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Injection-similar isometries

L. KERCHY

1. To construct canonical models for contractions of classes Cy; and C, on
complex separable Hilbert spaces B. Sz.-NAGY and C. Folas generalized the notion
of similarity (cf. [3, ch. II, sec. 3] and [4]). They called an operator T,€Z(H,) a
quasi-affine transform of the operator T,£.L(9,), T1<T,, if there exists a quasi-
affinity (an injection with dense range) X€.%($,, $,) which intertwines these oper-
ators, thatis, XT,=T,X. T, and T, are said to be quasi-similar, T, ~T,, if they are
quasi-affine transforms of each other, T;<T, and T,<T;. Finding Jordan-models
for contractions of class C., even quasi-similarity proved to be insufficient. There-
fore Sz.-NAGY and Foias [5] introduced the notion of injection-similarity. Operators

T, €2 (9H,) and T, £(9,) are injection-similar, Tl;Tz, if they can be injected

into each other, T, <T, and T,<T,, that is, there are injections X€.Z(9;, He)
and YE€L (9., $)) such that XT;=T,X and YT,=T,Y. T, and T, are com-

ci
pletely injection-similar, Ty~ T,, if they can be completely injected into each other,
c.i ci
T,<T, and T,<Ty, thatis, there exist families of intertwining injections {X,},S
CEZ(9H1,9,) and {¥,},S & (92, H,) suchthat V ran X,=$, and V ran Y, =$,;.

Recently P. Y. Wu [1] has shown that every contraction T of class C,., with at
least one defect index finite, dr=<< <, is completely injection-similar to an isometry.
More precisely he proved that

UpS® < T< UDS®,

Here U is a unitary operator of the form U=U,®U,, where U, is the unitary part
of the contraction T (cf. {3, Th. 1.3.2}), and U, denotes the operator of multiplica-
tion by e on the space (4,L2(Dy))~ (Ar(")=(I—Or(€")*Or(e"))2, where O
is the characteristic function of T'). On the other hand S is the unilateral shift of
multiplicity «=d*—dr.
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As for uniqueness of this isometry, Wu has shown that the unitary parts of
injection-similar isometries are unitarily equivalent. Moreover he made the conjec-
ture that injection-similar isometries are really unitarily equivalent, at least in the case,
when their unitary parts have finite multiplicities. (HoOVER [7] proved that quasi-
similarity even implies unitary equivalence between isometries.)

In the present paper we give a negative answer to this conjecture and describe
the isometries being completely injection-similar to the contraction T above. We
follow the notation and terminology of [3). For arbitrary operators T,€.2(9,)
and TL,€2£(9,), #(Ty,T,) will denote the set of intertwining operators, that is,
I (T, To)={X€L (D1, Do) | T X=XT}.

2. We recall that every isometry ¥ has a unique decomposition V=Ug®S®
such that U is a unitary operator and S denotes the direct sum of « copies of the
simple unilateral shift S. (S is a completely non-unitary (c. n. u.) isometry with
multiplicity «.) (Cf. [3, Th. L.1.1.]) The following proposition shows that Wu’s con-
jecture has an affirmative answer, if ¥ is a c. n. u. isometry or U is a singular unitary
(s- u.) operator (the spectral measure of U is singular with respect to Lebesgue mea-
sure).

1
Proposition 1. Let ¥V, and V, be injection-similar isometries, Vi~V,. Let
us assume that V, is c.n.u. or its unitary part is a s.u. operator. Then these operators
are unitarily equivalent, V,=V,.

Proof. Let V; and V, act on the Hilbert spaces $, and $,, respectively. Let
us consider the canonical decompositions of these operators: V,=U,®S@, V,=
=U,»S® on the spaces $,=R,®L, and H,=K,®L,. We know by [1, Lemma
3.6] that Uy=U,. If V, isc. n.u., then &,={0}, and so we obtain that S =

= Vl; V,=S®. Now [5, Th. 5/6] results that S =S5 Consequently in this case
we have that V;=V,.

Let us assume now that R, {0} and U, is a s. u. operator. Let us suppose
further that for instance £,7{0}. (The case £,=2,={0} is trivial) Let X¢
X1
Xoo
the decompositions above. It follows easily that X;,€ #(S®@, U,). Having denoted by
S the minimal unitary dilation of $®, we define an operator Y¢£(S%, U,) by
the equation Y(S@)~"f:=U;"Xpf (f€2,,n=0) and by taking bounded closure.
Since, being a bilateral shift, S& is an absolutely continuous unitary (a.c. u.) operator,
we infer by [8, Theorem 3] that Y=0. Taking into account that X,,=Y|2,, it
follows that X;,=0. We conclude that X,,€ £(S®@, S®¥)) isan injection. In partic-

€F(V,, Vy) be an injection, and consider the matrix [‘;‘1 ] of X with respect to
21

1
ular we infer that £, {0}, and so a similar argument shows that we have S® < S®@
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also. Therefore S(“);S(”), and 5, Th. 5/6] implies again $®@==S5®¥. The proof
is completed.

3. In this section we shall see that the setting is contrary to the one in section 2,
if the isometry ¥ is not c.n. u. and its unitary part is nota s. u. operator. The follow-
ing lemma plays an essential role in the sequel.

Lemma 2. Let E be a measurable set on the unit circle C={z€C||z|=1},
and let My denote the operator of multiplication by e on the space L*(E). (We con-
sider the normalized Lebesgue measure m on C.) If m(E)=0, then we have

M:®S < Mg.

Proof. Let ¢,€L~(E) be a function such that ¢,(¢")0 a.e. and
f log @, (e")|dm= — . On the other hand let ¢, L~(E) be a function such that
E

lpg(e™)|=1 a.e.. We consider S as the operator of multiplication by ¢ on the Hardy
space H2. Now let us define the operator X as follows: X:L2(E)® H?*-+L*(E),
X fog—o, f+@,(g|lE). It is obvious that X€F(M;d S, M) is a quasi-surjec-
tion.

Let us assume now that X(f®g)=0. Let us suppose further that g>0. Then
we have g(e®)=0 a.e., and so f(e*)#0 a.e. on E. From the assumption it immedi-
ately follows that |o,(e")|-|f(e")|=|g(e")| a.e. on E. But this implies

log |4 (e")| = log |g(e')| —log|f(e")| = log|g(e™)| + 1 —[f(e"),

and so we infer that
—e= [loglg(¢) dm = [loglg(e")]dm+m(E)~ [1f(e")]dm >—<
E E E
(cf. [3, ch. III}). This being a contradiction we conclude that g=0 and this results
f=0. Therefore X is a quasi-affinity, and so M ®S<M;.
Corollary 3. Let My be as before. Then for any «=1,2,...; we have
Mi®HS® < M.

Proof. By induction we immediately infer that the statement holds for every
natural number. Let us now assume that a=-oo. Let {E,}>, be a sequence of pair-

wise disjoint measurable subsets of £ such that G FE,=E and m(E,)=0 for every

n=1
n. Then we have M ®S™= @ (M; ®S)< @ M; =M, by Lemma 2, and the
n=1 " n=1 "

proof is finished.
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Corollary 4. Let VEZL(9) be a non-c. n. u. isometry, and let us assume that
its unitary part UEZL(K) (]={0}) is not a s. u. operator. Then we have:

@) V; U, more precisely U<V <U,;

(i) if even HOK={0} holds, then Vf: U S, more precisely U®S f<l V<
<U®S.

Proof. After decomposing U into the direct sum of its singular and its abso-
lutely continuous parts, U=U,® U,, and considering the functional model of U,
(cf. [9]), we conclude these statements by Corollary 3.

On account of Corollary 4 we can state:

Proposition 5. Let V, and V, be isometries, and let U,, U, denote their uni-
tary parts, respectively. Let us assume that V, is not c¢. n. u.,and U, is not a s. u. oper-
ator. Then we have:

() Vi~V if and only if U,=U,;

[

(ii) Vi~Vyif and only if U,=U, and V,,V, are unitaries in the same time.

Proof. These statements follow immediately by [1, Lemma 3.6] and the pre-
ceding corollary. We have only to note that for any operator X€#(V,, V,) we have
(XR;)"ER,, where K,Lat¥; is the subspace corresponding to U; (i=1,2).
(Cf. the proof of {1, Lemma 3.6].)

4. Now let T be a contraction of class C;., with at least one finite defect index,

dr< . Consider the triangulation [Tl *] of the type [C'1 * ] of T. We know
0 T, 0 C,

from [1] that T,€Cyy, To6Cyq and T~T1®T, (cf. [1, Th. 2.1 and Lemma 3.2]).
Now it follows easily by [3, Prop. I1.3.5} and [6, Th. 3] that

UDS® <L T < UBS®,

where U is a unitary operator and S® is the unilateral shift of multiplicity o=
=dp«—dr. (Cf. [1, Th. 3.5].) Moreover we know by [1, Lemma 3.6] that the unitary
part of every isometry, being injection-similar to T, is unitarily equivalent to U.

We shall say that T is mixed with absolutely continuous part (m. w. a. c. p.),
if T¢CUCy, and T is not a s. u. operator in the previous triangulation. Now we
obtain immediately by Proposition 1:

Theorem 6. If T€C,.,dr<o and T is not m. w. a. c. p., then V=U & S®,
a=dp«—dy, is the unique isometry which is completely injection-similar to T.

On the other hand, in the contrary case we can state:
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Theorem 7. If T¢C,.,dr<o and T is m. w. a. c. p., then

c.i
UpSO < T <UDS®

holds, if and only if 1=a=dpn—dy.
To prove this theorem we need:

Lemma 8. If T is a contraction of class Cy, and dp<oo, then dimker T*=
=dp—dy.
T+ 4r

Proof. We can assume that T is given by its functional model. That is, T is
the compression of the unilateral shift U, on the vector-valued Hardy space HZ(E,)
to the subspace H=H*(€.)© O H*(€) (cLat UY), where dim G.=d,., dim E=d,
and @, denotes the characteristic function of T. T being of class C,,, its character-
istic function @ is inner and *-outer (cf. [3, Prop. VI. 3.5)).

Since T*=U%1|9, we infer that ker T*=9HNker UX =HNE,. Let v€E. be
an arbitrary vector. We have that v¢$, if and only if v is orthogonal to ©,H?(€).
But this is the case, if and only if » is orthogonal to ©,H*(€)©10, H* (€)=
=0, (H*(€)0 AH?(€))=0,€. (We have used that @, is an isometry.) Now, for
any vector we€, we have (v, O w)= / (, Op(eMW)dm= f (Or(e™ ™, wy dm=

[+ C

=(07v, wy=(PgOrv, w), where Pg denotes the orthogonal projection of H?(€)
to the subspace €. Therefore, we conclude that ker T*=ker (PgO7|Es).

On the other hand, since @7 is an outer function, it follows that H2(€)=
= (07 H*(E,))~=(07€,)V 107 HX(E,) S (05 €,V (1H*(€))=(PeO5 €,)~ @ LH*(E).
Therefore the operator P07 |€, €L (€*, €) is quasi-surjective, and so, taking into
account that dim €<, we infer that dim ker (Pg07|€,)=dim €, —dim €=
=dr«—dy. The proof is completed.

Now we can prove Theorem 7.

Proof of Theorem 7. Let Ty, T, and U be the operators as at the begining
of this section. Since T is m.w.a.c.p., it follows that the space of U is not trivial (is
not {0}), and that U is not a s. u. operator. Applying Corollary 3 we can easily infer

that U@S®<U@SUn4<U @S®, for every l=a=d;.—d,. Therefore, it
is enough to prove that T<U@S® implies a=d .—d.

So, let us assume that T<U®S®. Then we have U@T,<T, ®T,<T<
<U®S®. Let XcH(UT,, U®S™) be a quasi-affinity. Since then X*¢ £ (U* @
@S*®, U*@T)) is also a quasi-affinity it follows that X*|ker §*®: ker $*®
—~ker Ty is an injection. Therefore we get that a=dim ker $*® =dim ker T}.
Taking into account that dp«—dr=drs—dy , we conclude by Lemma 8 that o=
=d;,—dy. The proof is finished.

11
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Corollary 9. If T is a contraction as in Theorem 7, then for the multiplicity of
T* we have: pp.=py.

Proof. We infer by Theorem 7 and Lemma 2 that T<U®S<U. It follows
that U*<T*, and so pp«Spys=py. On the other hand T*~ Ty @T; ~U* BT}
implies pr«Zpge=py.

5. Finally we show that if T€C,.,d;<< and T is m. w. a. c. p., then there al-
ways exists an isometry ¥ such that V' <T. It can be easily seen that this is not the
case, if T is not m. w. a. c. p. (cf. [5, Th. 5 and Prop. 2]).

Theorem 10. If T€C,., dp< =, is a contraction m. w. a. c. p., then U®S® <
<T, where a=dp«.

Proof. LetT,, T, and U be the operators as in the begining of section 4.
Since T is m. w. a. . p., it follows that these operators act on non-zero spaces, and
that U is not a s. u. operator. Therefore there exists a reducing subspace £ of U such
that U|2=M; for some measurable set E (m(E)=0). Taking into account that
T~T,®T,~U®T,, it is enough to prove that My®SYP <M HT,, where
o=dpx.

Let us consider the minimal isometric dilation W¢.%(8.) of the contraction
T Z(9). Since T,eC.y, it follows that W is a unilateral shift of multiplicity
a=dp. (cf. [3, Th. 11.1.2 and I1.2.1]). Therefore we infer by the proof of Corollary 3
that there exists an injection Y€ # (Mg @W, My ®T,) such that (Y(L2(E)® {0])) =
=(ran Y)"=L*(E)®{0}. Let P denote the orthogonal projection of the space
L*E)®K,; onto its subspace {0}@$. Then the operator X=Y+P¢
CL(LHEYD R, LAE)DD) is obviously a quasi-affinity.

On the other hand, for any vector f@gelLl*(E)®RKR,. we have

(Mp®T)X(fBg) = (M@ T)Y(fO )+ (MDT) P(fDg) =
=Y(MdW)(fDg)+(0T,Pg) = Y(MOW)(fDg)+(0DPWg) =
= X(M0oW)(fDg).

Consequently we obtained that M, & W<M;®T,, and so the proof is completed.
By Theorems 7 and 10 it follows immediately:

Corollary 11. If T€C,.,dp<eo, is a contraction m. w. a. c. p. and dp«=,

then we have
T~ UBS=),

If both defect indices of T are finite, then it is in general not true that T~
~U®S8®, where a=d,.—d;. Indeed, contractions T with finite defect indices and
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quasi-similar to an isometry ¥, were characterized by P. Y. Wu [2]. We note that if
T€C,.,dp<eo and T is quasi-similar to an isometry ¥V, then V is necessarily unita-
rily equivalent to the operator U @S, where a=d;.—d;. This follows easily by
Theorems 6 and 7.
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