Moment theorems for operators on Hilbert space

ZOLTÃN SEBESTYÉN

Introduction

The present note raises and solves moment like problems on the existence of a contraction, a subnormal operator and of a continuous semigroup of contractions, respectively, on a (complex) Hilbert space:
(A) Given a sequence $\left\{h_{n}\right\}_{n \geqq 0}$ of elements of the Hilbert space H, under what condition does there exist a contraction or a subnormal operator T on H such that

$$
\begin{equation*}
h_{n}=T^{n} h_{0} \text { holds for } n=1,2, \ldots \tag{1}
\end{equation*}
$$

(B) Given a continuous family $\left\{h_{t}\right\}_{t \geqq 0}$ of elements of the Hilbert space H, under what condition does there exist a continuous semigroup $\left\{T_{t}\right\}_{t \geq 0}$ of contractions on H such that

$$
\begin{equation*}
h_{t}=T_{t} h_{0} \text { holds for } t \geqq 0 . \tag{2}
\end{equation*}
$$

The key to the solution (and of the source of these questions) is the theory of unitary and normal dilations.

The author is indepted to Professor B. Sz.-Nagy for his valuable advices, for his personal stimulation.

For normal extension of subnormal operators we refer to Bram [1], Halmos [2] and Sz.-Nagy [3].

Results

Theorem A. Let $\left\{h_{n}\right\}_{n} \cong_{0}$ be a sequence of elements of the Hilbert space H. There exists a contraction T on H satisfying (1) if and only if
(i) $\left\|\sum_{n, n^{\prime}} c_{n, n^{\prime}} h_{n+n^{\prime}}\right\|^{2} \leqq \sum_{\substack{m \geq n \\ m^{\prime}, n^{\prime}}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(h_{n-n+m^{\prime}}, h_{n^{\prime}}\right)+\sum_{\substack{m<n \\ m^{\prime}, n^{\prime}}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(h_{m m^{\prime}}, h_{n-m+n^{\prime}}\right)$
holds for any finite double sequence $\left\{c_{n, n^{\prime}}\right\}_{n \geqq 0, n^{\prime} \supseteq 0}$ of complex numbers.

[^0]Theorem B. Let $\left\{h_{t}\right\}_{t \geq 0}$ be a continuous family of elements of a Hilbert space H. There exists a continuous semigroup $\left\{T_{t}\right\}_{t} \geqq_{0}$ of contractions in H satisfying (2) if and only if

$$
\begin{equation*}
\left\|\sum_{t, r^{\prime}} c_{t, t^{\prime}} h_{t+t^{\prime}}\right\|^{2} \leqq \sum_{\substack{s \leq 1 \\ s^{\prime}, t^{\prime}}} c_{s, s^{\prime}} \bar{c}_{t, t^{\prime}}\left(h_{s-t+s^{\prime}}, h_{t^{\prime}}\right)+\sum_{\substack{s \leq 1 \\ s^{\prime}, t^{\prime}}} c_{s, s^{\prime}} \bar{c}_{t, t^{\prime}}\left(h_{s^{\prime}}, h_{t-s+t^{\prime}}\right) \tag{ii}
\end{equation*}
$$

holds for any finite double sequence $\left\{c_{t, t^{\prime}}\right\}_{t \geq 0, t^{\prime} \geq 0}$ of complex numbers.
Theorem C. Let $\left\{h_{n}\right\}_{n} \geqq_{0}$ be a sequence of elements of the Hilbert space H such that
(iii) $\left\{h_{n}\right\}$ spans the space H,
(iv) $\left\|h_{n}\right\| \leqq \mathscr{K}^{n}(n=0,1,2, \ldots)$ for some constant \mathscr{K}.

There exists a subnormal operator T on H satisfying (1) if and only if there exists a double sequence $\left\{h_{n}^{h^{\prime}}\right\}_{n, n^{\prime} \geq 0}$ of elements of H such that
(v) $h_{n}^{0}=h_{n}$ for $n=0,1,2, \ldots$,
(vi) $\left(h_{n}^{n^{\prime}}, h_{m}\right)=\left(h_{n}, h_{m+n^{\prime}}\right)$ for $m, n, n^{\prime} \geqq 0$, and that

$$
\begin{equation*}
\left\|\sum_{n, n^{\prime}} c_{n, n^{\prime}} h_{n}^{n^{\prime}}\right\|^{2} \leqq \sum_{m, m^{\prime}, n, n^{\prime}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(h_{m+n^{\prime}}, h_{m^{\prime}+n}\right) \tag{vii}
\end{equation*}
$$

holds for all finite double sequence $\left\{c_{n, n^{\prime}}\right\}_{n, n^{\prime}-0}$ of complex numbers.

Necessity

(A) Let U be a unitary dilation of the contraction T on the Hilbert space K containing H such that

$$
\begin{equation*}
P U^{n} h=T^{n} h \quad(h \in H ; n=1,2, \ldots) \tag{3}
\end{equation*}
$$

holds with the orthogonal projection P of K onto H. Let further $\left\{c_{n, n^{\prime}}\right\}_{n \geqq 0, n^{\prime} \geqq 0}$ be a finite double sequence of complex numbers. We have then by (1) and (3)

$$
\begin{aligned}
& \left\|\sum_{n, n^{\prime}} c_{n, n^{\prime}} h_{n+n^{\prime}}\right\|^{2}=\left\|\sum_{n, n^{\prime}} c_{n, n^{\prime}} T^{n} h_{n^{\prime}}\right\|^{2}=\left\|\sum_{n, n^{\prime}} c_{n, n^{\prime}} P U^{n} h_{n^{\prime}}\right\|^{2} \leqq \\
& \leqq\left\|\sum_{n, n^{\prime}} c_{n, n^{\prime}} U^{n} h_{n^{\prime}}\right\|^{2}=\sum_{m, m^{\prime}, n, n^{\prime}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(U^{m} h_{m^{\prime}}, U^{n} h_{n^{\prime}}\right)= \\
& =\sum_{\substack{m \geq n \\
m^{\prime}, n^{\prime}}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(U^{m-n} h_{m^{\prime}}, h_{n^{\prime}}\right)+\sum_{\substack{m<n \\
m^{\prime}, n^{\prime}}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(h_{m^{\prime}}, U^{n-m} h_{n^{\prime}}\right)= \\
& =\sum_{\substack{m \geq n \\
m^{\prime}, n^{\prime}}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(T^{m-n} h_{m^{\prime}}, h_{n^{\prime}}\right)+\sum_{\substack{m<n \\
m^{\prime}, n^{\prime}}} c_{m, m^{\prime}} \overline{\bar{c}}_{n, n^{\prime}}\left(h_{m^{\prime}}, T^{n-i n} h_{n^{\prime}}\right)= \\
& =\sum_{\substack{m \geq n \\
m^{\prime}, n^{\prime}}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(h_{m-n+m^{\prime}}, h_{n^{\prime}}\right)+\sum_{\substack{m<n \\
m^{\prime}, n^{\prime}}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(h_{m^{\prime}}, h_{n-m+n^{\prime}}\right) .
\end{aligned}
$$

(B) The unitary dilation of a continuous semigroup $\left\{T_{t}\right\}_{t ¥_{0}}$ of contractions is a continuous semigroup $\left\{U_{t}\right\}_{t} \geq_{0}$ of unitaries on the dilations space K, such that

$$
\begin{equation*}
P U_{t} h=T_{t} h \quad(h \in H, t \geqq 0) \tag{4}
\end{equation*}
$$

holds, where P is the orthogonal projection of K onto H. Assume further $\left\{c_{t, t^{\prime}}\right\}_{t \geq 0, t^{\prime} \geq_{0}}$ is a finite double sequence of complex numbers indexed by nonnegative real numbers. (2) and (4) imply (ii) exactly in the same manner as before.
(C) Suppose N is a normal extension of T acting on a Hilbert space K containing H, and such that

$$
\begin{equation*}
P N^{* n^{\prime}} N^{n} h=T^{n^{\prime}} T^{n} h \quad\left(h \in H ; n, n^{\prime} \geqq 0\right) \tag{5}
\end{equation*}
$$

holds with the orthogonal projection P of K onto H. Let further

$$
\begin{equation*}
h_{n}^{n^{\prime}}=T^{* n^{\prime}} T^{n} h_{0} \quad\left(n, n^{\prime}=0,1,2, \ldots\right) \tag{6}
\end{equation*}
$$

Assuming (1) we have then $h_{n}^{0}=T^{n} h_{0}=h_{n}$ for $n=0,1,2, \ldots$; and we have by (6) also that

$$
\begin{aligned}
\left(h_{n}^{n^{\prime}}, h_{m}\right) & =\left(T^{* n^{\prime}} T^{n} h_{0}, T^{m} h_{0}\right)=\left(T^{n} h_{0}, T^{m+n^{\prime}} h_{0}\right)= \\
& =\left(h_{n}, h_{m+n^{\prime}}\right) \quad\left(m, n, n^{\prime}=0,1,2, \ldots\right)
\end{aligned}
$$

and, finally, that

$$
\begin{gathered}
\left\|\sum_{n, n^{\prime}} c_{n, n^{\prime}} h_{n}^{n^{\prime}}\right\|^{2}=\left\|\sum_{n, n^{\prime}} c_{n, n^{\prime}} T^{* n^{\prime}} T^{n} h_{0}\right\|^{2}=\left\|P \sum_{n, n^{\prime}} c_{n, n^{\prime}} N^{* n^{\prime}} N^{n} h_{0}\right\|^{2} \leqq \\
\leqq\left\|\sum_{n, n^{\prime}} c_{n, n^{\prime}} N^{* n^{\prime}} N^{n} h_{0}\right\|^{2}=\sum_{m, m^{\prime} n, n^{\prime}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(N^{m+n^{\prime}} h_{0}, N^{m^{\prime}+n} h_{0}\right)= \\
=\sum_{m, m^{\prime}, n, n^{\prime}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(T^{m+n^{\prime}} h_{0}, T^{m^{\prime}+n} h_{0}\right)=\sum_{m, m^{\prime}, n, n^{\prime}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(h_{m+n^{\prime}}, h_{m^{\prime}+n}\right)
\end{gathered}
$$

holds for any finite double sequence $\left\{c_{n, n^{\prime}}\right\}_{n, n^{\prime} \Xi_{0}}$ of complex numbers.

Sufficiency

(A) Let F_{0} be the (complex) linear space of all finite double sequences $\left\{c_{n, n^{\prime}}\right\}_{n \supseteq 0, n^{\prime} \geqq_{0}}$ of complex numbers with the shift operation

$$
U_{0}\left\{c_{n, n^{\prime}}\right\}=\left\{c_{n, n^{\prime}}^{\prime}\right\}, \quad \text { where } \quad c_{n, n^{\prime}}^{\prime}=c_{n-1, n^{\prime}}(n \geqq 1) \quad \text { and } \quad c_{0, n^{\prime}}^{\prime}=0
$$

Let us introduce a semi-inner product in F_{0} (in view of (i)) by

$$
\begin{equation*}
\left\langle\left\{c_{m, m^{\prime}}\right\},\left\{d_{n, n^{\prime}}\right\}\right\rangle=\sum_{\substack{m \geq n \\ m^{\prime}, n^{\prime}}} c_{m, m^{\prime}} \partial_{n, n^{\prime}}\left(h_{m-n+m^{\prime}}, h_{n^{\prime}}\right)+\sum_{\substack{m \leq n \\ m^{\prime}, n^{\prime}}} c_{m, m^{\prime}} \bar{d}_{n, n^{\prime}}\left(h_{m^{\prime}}, h_{n-m+n^{\prime}}\right) \tag{7}
\end{equation*}
$$

U_{0} is an isometry with respect to this semi-inner product. Defining

$$
V_{0}\left\{c_{n, n^{\prime}}\right\}=\sum_{n, n^{\prime}} c_{n, n^{\prime}} h_{n+n^{\prime}} \quad \text { for } \quad\left\{c_{n, n^{\prime}}\right\} \in F_{0}
$$

we obtain a contraction V_{0} from F_{0} into H.
Let F be the Hilbert space resulting from F_{0} by factoring with respect to the null space of $\langle\cdot, \cdot\rangle$ and by completing. At the same time U_{0} induces an isometry U on F and V_{0} induces a contraction V from F into H. In what follows the equivalence class represented by $\left\{c_{n, n^{\prime}}\right\}$ is also denoted shortly by $\left\{c_{n, n^{n}}\right\}$. We show that
(8) $\quad V^{*} h_{k}=\left\{d_{n, n^{\prime}}\right\}$, where $d_{n, n^{\prime}}=\left\{\begin{array}{ll}1 & \text { if } n=0, \\ 0 & \text { otherwise } .\end{array}\right.$ and $n^{\prime}=k \quad(k=0,1, \ldots)$,

To show this let $k \geqq 0,\left\{c_{m, m^{\prime}}\right\} \in F$ so that (7) gives

$$
\left\langle\left\{c_{m, m^{\prime}}\right\}, V^{*} h_{k}\right\rangle=\left\langle V\left\{c_{m, m^{\prime}}\right\}, h_{k}\right\rangle=\sum_{m, m^{\prime}} c_{m, m^{\prime}}\left(h_{m+m^{\prime}}, h_{k}\right)=\left\langle\left\{c_{m, m^{\prime}}\right\},\left\{d_{n, n^{\prime}}\right\}\right\rangle
$$

as desired. Because of (8) we get
$U V^{*} h_{k}=\left\{d_{n, n^{\prime}}\right\}$, where $\quad d_{n, n^{\prime}}= \begin{cases}1 & \text { if } n=1 \quad \text { and } \quad n^{\prime}=k \quad(k=0,1, \ldots), \\ 0 & \text { otherwise. }\end{cases}$
Defining

$$
T=V U V^{*}
$$

we have $T h_{k}=V U V^{*} h_{k}=h_{k+1}$ for all $k=0,1^{*}, \ldots$, but this is actually identical with (1).
(B) Let F_{0} be, similarly as before, the linear space of all double sequences $\left\{c_{s, s}\right\}_{s \geqq 0, s \geqq 0}$ of complex numbers indexed by nonnegative real numbers. Define, for all $t \geqq 0$, by

$$
U_{t}\left\{c_{s, s^{\prime}}\right\}=\left\{c_{s-t, s^{\prime}}\right\} \quad \text { for } \quad\left\{c_{s, s^{\prime}}\right\} \in F_{0}
$$

a shift operation and a semi-inner product (in view of (i)) by

$$
\left\langle\left\{c_{r, r^{\prime}}\right\},\left\{d_{s, s^{\prime}}\right\}\right\rangle=\sum_{\substack{r \geq s \\ r, s}} c_{r, r^{\prime}} J_{s, s^{\prime}}\left(h_{r-s+r^{\prime}}, h_{s^{\prime}}\right)+\sum_{\substack{r \leq s \\ r, s^{\prime}}} c_{r, r^{\prime}} d_{s, s^{\prime}}\left(h_{r^{\prime}}, h_{s-r+s^{\prime}}\right) ;
$$

$\left\{U_{t}\right\}_{t \geq 0}$ is then a continuous semigroup of isometries of the Hilbert space F derived from F_{0} as before. By defining

$$
V\left\{c_{s, s^{\prime}}\right\}=\sum_{s, s^{\prime}} c_{s, s^{\prime}} h_{s+s^{\cdot}} \text { for }\left\{c_{s, s^{\prime}}\right\} \in F_{0}
$$

we get a contraction operator from F into H. The proof that $T_{t}=V U_{\mathrm{t}} V^{*}(t \geqq 0)$ is a continuous semigroup of contractions satisfying (2) only needs a slight modification of the argument used above, so we omit it.
(C) Let $\left\{h_{n}^{r^{\prime}}\right\}_{n, n^{\prime} \geq 0}$ be in H such that conditions (iii-iv) are satisfied. Take the (complex) linear space F_{0} of all finite double sequences $\left\{c_{n, r^{n}}\right\}_{n, n^{\prime} \geqq 0}$ of complex numbers with a shift operation

$$
N_{0}\left\{c_{n, n^{\prime}}\right\}=\left\{c_{n, n^{\prime}}^{\prime}\right\} \text {, where } \quad c_{n, n^{\prime}}^{\prime}=c_{n-1, n^{\prime}}(n \geqq 1) \text {, and } \quad c_{0, n^{\prime}}^{\prime}=0 \text {; }
$$ and (in view of (vii)) with a semi-inner product in F_{0} defined by

$$
\begin{equation*}
\left\langle\left\{c_{m, m^{\prime}}\right\},\left\{d_{n, n^{\prime}}\right\}\right\rangle=\sum_{m, m^{\prime}, n, n^{\prime}} c_{m, m^{\prime}} \cdot d_{n, n^{\prime}}\left(h_{m+n^{\prime}}, h_{m^{\prime}+n}\right) . \tag{9}
\end{equation*}
$$

We are going to prove that

$$
\begin{equation*}
\left\|N_{0}\right\| \leqq \mathscr{K} \tag{*}
\end{equation*}
$$

with the same \mathscr{K} as that in (iv). First of all, for any $\left\{c_{n, n}\right\} \in F_{0}$ and $i, j=0,1,2, \ldots$ we define

$$
c_{n, n^{\prime}}^{(i, j)}=\left\{\begin{array}{l}
c_{n-i, n^{\prime}-j}, \quad \text { if } n \geqq i, n^{\prime} \geqq j, \\
0 \quad \text { otherwise. }
\end{array}\right.
$$

Now, by (9) we have

$$
\begin{aligned}
& \left\|\left\{c_{n, n^{\prime}}^{(i, j)}\right\}\right\|^{2}=\sum_{m, m^{\prime}, n, n^{\prime}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(h_{m+n^{\prime}+i+j}, h_{m^{\prime}+n+i+j}\right)= \\
& =\left\langle\left\{c_{\left.n, m^{\prime}, i+j\right)}^{(i+j)}\right\},\left\{c_{n, n^{\prime}}\right\}\right\rangle \leqq\left\|\left\{c_{n, n^{\prime}, j, i+j}^{(i+j)}\right\} \cdot\right\|\left\{c_{n, n^{\prime}}\right\} \| .
\end{aligned}
$$

So by induction we can derive

$$
\left\|\left\{c_{n, n^{\prime}}^{(1,0)}\right\}\right\|^{2^{k+1}} \leqq\left\|\left\{c_{n, n^{2}}^{\left(2^{k}\right)}\right\}\right\| \cdot\left\|\left\{c_{n, n^{\prime}}\right\}\right\|^{1+2+\ldots+2^{k}} \text { for } k=0, \ldots
$$

The definition of N_{0} shows that $N_{0}\left\{c_{n, n^{\prime}}\right\}=\left\{c_{n, n^{\prime}}^{(1,0)}\right\}$ and so the above inequality, (9) and (iv) imply that

$$
\begin{aligned}
& \left\|N_{0}\left\{c_{n, n^{\prime}}\right\}\right\|^{2^{k+1}} \leqq\left\|\left\{c_{n, n^{2}}^{\left(c^{k}, 2^{k}\right)}\right\}\right\| \cdot\left\|\left\{c_{n, n^{\prime}}\right\}\right\|^{1+2+\ldots+2^{k}}= \\
& =\left\{\left.\sum_{m, m^{\prime}, n, n^{\prime}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(h_{m+n^{\prime}+2^{k+1}}, h_{\left.m^{\prime}+n+2^{k+1}\right)}\right\}^{1 / 2}\left\|\left\{c_{n, n^{\prime}}\right\}\right\|\right|^{k+1}-\mathbf{1} \leqq\right. \\
& \leqq\left\{\sum_{m, m^{\prime}, n, n^{\prime}}\left|c_{m, m^{\prime}}\right|\left|\bar{c}_{n, n^{\prime}}\right|\left\|h_{m+n^{\prime}+2^{k+1}}\right\| \cdot\left\|h_{m^{\prime}+n+2^{k+1} \|}\right\|\right\}^{1 / 2} \|\left\{c_{n, n^{\prime}}\right\}| |^{2 k+1 . \ldots 1^{\prime}} \leqq \\
& \leqq\left\|\left\{c_{n, n^{\prime}}\right\}\right\|^{\|^{k+1}-1} \sum_{n, n^{\prime}}\left|c_{n, n^{\prime}}\right| \mathscr{K}^{n+n^{\prime}+2^{k+1}} .
\end{aligned}
$$

This gives

$$
\left\|N_{0}\left\{c_{n, n^{\prime}}\right\}\right\| \leqq\left\|\left\{c_{n, n^{\prime}}\right\}\right\|^{1-2^{-k-1}} \cdot \mathscr{K}\left\{\sum_{n, n^{\prime}}\left|c_{n, n^{\prime}}\right| \mathscr{K}^{n+n^{\prime}}\right\}^{2-k-1} .
$$

Let $k \rightarrow \infty$, so we obtain (*).
Defining

$$
V_{0}\left\{c_{n, n^{\prime}}\right\}=\sum_{n, n^{\prime}} c_{n, n^{\prime}} h_{n}^{n^{\prime}} \quad \text { for } \quad\left\{c_{n, n^{\prime}}\right\} \in F_{0},
$$

(vii) shows that V_{0} is a contraction from F_{0} into H. We obtain a Hilbert space F from F_{0} by factoring with respect to the null space of $\langle\cdot, \cdot\rangle$ and then by completing.

At the same time, V_{0} induces a contraction V from F into H and N_{0} induces a bounded linear operator N on F.

Finally define the operator

$$
\begin{equation*}
T=V N V^{*} \tag{10}
\end{equation*}
$$

on H. We are going to show that this operator is the desired one. First of all, for any $k \geqq 0$

$$
V^{*} h_{k}=\left\{d_{n, n^{\prime}}\right\}, \text { where } d_{n, n^{\prime}}=\left\{\begin{array}{lc}
1, & \text { if } n=k \\
0 & \text { otherwise }
\end{array} \text { and } n^{\prime}=0,\right.
$$

Indeed,

$$
\begin{gathered}
\left\langle\left\{c_{m, m^{\prime}}\right\}, V^{*} h_{k}\right\rangle=\left\langle V\left\{c_{m, m^{\prime}}\right\}, h_{k}\right\rangle=\sum_{m, m^{\prime}} c_{m, m^{\prime}}\left(h_{m}^{m^{\prime}}, h_{k}\right)= \\
=\sum_{m, m^{\prime}} c_{m, m^{\prime}}\left(h_{m}, h_{m^{\prime}+k}\right)=\left\langle\left\{c_{m, m^{\prime}}\right\},\left\{d_{n, n^{\prime}}\right\}\right\rangle
\end{gathered}
$$

Thus

$$
T h_{k}=V N V^{*} h_{k}=V\left\{d_{n-1, n^{\prime}}\right\}=\sum_{n, n^{\prime}} d_{n, n^{\prime}} h_{n+1}^{n^{\prime}}=h_{k+1}^{0}=h_{k+1}
$$

holds for all $k=0,1,2, \ldots$. We have (1) also as was desired. We have only to show that T in (10) is subnormal, that is,

$$
\begin{equation*}
\sum_{m, n}\left(T^{m} g_{n}, T^{n} g_{m}\right) \geqq 0 \tag{11}
\end{equation*}
$$

holds for all finite sequence $\left\{g_{n}\right\}_{n} \cong_{0}$ in H. We have (11) for elements of the form $g_{n}=\sum_{n^{\prime}} \bar{c}_{n, n^{\prime}} h_{n^{\prime}}$ (where $\left\{c_{n, n^{\prime}}\right\} \in F$) as a consequence of (vii). Indeed,

$$
\begin{gathered}
\sum_{m, n}\left(T^{m} g_{n}, T^{n} g_{m}\right)=\sum_{m, n}\left(\sum_{n^{\prime}} \bar{c}_{n, n^{\prime}} T^{m} h_{n^{\prime}}, \sum_{m^{\prime}} \bar{c}_{m, m^{\prime}} T^{n} h_{m^{\prime}}\right)= \\
=\sum_{m, m^{\prime}, n, n^{\prime}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(T^{m} h_{n^{\prime}}, T^{n} h_{m^{\prime}}\right)=\sum_{m, m^{\prime}, n, n^{\prime}} c_{m, m^{\prime}} \bar{c}_{n, n^{\prime}}\left(h_{m+n^{\prime}}, h_{m^{\prime}+n}\right) \geqq \\
\geqq\left\|\sum_{n, n^{\prime}} c_{n, n^{\prime}} h_{n}^{n^{\prime}}\right\|^{2} \geqq 0,
\end{gathered}
$$

which implies (11) in general by (iii). The theorem is proved.
Note that the proof of the theorem yields the following
Proposition. Let $\left\{h_{n}^{n^{\prime}}\right\}_{n, n^{\prime} \geqq_{0}}$ be a double sequence in H which spans H. There exists a normal operator T on H such that

$$
\begin{equation*}
T^{* n^{\prime}} T^{n} h_{0}^{0}=h_{n}^{n^{\prime}} \quad\left(n, n^{\prime}=0,1,2, \ldots\right) \tag{12}
\end{equation*}
$$

holds if and only if

$$
\begin{equation*}
\left\|h_{n}^{n^{\prime}}\right\| \leqq \mathscr{K}^{n+n^{\prime}} \quad \text { for some constant } \quad \mathscr{K}>0 \quad\left(n, n^{\prime} \geqq 0\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(h_{m}^{m^{\prime}}, h_{n}^{n^{\prime}}\right)=\left(h_{m+n^{\prime}}^{0}, h_{m^{\prime}+n}^{0}\right) \quad\left(m, m^{\prime}, n, n^{\prime} \geqq 0\right) \tag{14}
\end{equation*}
$$

Proof. Assume (12), then (13) is trivial and (14) is elementary
$\left(h_{m}^{m^{\prime}}, h_{n}^{n^{\prime}}\right)=\left(T^{* m^{\prime}} T^{m} h_{0}^{0}, T^{* n^{\prime}} T^{n} h_{0}\right)=\left(T^{m+n^{\prime}} h_{0}^{0}, T^{m^{\prime}+n} h_{0}\right)=\left(h_{m+n^{\prime}}^{0}, h_{m^{\prime}+n}^{0}\right)$.
Assume now (13) and (14) and denote h_{n}^{0} by $h_{n}(n=0,1,2, \ldots$). We have then (v-vii) with equality in (vii), consequently the operator V, appearing in the proof of Theorem C , is a unitary operator from F onto H. Simple calculation shows that

$$
\begin{equation*}
N^{*}\left\{c_{n, n^{\prime}}\right\}=\left\{c_{n, n^{\prime}-1}\right\} \quad \text { for } \quad\left\{c_{n, n^{\prime}}\right\} \in F \tag{15}
\end{equation*}
$$

holds which yields $N N^{*}=N^{*} N$, that is, N is a normal operator. Since V is unitary, $T=V N V^{*}$ is normal, too. We have finally to show (12). T satisfies (1), and, by similar argument as in the proof of Theorem C, (15) implies that

$$
V N^{* n^{\prime}} V^{*} h_{n}=h_{n}^{n^{\prime}} .
$$

So we have

$$
T^{* n^{\prime}} T^{n} h_{0}^{0}=\left(V N^{*} V^{*}\right)^{n^{\prime}} h_{n}=V N^{* n^{\prime}} V^{*} h_{n}=h_{n}^{n^{\prime}} \quad \text { for } \quad n, n^{\prime}=0,1, \ldots
$$

The proof is complete.

References

[1] J. Bram, Subnormal operators, Duke Math. J., 22 (1955), 75-94.
[2] P. R. Halmus, Normal dilations and extensions of operators, Summa Brasil. Math., 2 (1950), 153-156.
[3] B. Sz.-Nagy, Extensions of linear transformations in Hilbert space with extend beyond this space (Appendix to F. Riesz, B. Sz.-Nagy, Functional Analysis), Ungar (New York, 1960).

[^0]: Received April 22, 1981.

