statements by Corollary 3.

On account of Corollary 4 we can state:
Proposition 5. Let V_{1} and V_{2} be isometries, and let U_{1}, U_{2} denote their unitary parts, respectively. Let us assume that V_{1} is not c.n.u., and U_{1} is not a s. u. operator. Then we have:
(i) $V_{1} \stackrel{\text { i }}{\sim} V_{2}$ if and only if $U_{1} \cong U_{2}$;
(ii) $V_{1} \sim V_{2}$ if and only if $U_{1} \cong U_{2}$ and V_{1}, V_{2} are unitaries in the same time.

Proof. These statements follow immediately by [1, Lemma 3.6] and the preceding corollary. We have only to note that for any operator $X \in \mathscr{I}\left(V_{1}, V_{2}\right)$ we have $\left(X \Omega_{1}\right) \subseteq \Omega_{2}$, where $\Omega_{i} \in \operatorname{Lat} V_{i}$ is the subspace corresponding to $U_{i}(i=1,2)$. (Cf. the proof of [1, Lemma 3.6].)
4. Now let T be a contraction of class C_{1}, with at least one finite defect index, $d_{T}<\infty$. Consider the triangulation $\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ of the type $\left[\begin{array}{cc}C_{\cdot 1} & * \\ 0 & C_{\cdot 0}\end{array}\right]$ of T. We know from [1] that $T_{1} \in C_{11}, T_{2} \in C_{10}$ and $T \sim T_{1} \oplus T_{2}$ (cf. [1, Th. 2.1 and Lemma 3.2]). Now it follows easily by [3, Prop. II.3.5] and [6, Th. 3] that

$$
U \oplus S^{(\alpha)} \stackrel{\text { c.i }}{\prec} T \prec U \oplus S^{(\alpha)},
$$

where U is a unitary operator and $S^{(\alpha)}$ is the unilateral shift of multiplicity $\alpha=$ $=d_{T^{*}}-d_{T}$. (Cf. [1, Th. 3.5].) Moreover we know by [1, Lemma 3.6] that the unitary part of every isometry, being injection-similar to T, is unitarily equivalent to U.

We shall say that T is mixed with absolutely continuous part (m. w. a. c. p.), if $T \notin C_{11} \cup C_{10}$ and T_{1} is not a s. u. operator in the previous triangulation. Now we obtain immediately by Proposition 1:

Theorem 6. If $T \in C_{1}, d_{T}<\infty$ and T is not m. w. a. c. p., then $V=U \oplus S^{(\alpha)}$, $\alpha=d_{\mathrm{T}^{*}}-d_{T}$, is the unique isometry which is completely injection-similar to T.

On the other hand, in the contrary case we can state:

Theorem 7. If $T \in C_{1 .}, d_{T}<\infty$ and T is m. w. a. c. p., then

$$
U \oplus S^{(\alpha)} \stackrel{\text { c.i. }}{\prec} T \prec U \oplus S^{(\alpha)}
$$

holds, if and only if $1 \leqq \alpha \leqq d_{T^{*}}-d_{T}$.
To prove this theorem we need:
Lemma 8. If T is a contraction of class C_{10} and $d_{T}<\infty$, then $\operatorname{dim} \operatorname{ker} T^{*}=$ $=d_{T^{*}}-d_{T}$.

Proof. We can assume that T is given by its functional model. That is, T is the compression of the unilateral shift U_{+}on the vector-valued Hardy space $H^{2}\left(\mathfrak{C}_{*}\right)$ to the subspace $\mathfrak{G}=H^{2}\left(\mathfrak{E}_{*}\right) \ominus \Theta_{T} H^{2}(\mathfrak{E})\left(\in \operatorname{Lat} U_{+}^{*}\right)$, where $\operatorname{dim} \mathfrak{E}_{*}=d_{T^{*}}$, $\operatorname{dim} \mathfrak{E}=d_{T}$ and Θ_{T} denotes the characteristic function of $T . T$ being of class C_{10}, its characteristic function Θ_{T} is inner and $*$-outer (cf. [3, Prop. VI. 3.5]).

Since $T^{*}=U_{+}^{*} \mid \mathfrak{G}$, we infer that ker $T^{*}=\mathfrak{H} \cap \operatorname{ker} U_{+}^{*}=\mathfrak{G} \cap \mathfrak{E}_{*}$. Let $v \in \mathfrak{E}_{*}$ be an arbitrary vector. We have that $v \in \mathfrak{H}$, if and only if v is orthogonal to $\Theta_{T} H^{2}(\mathfrak{C})$. But this is the case, if and only if v is orthogonal to $\Theta_{T} H^{2}(\mathbb{E}) \ominus \lambda \Theta_{T} H^{2}(\mathbb{E})=$ $=\Theta_{T}\left(H^{2}(\mathfrak{E}) \ominus \lambda H^{2}(\mathfrak{E})\right)=\Theta_{T} \mathfrak{E}$. (We have used that Θ_{T} is an isometry.) Now, for any vector $w \in \mathbb{E}$, we have $\left\langle v, \Theta_{T} w\right\rangle=\int_{\boldsymbol{C}}\left\langle v, \Theta_{T}\left(e^{i t}\right) w\right\rangle d m=\int_{\boldsymbol{C}}\left\langle\Theta_{T}\left(e^{-i t}\right)^{*} v, w\right\rangle d m=$ $=\left\langle\Theta_{T}^{\sim} v, w\right\rangle=\left\langle P_{\mathfrak{E}} \Theta_{T}^{\sim} v, w\right\rangle$, where $P_{\mathbb{E}}$ denotes the orthogonal projection of $H^{2}(\mathbb{E})$ to the subspace \mathfrak{E}. Therefore, we conclude that $\operatorname{ker} T^{*}=\operatorname{ker}\left(P_{\mathfrak{E}} \Theta_{T}^{\sim} \mid \mathfrak{C}_{*}\right)$.

On the other hand, since Θ_{T}^{\sim} is an outer function, it follows that $H^{2}(\mathfrak{E})=$ $=\left(\Theta_{T}^{\sim} H^{2}\left(\mathfrak{E}_{*}\right)\right)^{-}=\left(\Theta_{T}^{\sim} \tilde{\mathfrak{E}}_{*}\right) \vee \lambda \Theta_{T}^{\sim} H^{2}\left(\mathfrak{E}_{*}\right) \subseteq\left(\Theta_{T}^{\sim} \tilde{\mathfrak{E}}_{*}\right) \vee\left(\lambda H^{2}(\mathfrak{E})\right)=\left(P_{\mathfrak{E}} \Theta_{T}^{\sim} \mathfrak{E}_{*}\right)^{-} \oplus \lambda H^{2}(\mathfrak{C})$. Therefore the operator $P_{⿷ 匚 \mathbb{E}} \Theta_{T}^{\sim} \mid \mathfrak{E}_{*} \in \mathscr{L}\left(\mathfrak{F}^{*}, \mathfrak{E}\right)$ is quasi-surjective, and so, taking into account that $\operatorname{dim} \mathfrak{E}<\infty$, we infer that $\operatorname{dim} \operatorname{ker}\left(P_{\mathfrak{E}} \Theta_{T}^{\sim} \mid \mathfrak{E}_{*}\right)=\operatorname{dim} \mathfrak{E}_{*}-\operatorname{dim} \mathfrak{E}=$ $=d_{T^{*}}-d_{T}$. The proof is completed.

Now we can prove Theorem 7.
Proof of Theorem 7. Let T_{1}, T_{2} and U be the operators as at the begining of this section. Since T is m.w.a.c.p., it follows that the space of U is not trivial (is not $\{0\}$), and that U is not a s. u. operator. Applying Corollary 3 we can easily infer that $U \oplus S^{(\alpha)} \stackrel{\text { c.i }}{\prec} U \oplus S^{\left(d_{T^{*}-}-d_{T}\right)}<U \oplus S^{(\alpha)}$, for every $1 \leqq \alpha \leqq d_{T^{*}}-d_{T}$. Therefore, it is enough to prove that $T<U \oplus S^{(\alpha)}$ implies $\alpha \leqq d_{T^{*}}-d_{T}$.

So, let us assume that $T \prec U \oplus S^{(\alpha)}$. Then we have $U \oplus T_{2} \prec T_{1} \oplus T_{2} \prec T \prec$ $<U \oplus S^{(\alpha)}$. Let $X \in \mathscr{I}\left(U \oplus T_{2}, U \oplus S^{(\alpha)}\right)$ be a quasi-affinity. Since then $X^{*} \in \mathscr{I}\left(U^{*} \oplus\right.$ $\oplus S^{*(\alpha)}, U^{*} \oplus T_{2}^{*}$) is also a quasi-affinity it follows that $X^{*} \mid \operatorname{ker} S^{*(\alpha)}$: $\operatorname{ker} S^{*(\alpha)} \rightarrow$ $\rightarrow \operatorname{ker} T_{2}^{*}$ is an injection. Therefore we get that $\alpha=\operatorname{dim} \operatorname{ker} S^{*(\alpha)} \leqq \operatorname{dim} \operatorname{ker} T_{2}^{*}$. Taking into account that $d_{T^{*}}-d_{T}=d_{T_{2}^{*}}-d_{T_{2}}$, we conclude by Lemma 8 that $\alpha \leqq$ $\leqq d_{T *}-d_{T}$. The proof is finished.

Corollary 9. If T is a contraction as in Theorem 7, then for the multiplicity of T^{*} we have: $\mu_{T^{*}}=\mu_{U}$.

Proof. We infer by Theorem 7 and Lemma 2 that $T<U \oplus S<U$. It follows that $U^{*} \prec T^{*}$, and so $\mu_{T^{*}} \leqq \mu_{U^{*}}=\mu_{U}$. On the other hand $T^{*} \sim T_{1}^{*} \oplus T_{2}^{*} \sim U^{*} \oplus T_{2}^{*}$ implies $\mu_{T^{*}} \geqq \mu_{U^{*}}=\mu_{U}$.
5. Finally we show that if $T \in C_{1} ., d_{T}<\infty$ and T is $\mathrm{m} . \mathrm{w}$. a. c. p., then there always exists an isometry V such that $V \prec T$. It can be easily seen that this is not the case, if T is not m. w. a. c. p. (cf. [5, Th. 5 and Prop. 2]).

Theorem 10. If $T \in C_{1 .}, d_{T}<\infty$, is a contraction m. w. a. c. p., then $U \oplus S^{(\alpha)} \prec$ $<T$, where $\alpha=d_{T^{*}}$.

Proof. Let T_{1}, T_{2} and U be the operators as in the begining of section 4. Since T is m. w. a. c. p., it follows that these operators act on non-zero spaces, and that U is not a s. u. operator. Therefore there exists a reducing subspace \mathscr{L} of U such that $U \mid \mathcal{E} \cong M_{E}$ for some measurable set $E(m(E)>0)$. Taking into account that $T \sim T_{1} \oplus T_{2} \sim U \oplus T_{2}$, it is enough to prove that $M_{E} \oplus S^{(\alpha)}<M_{E} \oplus T_{2}$, where $\alpha=d_{T^{*}}$.

Let us consider the minimal isometric dilation $W \in \mathscr{L}\left(\Omega_{+}\right)$of the contraction $T_{2} \in \mathscr{L}(\mathfrak{H})$. Since $T_{2} \in C_{\cdot 0}$, it follows that W is a unilateral shift of multiplicity $\alpha=d_{T^{*}}$ (cf. [3, Th. II.1.2 and II.2.1]). Therefore we infer by the proof of Corollary 3 that there exists an injection $Y \in \mathscr{F}\left(M_{E} \oplus W, M_{E} \oplus T_{2}\right)$ such that $\left(Y\left(L^{2}(E) \oplus\{0\}\right)\right)^{-}=$ $=(\operatorname{ran} Y)^{-}=L^{2}(E) \oplus\{0\}$. Let P denote the orthogonal projection of the space $L^{2}(E) \oplus \boldsymbol{\Omega}_{+} \quad$ onto its subspace $\{0\} \oplus \mathfrak{5}$. Then the operator $\quad X=\dot{Y}+P \in$ $\in \mathscr{L}\left(L^{2}(E) \oplus \mathfrak{R}_{+}, L^{2}(E) \oplus \mathfrak{S}\right)$ is obviously a quasi-affinity.

On the other hand, for any vector $f \oplus g \in L^{2}(E) \oplus \mathfrak{\Omega}_{+}$we have

$$
\begin{gathered}
\left(M_{E} \oplus T_{2}\right) X(f \oplus g)=\left(M_{E} \oplus T_{2}\right) Y(f \oplus g)+\left(M_{E} \oplus T_{2}\right) P(f \oplus g)= \\
=Y\left(M_{E} \oplus W\right)(f \oplus g)+\left(0 \oplus T_{2} P g\right)=Y\left(M_{E} \oplus W\right)(f \oplus g)+(0 \oplus P W g)= \\
=X\left(M_{E} \oplus W\right)(f \oplus g)
\end{gathered}
$$

Consequently we obtained that $M_{E} \oplus W<M_{E} \oplus T_{2}$, and so the proof is completed.
By Theorems 7 and 10 it follows immediately:
Corollary 11. If $T \in C_{1 .}, d_{T}<\infty$, is a contraction m. w. a. c. p. and $d_{T^{*}}=\infty$, then we have

$$
T \sim U \oplus S^{(\infty)}
$$

If both defect indices of T are finite, then it is in general not true that $T \sim$ $\sim U \oplus S^{(\alpha)}$, where $\alpha=d_{T^{*}}-d_{T}$. Indeed, contractions T with finite defect indices and
quasi-similar to an isometry V, were characterized by P . Y. Wu [2]. We note that if $T \in C_{1}, d_{T}<\infty$ and T is quasi-similar to an isometry V, then V is necessarily unitarily equivalent to the operator $U \oplus S^{(\alpha)}$, where $\alpha=d_{T^{*}}-d_{T}$. This follows easily by Theorems 6 and 7.

References

[1] P. Y. Wu, Approximate decompositions of certain contractions, Acta Sci. Math., 44 (1982), 137-149.
[2] P. Y. Wu, When is a contraction quasi-similar to an isometry?, Acta Sci. Math., 44 (1982), 151-155.
[3] B. Sz.-Nagy and C. Foiaş, Harmonic analysis of operators on Hilbert space, North Holland - Akadémiai Kiadó (Amsterdam-Budapest, 1970).
[4] B. Sz.-Nagy and C. Foraş, Modèles de Jordan pour une classe d'opérateurs de l'espace de Hilbert, Acta Sci. Math., 31 (1970), 91-115.
[5] B. Sz.-Nagy and C. Folaş, Jordan model for contractions of class C.0, Acta Sci. Math., 36 (1974), 305-322.
[6] B. Sz.-NaGy, Diagonalization of matrices over H^{∞}, Acta Sci. Math., 38 (1976), 223-238.
[7] T. B. Hoover, Quasi-similarity of operators, Illinois J. Math., 16 (1972), 678-686.
[8] R. G. Douglas, On the operator equation $S^{*} X T=X$ and related topics, Acta Sci. Math., 30 (1969), 19-32.
[9] N. Dunford and J. Schwartz, Linear operators, Part' II (New York, 1963).

