Injection-similar isometries

L. KÉRCHY

1. To construct canonical models for contractions of classes C_{11} and C_0 on complex separable Hilbert spaces B. Sz.-NAGY and C. FOIAS generalized the notion of similarity (cf. [3, ch. II, sec. 3] and [4]). They called an operator $T_1 \in \mathscr{L}(\mathfrak{H}_1)$ a *quasi-affine transform* of the operator $T_2 \in \mathscr{L}(\mathfrak{H}_2), T_1 \prec T_2$, if there exists a quasiaffinity (an injection with dense range) $X \in \mathscr{L}(\mathfrak{H}_1, \mathfrak{H}_2)$ which intertwines these operators, that is, $XT_1 = T_2X$. T_1 and T_2 are said to be *quasi-similar*, $T_1 \sim T_2$, if they are quasi-affine transforms of each other, $T_1 \prec T_2$ and $T_2 \prec T_1$. Finding Jordan-models for contractions of class $C_{.0}$ even quasi-similarity proved to be insufficient. Therefore Sz.-NAGY and FOIAS [5] introduced the notion of injection-similarity. Operators $T_1 \in \mathscr{L}(\mathfrak{H}_1)$ and $T_2 \in \mathscr{L}(\mathfrak{H}_2)$ are *injection-similar*, $T_1 \sim T_2$, if they can be injected into each other, $T_1 \prec T_2$ and $T_2 \prec T_1$, that is, there are injections $X \in \mathscr{L}(\mathfrak{H}_1, \mathfrak{H}_2)$ and $Y \in \mathscr{L}(\mathfrak{H}_2, \mathfrak{H}_1)$ such that $XT_1 = T_2X$ and $YT_2 = T_1Y$. T_1 and T_2 are *completely injection-similar*, $T_1 \sim T_2$, if they can be completely injected into each other,

 $T_1 \stackrel{c.i}{\prec} T_2$ and $T_2 \stackrel{c.i}{\prec} T_1$, that is, there exist families of intertwining injections $\{X_{\alpha}\}_{\alpha} \subseteq \subseteq \mathscr{L}(\mathfrak{H}_1, \mathfrak{H}_2)$ and $\{Y_{\beta}\}_{\beta} \subseteq \mathscr{L}(\mathfrak{H}_2, \mathfrak{H}_1)$ such that $\bigvee_{\alpha} \operatorname{ran} X_{\alpha} = \mathfrak{H}_2$ and $\bigvee_{\beta} \operatorname{ran} Y_{\beta} = \mathfrak{H}_1$. Recently P. Y. WU [1] has shown that every contraction T of class C_1 , with at

least one defect index finite, $d_T < \infty$, is completely injection-similar to an isometry. More precisely he proved that

$$U\oplus S^{(\alpha)}\stackrel{\mathrm{c.i}}{\prec} T \prec U\oplus S^{(\alpha)}.$$

Here U is a unitary operator of the form $U=U_1\oplus U_2$, where U_1 is the unitary part of the contraction T (cf. [3, Th. I.3.2]), and U_2 denotes the operator of multiplication by e^{it} on the space $(\Delta_T L^2(\mathfrak{D}_T))^- (\Delta_T (e^{it}) = (I - \mathcal{O}_T (e^{it})^* \mathcal{O}_T (e^{it}))^{1/2}$, where \mathcal{O}_T is the characteristic function of T). On the other hand $S^{(\alpha)}$ is the unilateral shift of multiplicity $\alpha = d_T^* - d_T$.

Received July 1, 1981.

As for uniqueness of this isometry, Wu has shown that the unitary parts of injection-similar isometries are unitarily equivalent. Moreover he made the conjecture that injection-similar isometries are really unitarily equivalent, at least in the case, when their unitary parts have finite multiplicities. (HOOVER [7] proved that quasi-similarity even implies unitary equivalence between isometries.)

In the present paper we give a negative answer to this conjecture and describe the isometries being completely injection-similar to the contraction T above. We follow the notation and terminology of [3]. For arbitrary operators $T_1 \in \mathscr{L}(\mathfrak{H}_1)$ and $T_2 \in \mathscr{L}(\mathfrak{H}_2), \mathscr{I}(T_1, T_2)$ will denote the set of intertwining operators, that is, $\mathscr{I}(T_1, T_2) = \{X \in \mathscr{L}(\mathfrak{H}_1, \mathfrak{H}_2) \mid T_2 X = X T_1\}.$

2. We recall that every isometry V has a unique decomposition $V = U \oplus S^{(\alpha)}$ such that U is a unitary operator and $S^{(\alpha)}$ denotes the direct sum of α copies of the simple unilateral shift S. $(S^{(\alpha)}$ is a completely non-unitary (c. n. u.) isometry with multiplicity α .) (Cf. [3, Th. I.1.1.]) The following proposition shows that Wu's conjecture has an affirmative answer, if V is a c. n. u. isometry or U is a singular unitary (s. u.) operator (the spectral measure of U is singular with respect to Lebesgue measure).

Proposition 1. Let V_1 and V_2 be injection-similar isometries, $V_1 \sim V_2$. Let us assume that V_1 is c. n. u. or its unitary part is a s. u. operator. Then these operators are unitarily equivalent, $V_1 \cong V_2$.

Proof. Let V_1 and V_2 act on the Hilbert spaces \mathfrak{H}_1 and \mathfrak{H}_2 , respectively. Let us consider the canonical decompositions of these operators: $V_1 = U_1 \oplus S^{(\alpha)}$, $V_2 = = U_2 \oplus S^{(\beta)}$ on the spaces $\mathfrak{H}_1 = \mathfrak{H}_1 \oplus \mathfrak{L}_1$ and $\mathfrak{H}_2 = \mathfrak{H}_2 \oplus \mathfrak{L}_2$. We know by [1, Lemma 3.6] that $U_1 \cong U_2$. If V_1 is c. n. u., then $\mathfrak{H}_1 = \{0\}$, and so we obtain that $S^{(\alpha)} = = V_1 \stackrel{i}{\sim} V_2 = S^{(\beta)}$. Now [5, Th. 5/6] results that $S^{(\alpha)} \cong S^{(\beta)}$. Consequently in this case we have that $V_1 \cong V_2$.

Let us assume now that $\Re_1 \neq \{0\}$ and U_1 is a s. u. operator. Let us suppose further that for instance $\mathfrak{Q}_1 \neq \{0\}$. (The case $\mathfrak{Q}_1 = \mathfrak{Q}_2 = \{0\}$ is trivial.) Let $X \in \mathcal{S}(V_1, V_2)$ be an injection, and consider the matrix $\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix}$ of X with respect to the decompositions above. It follows easily that $X_{12} \in \mathcal{I}(S^{(\alpha)}, U_2)$. Having denoted by $S_b^{(\alpha)}$ the minimal unitary dilation of $S^{(\alpha)}$, we define an operator $Y \in \mathcal{I}(S_b^{(\alpha)}, U_2)$ by the equation $Y(S_b^{(\alpha)})^{-n}f := U_2^{-n}X_{12}f$ $(f \in \mathfrak{Q}_1, n \ge 0)$ and by taking bounded closure. Since, being a bilateral shift, $S_b^{(\alpha)}$ is an absolutely continuous unitary (a.c. u.) operator, we infer by [8, Theorem 3] that Y=0. Taking into account that $X_{12}=Y|\mathfrak{Q}_1$, it follows that $X_{12}=0$. We conclude that $X_{22}\in \mathcal{I}(S^{(\alpha)}, S^{(\beta)})$ is an injection. In particular we infer that $\mathfrak{Q}_2 \neq \{0\}$, and so a similar argument shows that we have $S^{(\beta)} \stackrel{i}{\prec} S^{(\alpha)}$ also. Therefore $S^{(\alpha)} \stackrel{i}{\sim} S^{(\beta)}$, and [5, Th. 5/6] implies again $S^{(\alpha)} \cong S^{(\beta)}$. The proof is completed.

3. In this section we shall see that the setting is contrary to the one in section 2, if the isometry V is not c. n. u. and its unitary part is not a s. u. operator. The following lemma plays an essential role in the sequel.

Lemma 2. Let E be a measurable set on the unit circle $C = \{z \in \mathbb{C} | |z| = 1\}$, and let M_E denote the operator of multiplication by e^{it} on the space $L^2(E)$. (We consider the normalized Lebesgue measure m on C.) If m(E) > 0, then we have

$$M_E \oplus S \prec M_E.$$

Proof. Let $\varphi_1 \in L^{\infty}(E)$ be a function such that $\varphi_1(e^{it}) \neq 0$ a. e. and $\int_E \log |\varphi_1(e^{it})| dm = -\infty$. On the other hand let $\varphi_2 \in L^{\infty}(E)$ be a function such that $|\varphi_2(e^{it})| = 1$ a.e.. We consider S as the operator of multiplication by e^{it} on the Hardy space H^2 . Now let us define the operator X as follows: $X: L^2(E) \oplus H^2 \to L^2(E)$, $X: f \oplus g \mapsto \varphi_1 f + \varphi_2(g|E)$. It is obvious that $X \in \mathscr{I}(M_E \oplus S, M_E)$ is a quasi-surjection.

Let us assume now that $X(f \oplus g) = 0$. Let us suppose further that $g \neq 0$. Then we have $g(e^{it}) \neq 0$ a. e., and so $f(e^{it}) \neq 0$ a. e. on *E*. From the assumption it immediately follows that $|\varphi_1(e^{it})| \cdot |f(e^{it})| = |g(e^{it})|$ a. e. on *E*. But this implies

$$\log |\varphi_1(e^{it})| = \log |g(e^{it})| - \log |f(e^{it})| \ge \log |g(e^{it})| + 1 - |f(e^{it})|,$$

and so we infer that

$$-\infty = \int_{E} \log |\varphi_1(e^{it})| \, dm \ge \int_{E} \log |g(e^{it})| \, dm + m(E) - \int_{E} |f(e^{it})| \, dm > -\infty$$

(cf. [3, ch. III]). This being a contradiction we conclude that g=0 and this results f=0. Therefore X is a quasi-affinity, and so $M_E \oplus S \prec M_E$.

Corollary 3. Let M_E be as before. Then for any $\alpha = 1, 2, ..., \infty$ we have

$$M_E \oplus S^{(\alpha)} \prec M_E.$$

Proof. By induction we immediately infer that the statement holds for every natural number. Let us now assume that $\alpha = \infty$. Let $\{E_n\}_{n=1}^{\infty}$ be a sequence of pairwise disjoint measurable subsets of E such that $\bigcup_{n=1}^{\infty} E_n = E$ and $m(E_n) > 0$ for every n. Then we have $M_E \oplus S^{(\infty)} \cong \bigoplus_{n=1}^{\infty} (M_{E_n} \oplus S) \prec \bigoplus_{n=1}^{\infty} M_{E_n} \cong M_E$ by Lemma 2, and the proof is finished.

Corollary 4. Let $V \in \mathscr{L}(\mathfrak{H})$ be a non-c. n. u. isometry, and let us assume that its unitary part $U \in \mathscr{L}(\mathfrak{K})$ $(\mathfrak{K} \neq \{0\})$ is not a s. u. operator. Then we have:

(i) $V \sim U$, more precisely $U \prec V \prec U$;

(ii) if even $\mathfrak{H} \ominus \mathfrak{R} \neq \{0\}$ holds, then $V \stackrel{c.i}{\sim} U \oplus S$, more precisely $U \oplus S \stackrel{c.i}{\prec} V \prec \forall U \oplus S$.

Proof. After decomposing U into the direct sum of its singular and its absolutely continuous parts, $U=U_s\oplus U_a$, and considering the functional model of U_a (cf. [9]), we conclude these statements by Corollary 3.

On account of Corollary 4 we can state:

Proposition 5. Let V_1 and V_2 be isometries, and let U_1 , U_2 denote their unitary parts, respectively. Let us assume that V_1 is not c. n. u., and U_1 is not a s. u. operator. Then we have:

- (i) $V_1 \sim V_2$ if and only if $U_1 \cong U_2$;
- (ii) $V_1 \sim V_2$ if and only if $U_1 \simeq U_2$ and V_1, V_2 are unitaries in the same time.

Proof. These statements follow immediately by [1, Lemma 3.6] and the preceding corollary. We have only to note that for any operator $X \in \mathscr{I}(V_1, V_2)$ we have $(X\mathfrak{R}_1)^- \subseteq \mathfrak{R}_2$, where $\mathfrak{R}_i \in \operatorname{Lat} V_i$ is the subspace corresponding to U_i (i=1,2). (Cf. the proof of [1, Lemma 3.6].)

4. Now let T be a contraction of class C_1 , with at least one finite defect index, $d_T < \infty$. Consider the triangulation $\begin{bmatrix} T_1 & * \\ 0 & T_2 \end{bmatrix}$ of the type $\begin{bmatrix} C_{\cdot 1} & * \\ 0 & C_{\cdot 0} \end{bmatrix}$ of T. We know from [1] that $T_1 \in C_{11}$, $T_2 \in C_{10}$ and $T \sim T_1 \oplus T_2$ (cf. [1, Th. 2.1 and Lemma 3.2]). Now it follows easily by [3, Prop. II.3.5] and [6, Th. 3] that

$$U \oplus S^{(\alpha)} \stackrel{\text{c.i}}{\prec} T \prec U \oplus S^{(\alpha)},$$

where U is a unitary operator and $S^{(\alpha)}$ is the unilateral shift of multiplicity $\alpha = = d_{T^*} - d_T$. (Cf. [1, Th. 3.5].) Moreover we know by [1, Lemma 3.6] that the unitary part of every isometry, being injection-similar to T, is unitarily equivalent to U.

We shall say that T is mixed with absolutely continuous part (m. w. a. c. p.), if $T \notin C_{11} \cup C_{10}$ and T_1 is not a s. u. operator in the previous triangulation. Now we obtain immediately by Proposition 1:

Theorem 6. If $T \in C_1$, $d_T < \infty$ and T is not m. w. a. c. p., then $V = U \oplus S^{(\alpha)}$, $\alpha = d_{T^*} - d_T$, is the unique isometry which is completely injection-similar to T.

On the other hand, in the contrary case we can state:

Theorem 7. If $T \in C_1$, $d_T < \infty$ and T is m. w. a. c. p., then

$$U \oplus S^{(\alpha)} \stackrel{\text{c.i}}{\prec} T \prec U \oplus S^{(\alpha)}$$

holds, if and only if $1 \leq \alpha \leq d_{T^*} - d_T$.

To prove this theorem we need:

Lemma 8. If T is a contraction of class C_{10} and $d_T < \infty$, then dim ker $T^* = = d_{T^*} - d_T$.

Proof. We can assume that T is given by its functional model. That is, T is the compression of the unilateral shift U_+ on the vector-valued Hardy space $H^2(\mathfrak{E}_*)$ to the subspace $\mathfrak{H}^{=}(\mathfrak{E}_*) \ominus \mathcal{O}_T H^2(\mathfrak{E})$ ($\in \operatorname{Lat} U_+^*$), where dim $\mathfrak{E}_* = d_{T^*}$, dim $\mathfrak{E} = d_T$ and \mathcal{O}_T denotes the characteristic function of T. T being of class C_{10} , its characteristic function \mathcal{O}_T is inner and *-outer (cf. [3, Prop. VI. 3.5]).

Since $T^* = U^*_+ | \mathfrak{H}$, we infer that ker $T^* = \mathfrak{H} \cap \ker U^*_+ = \mathfrak{H} \cap \mathfrak{E}_*$. Let $v \in \mathfrak{E}_*$ be an arbitrary vector. We have that $v \in \mathfrak{H}$, if and only if v is orthogonal to $\mathcal{O}_T H^2(\mathfrak{E})$. But this is the case, if and only if v is orthogonal to $\mathcal{O}_T H^2(\mathfrak{E}) \ominus \lambda \mathcal{O}_T H^2(\mathfrak{E}) =$ $= \mathcal{O}_T (H^2(\mathfrak{E}) \ominus \lambda H^2(\mathfrak{E})) = \mathcal{O}_T \mathfrak{E}$. (We have used that \mathcal{O}_T is an isometry.) Now, for any vector $w \in \mathfrak{E}$, we have $\langle v, \mathcal{O}_T w \rangle = \int_C \langle v, \mathcal{O}_T(e^{it})w \rangle dm = \int_C \langle \mathcal{O}_T(e^{-it})^*v, w \rangle dm =$ $= \langle \mathcal{O}_T^*v, w \rangle = \langle P_{\mathfrak{E}} \mathcal{O}_T^*v, w \rangle$, where $P_{\mathfrak{E}}$ denotes the orthogonal projection of $H^2(\mathfrak{E})$ to the subspace \mathfrak{E} . Therefore, we conclude that ker $T^* = \ker (P_{\mathfrak{E}} \mathcal{O}_T^* | \mathfrak{E}_*)$.

On the other hand, since Θ_T^{\sim} is an outer function, it follows that $H^2(\mathfrak{E}) = = (\Theta_T^{\sim} H^2(\mathfrak{E}_*))^{-} = (\Theta_T^{\sim} \mathfrak{E}_*) \vee \lambda \Theta_T^{\sim} H^2(\mathfrak{E}_*) \subseteq (\Theta_T^{\sim} \mathfrak{E}_*) \vee (\lambda H^2(\mathfrak{E})) = (P_{\mathfrak{E}} \Theta_T^{\sim} \mathfrak{E}_*)^{-} \oplus \lambda H^2(\mathfrak{E}).$ Therefore the operator $P_{\mathfrak{E}} \Theta_T^{\sim} | \mathfrak{E}_* \in \mathscr{L}(\mathfrak{E}^*, \mathfrak{E})$ is quasi-surjective, and so, taking into account that dim $\mathfrak{E} < \infty$, we infer that dim ker $(P_{\mathfrak{E}} \Theta_T^{\sim} | \mathfrak{E}_*) = \dim \mathfrak{E}_* - \dim \mathfrak{E} = = d_{T*} - d_T$. The proof is completed.

Now we can prove Theorem 7.

Proof of Theorem 7. Let T_1, T_2 and U be the operators as at the begining of this section. Since T is m.w.a.c.p., it follows that the space of U is not trivial (is not {0}), and that U is not a s. u. operator. Applying Corollary 3 we can easily infer that $U \oplus S^{(\alpha)} \prec U \oplus S^{(d_{T*}-d_T)} \prec U \oplus S^{(\alpha)}$, for every $1 \le \alpha \le d_{T*}-d_T$. Therefore, it is enough to prove that $T \prec U \oplus S^{(\alpha)}$ implies $\alpha \le d_{T*}-d_T$.

So, let us assume that $T \prec U \oplus S^{(\alpha)}$. Then we have $U \oplus T_2 \prec T_1 \oplus T_2 \prec T \prec \prec U \oplus S^{(\alpha)}$. Let $X \in \mathscr{I}(U \oplus T_2, U \oplus S^{(\alpha)})$ be a quasi-affinity. Since then $X^* \in \mathscr{I}(U^* \oplus \oplus S^{*(\alpha)}, U^* \oplus T_2^*)$ is also a quasi-affinity it follows that $X^* |\ker S^{*(\alpha)} : \ker S^{*(\alpha)} \to \ker T_2^*$ is an injection. Therefore we get that $\alpha = \dim \ker S^{*(\alpha)} \leq \dim \ker T_2^*$. Taking into account that $d_{T^*} - d_T = d_{T_2^*} - d_{T_2}$, we conclude by Lemma 8 that $\alpha \leq d_{T^*} - d_T$. The proof is finished.

11

L. Kérchy

Corollary 9. If T is a contraction as in Theorem 7, then for the multiplicity of T^* we have: $\mu_{T^*} = \mu_U$.

Proof. We infer by Theorem 7 and Lemma 2 that $T \prec U \oplus S \prec U$. It follows that $U^* \prec T^*$, and so $\mu_{T^*} \equiv \mu_{U^*} = \mu_U$. On the other hand $T^* \sim T_1^* \oplus T_2^* \sim U^* \oplus T_2^*$ implies $\mu_{T^*} \equiv \mu_{U^*} = \mu_U$.

5. Finally we show that if $T \in C_1$, $d_T < \infty$ and T is m. w. a. c. p., then there always exists an isometry V such that $V \prec T$. It can be easily seen that this is not the case, if T is not m. w. a. c. p. (cf. [5, Th. 5 and Prop. 2]).

Theorem 10. If $T \in C_1$, $d_T < \infty$, is a contraction m. w. a. c. p., then $U \oplus S^{(\alpha)} \prec \langle T, where \alpha = d_{T^*}$.

Proof. Let T_1, T_2 and U be the operators as in the begining of section 4. Since T is m. w. a. c. p., it follows that these operators act on non-zero spaces, and that U is not a s. u. operator. Therefore there exists a reducing subspace \mathfrak{L} of U such that $U|\mathfrak{L} \cong M_E$ for some measurable set E(m(E)>0). Taking into account that $T \sim T_1 \oplus T_2 \sim U \oplus T_2$, it is enough to prove that $M_E \oplus S^{(\alpha)} \prec M_E \oplus T_2$, where $\alpha = d_{T^*}$.

Let us consider the minimal isometric dilation $W \in \mathscr{L}(\mathfrak{K}_+)$ of the contraction $T_2 \in \mathscr{L}(\mathfrak{H})$. Since $T_2 \in C_{\cdot 0}$, it follows that W is a unilateral shift of multiplicity $\alpha = d_{T^*}$ (cf. [3, Th. II.1.2 and II.2.1]). Therefore we infer by the proof of Corollary 3 that there exists an injection $Y \in \mathscr{I}(M_E \oplus W, M_E \oplus T_2)$ such that $(Y(L^2(E) \oplus \{0\}))^- = = (\operatorname{ran} Y)^- = L^2(E) \oplus \{0\}$. Let P denote the orthogonal projection of the space $L^2(E) \oplus \mathfrak{K}_+$ onto its subspace $\{0\} \oplus \mathfrak{H}$. Then the operator $X = Y + P \in \mathscr{L}(L^2(E) \oplus \mathfrak{K}_+, L^2(E) \oplus \mathfrak{H})$ is obviously a quasi-affinity.

On the other hand, for any vector $f \oplus g \in L^2(E) \oplus \Re_+$ we have

$$(M_E \oplus T_2) X(f \oplus g) = (M_E \oplus T_2) Y(f \oplus g) + (M_E \oplus T_2) P(f \oplus g) =$$
$$= Y(M_E \oplus W)(f \oplus g) + (0 \oplus T_2 Pg) = Y(M_E \oplus W)(f \oplus g) + (0 \oplus PWg) =$$
$$= X(M_E \oplus W)(f \oplus g).$$

Consequently we obtained that $M_E \oplus W \prec M_E \oplus T_2$, and so the proof is completed. By Theorems 7 and 10 it follows immediately:

Corollary 11. If $T \in C_1$, $d_T < \infty$, is a contraction m. w. a. c. p. and $d_{T*} = \infty$, then we have

$$T \sim U \oplus S^{(\infty)}$$
.

If both defect indices of T are finite, then it is in general not true that $T \sim \sim U \oplus S^{(\alpha)}$, where $\alpha = d_{T^*} - d_T$. Indeed, contractions T with finite defect indices and

quasi-similar to an isometry V, were characterized by P. Y. WU [2]. We note that if $T \in C_1$, $d_T < \infty$ and T is quasi-similar to an isometry V, then V is necessarily unitarily equivalent to the operator $U \oplus S^{(\alpha)}$, where $\alpha = d_{T*} - d_T$. This follows easily by Theorems 6 and 7.

References

- [1] P. Y. WU, Approximate decompositions of certain contractions, Acta Sci. Math., 44 (1982), 137-149.
- [2] P. Y. Wu, When is a contraction quasi-similar to an isometry?, Acta Sci. Math., 44 (1982), 151-155.
- [3] B. Sz.-NAGY and C. FOIAŞ, Harmonic analysis of operators on Hilbert space, North Holland — Akadémiai Kiadó (Amsterdam—Budapest, 1970).
- [4] B. Sz.-NAGY and C. FOIAŞ, Modèles de Jordan pour une classe d'opérateurs de l'espace de Hilbert, Acta Sci. Math., 31 (1970), 91-115.
- [5] B. Sz.-NAGY and C. FOIAŞ, Jordan model for contractions of class C., Acta Sci. Math., 36 (1974), 305-322.
- [6] B. Sz.-NAGY, Diagonalization of matrices over H[∞], Acta Sci. Math., 38 (1976), 223-238.
- [7] T. B. HOOVER, Quasi-similarity of operators, Illinois J. Math., 16 (1972), 678-686.
- [8] R. G. DOUGLAS, On the operator equation $S^*XT = X$ and related topics, Acta Sci. Math., 30 (1969), 19-32.
- [9] N. DUNFORD and J. SCHWARTZ, Linear operators, Part'II (New York, 1963).

BOLYAI INSTITUTE UNIVERSITY SZEGED ARADI VÉRTANÚK TERE 1 H—6720 SZEGED, HUNGARY