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Strong subband-parcelling extensions of orthodox semigroups 

MÁRIA B. SZENDREI 

The notion of subband-parcelling and strong subband-parcelling congruences 
on orthodox semigroups was introduced in [4] by generalizing the common properties 
of congruences appearing in a number of structure theorems concerning orthodox 
semigroups. For a list of such structure theorems the reader is referred to [4]. In 
particular, the concept of strong subband-parcelling congruences in'cludes the idem-
potent separating congruences and the least inverse semigroups congruences on 
orthodox semigroups which play singificant roles in the theory of orthodox semi-
groups. 

An orthodox semigroup T is said to be a strong subband-parcelling extension 
of the semigroup S if there exists a strong subband-parcelling congruence x on T 
such that T/x is isomorphic to S. 

The aim of the present paper is to describe all strong subband-parcelling exten-
sions of orthodox semigroups. All strong subband-separating extensions of orthodox 
semigroups are characterized in [5]. It is worth dealing with this special case separa-
tely because a much simpler construction is needed than in the general case. On the 
other hand, in the class of all inverse semigroups every subband-parcelling congru-
ence is subsemilattice-separating. 

In Sections 2 and 3 we introduce the construction which will be used in Section 
4 to describe the strong subband-parcelling extensions of orthodox semigroups. At 
the end of this section we apply our results to characterize an orthodox semigroup 
as an extension of an inverse semigroup by the least inverse semigroup congruence. 
Thus we obtain a structure theorem for orthodox semigroups which describes ortho-
dox semigroups by means of their bands of idempotents and greatest inverse semi-
group homomorphic images as it was done also by Y A M A D A ( [ 7 ] ) . However, our 
construction seems to be easier to apply in certain cases than the quasi-direct product 
used by him. 

The notions and notations of [1] and [2] are used. 
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1. Preliminary notions and results 

The concept of a subband-parcelling congruence on an orthodox semigroup was 
introduced in [4] as follows. 

Let B be a band. Suppose ¿ is a congruence on B with b^<2) and B is a subband 
in B with the property that B is a union of ¿-classes. For brevity, if B and ¿ satisfy 
these conditions then we say that B, 5 is an associated pair in B. Let T be an orthodox 
semigroup with band of idempotents B. 

Def in i t i on . The congruence relation x on T is called (B, 8)-parcelling if the 
following conditions are fulfilled: 

(dx) 5Qx\B, 
(d^ every x-class containing an idempotent element contains an element of B, 

and 
(d3) the elements of B belonging to a x-class form a ¿-class which is the greatest 

one in this x-class. (By the order of ¿-classes we mean the natural order of B/S.) 

In particular, if ¿ is the identical congruence then x is called B-separating. 
In this case (dx) is satisfied trivially and (d3) means that every element of B is the 
greatest idempotent in the x-class containing it. 

The following proposition characterizes the subband-parcelling congruences. 

P ropos i t i on 1.1. Let T be an orthodox semigroup with band of idempotents B. 
The congruence relation x on T is subband-parcelling if and only if there exists a grea-
test ¡¿-class in the band of idempotents of each idempotent x-class and their union is 
a subband in B. 

Proo f . Suppose first that B, ¿ is an associated pair in B and x is a (B, ^-par-
celling congruence. Let A: be an idempotent x-class in T. Since 7"is regular ^contains 
an idempotent element and hence, by (d2) and (d3), there exists a greatest ¿-class in 
the band of idempotents E of K and this ¿-class is just Bf]E. Since 5Qx\B by 
(di), 6 \E^S) e is implied by Therefore ey3)E^e23>E follows from ^ ¿ s 
^e2<5 for every pair elt e2 in E which shows that Bf)E is the greatest ^-class in E. 
Clearly, the union of these ^-classes for all ar-classes is just E. 

Conversely, assume that x. is a congruence on 2" with the properties that the band 
of idempotents of each idempotent x-class contains a greatest ®-class and their union 
is a subband B in B. Consider the congruence S=x\Bil^B on B. Then the greatest 
i^-class in the band of idempotents of an idempotent x-class is the greatest ¿-class 
and B, 5 is an associated pair in B. One can easily see that x is a (B, ¿)-parcelling 
congruence. The proof is complete. 

The most important properties of subband-parcelling congruences proved in 
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[4] are drawn up in the following results. If B, 8 is an associated pair in B then S is 
used to mean 8\B. 

Theorem 1.2 ([4] Theorem 2.5). Suppose T is an orthodox semigroup with bandof 
idempotents B and B, 5 is an associated pair in B. If there exists a (B, S)-parcelling 
congruence x on T then B is a band B/S of the bands Fx= {beB:b8^x and bb-^.y 
implies x^y for every y in B/S} (xzB/S) with greatest 8-class x. The x-class con-
taining the 5-class x is an orthodox subsemigroup in T with band of idempotents Fx: 

Remark . Fx is given in [4], Theorem 2.5, in a slightly modified form. The equi-
valence of these characterizations can be easily checked. 

Lemma 1.3. Suppose T is an orthodox semigroup with band of idempotents B 
and B, 5 is an associated pair in B. Assume that T has a (B, S)-parcelling congruence. 
Let t and t* be inverses of each other in T such that tt*eFx and t*tiF^. Then, for 
every x andy in B/S with xSkx andyS£y, there exists an inverse t' of t such that tt'£Fx 

and t'tiFy. 

Theorem 1.4 ([4] Theorem 2.9). Let T be an orthodox semigroup with band of 
idempotents B and B, 8 an associated pair in B. Suppose T to have a (B, 8)-parcelling 
congruence. Then SB= {tiT:eMt^ff for some e, f in B} is an orthodox subsemigroup 
in T. The band of idempotents in Ss is B and the inverses of the elements in SB belong 
to SB. 

The subsemigroup SE plays a significant role in the case of strong subband-
parcelling congruences. 

Def in i t i on . The (B, 5)-parcelling congruence x on the orthodox semigroup 
T i s called strong if every ^-class contains an element of SE. 

Obviously, the (B, 5)-parcelling congruences are strong for SB=T. 
The following result is important in describing the strong subband-parcelling 

extensions of orthodox semigroups. 

P ropos i t i on 1.5 ([4] Theorem 2.10). Assume that T is an orthodox semi-
group with band of idempotents B and B, 8 is an associated pair in B. Let x be a strong 
(B, S)-parcelling congruence on T. Consider two elements t and t' in T which are inver-
ses of each other. Then there exist elements s and, s' in SB with sxt and s'xt' such that 
s and s' are inverses of each other. 

i 
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2. Semidirect product of a partial left band and 
a right orthodox partial semigroup 

The structure of completely regular semigroups was characterized among others 
by W A R N E in [6]. We will apply his result in the special case of bands. 

Let y be a semilattice and /„ a left zero semigroup for every a in Y. A partial 
groupoid on / = U {/5,:a6 Y) is called a lower associative semilattice Y of left zero 
semigroups Ia(a£Y) if (i) IaC\Ip= • whenever a^/?, (ii) the product of elements 
a in Ia and b in is defined if and only if a^fi, (iii) if a s / ? then and 
(iv) if and c£ly then a(bc)=(ab)c. The notion of an upper 
associative semilattice of right zero semigroups is obtained dually. 

Let / be a lower associative semilattice Y of left zero semigroups /„ (a£ Y) 
and J an upper associative semilattice Y of right zero semigroups Ja (a€ Y). For 
every u in J, let Au be a transformation of / and, for every a in I, let Ba be a trans-
formation of J such that aAu£Iap and uBa€Jap provided a£Ia and u^Jp. More-
over, let the following conditions be fulfilled: 
(Wl)if a£Ia, b€lp with a^P and u£J then 

(a) uBob=uBaBb, 
(b) (ab)Au=aA„-bAuBa; 

(W2) if u£Ja, v£Jfi with a^fi and at I then 
(a) aA„=aAvAu, 
(b) (uv)Ba=uBoAv-vBa. 

A pair A, B satisfying these conditions is termed an (/, J)-pair. 
Define a multiplication on the set E— U {IaXJa'. <x£Y} by 

(a, u)(b, v) = (a- bAu, uBb • v). 

One can show that E is a band with respect to this multiplication. This band is 
called a semidirect product of I and J and is denoted by J ; A, B). 

Theorem 2.1 ( W A R N E [6]). Every band is isomorphic to a semidirect product of 
some I and J where I is a lower associative semilattice Y of left zero semigroups and J 
is an upper associative semilattice Y of right zero semigroups for some semilattice Y. 

First we generalize the notion of an upper associative semilattice of right zero 
semigroups by introducing the notion of a right orthodox partial semigroup. We 
need the definition of the spined product of partial groupoids. The notion of spined 
product of semigroups is due to K I M U R A [3]. 

Let both S and T be partial groupoids which are semilattices Y of full sub-
groupoids Sa and Ta (a£ Y), respectively. By the spined product S®YT of S andT 
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over Y we mean the subdirect product of S and T whose underlying set is 

U{S«xr . : a€ l r }-

Let F be a semilattice. Let J be an upper associative semilattice F of right zero 
semigroups J 5 (agF). For every a in F, suppose Ys (agF) to be a semilattice with 
identity a. Assume that Y is a semilattice F of semilattices Ks (a eF) such that F 
is a subsemilattice in Y. Let / be a partial groupoid with respect to the operation 
denoted by " •". We say that an element a in / is idempotent if a • a is defined and 
a-a=a. Suppose J= U {J{'.(j, a ) e J ® y F } where j\C\j]= • provided 
( j , fi). Introduce the following notation: for every a in 75 , let Ja= 
= U UijiJa}- Assume that there exists a unary operation " " ' on J such that the 
following hold: for arbitrary elements Q in J\, O in J\ and T in J] with £>'€/,-, 
o'tJp-, and t ' U y we have 

(Bl) a and a ' are contained in the same YS and Q"£JX; 

(B2) Q-O is defined in J if and only if A'^p and, in this case, Q-<T€JI'1 and 
(e-o-ye/ j for some £ with Z^P ' ; 

(B3) if ot '^P and fi'^y then (g • a) • i = q • (<r • t); 
( B 4 ) Q-Q'-Q=Q a n d Q'-Q-Q'=Q'-, 

(B5) the idempotents in form a right zero semigroup for each a in Y; 
(B6) if g and a are idempotents with a S y and fi^y' then (g • if and only 

Note that both sides of the equality in (B3) are defined by (B2). Parentheses 
are not needed in (B4) by (B3). Moreover, Jx contains an idempotent for every a 
in Y as Q^JA implies by (B4) and (B2) that Q • Q' is an idempotent in /„. In property 
(B2) the product ] • E is defined in J since a€ Ys, /?€ imply a ' e Y i whence it fol-
lows by a ' ^ P that a^ f i . Since g and a are idempotent in (B6), we have a ' ^ a 
and P '^P- Thus the products in (B6) are defined.. 

A partial groupoid / fulfilling the above conditions is termed a right orthodox 
partial semigroup over J®yY. Dually, one can define a left orthodox partial semi-
group I over some I®yY where / is a lower associative semilattice Y of left zero semi-
groups. The duals of properties (Bl)—(B6) will be referred to as (Bl)*—(B6)*. If 
the elements of / or J are idempotent then we call them a partial right band and a 
partial left band, respectively. 

Suppose QiJa and e'^J^- An element <riJp with o'tJp, is called an inverse 
of Q provided a'^p, P'~a and q<tq = q, oqo=o. Property (B4) means that the 
operation " " ' picks out an inverse of each element. Observe that Q • O and A • Q are 
idempotent provided q and a are inverses of each other. 

In what follows we draw up the basic properties of a right orthodox partial 
semigroup J in several lemmas. For brevity, introduce the following notations. If 
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a^P in Y then we denote this fact also by Ja=Jp- If then J (a) is used to 
mean Ja. 

. Lemma 2.2. If gUa, g\ and a'U^ then (g-o)'£Ja~. 

Proo f . By (Bl) and (B2), the product g' • (g • a) is defined and J((e' • (g • <x))')= 
• a)'). On the other hand, (B3) ensures that (g' • Q) • O=Q' • (g • a). Moreover, 

the product g • ((Q' • Q)-O) is also defined by (B2) and properties (B3), (B4) imply 
it to be equal to q-o. Again by (B2), we have J((g • a)')^J((g' • (g • o))'). Hence 
we obtain that J((g • a)')=J{((g' • g) • o)'). It follows from (B2), (B3) and (B4) 
that g' • g and a' -a are idempotents in Ja. and Ja-, respectively. Thus, by (B6), we 
have J((IQ'-e) •<*)')=as ^P'-O')-A')'=(J"AAL., by (B4) and (Bl). Hence 
J((q • o)')=Ja» which was to be proved. 

Lemma 2.3. If g£Ja, g'€Jx>, and a.'^P then 
implies a' = p. 

Proof . By (B2), Q-O<LJa. Thus (g' • (g • <r))' = ((g' • g) • by Lemma 
2.2. Since g'-QiJX ' , o'-<r£jp and they are idempotent property (B6) ensures 
((a' - a ) - a ' ) ' ( L J O n the other hand, (Bl) and (B4) imply {{a ' -a ) -a ' ) '=a"U i l . 
Hence a ' = p . 

Lemma 2.4. If g and g* are inverses of each other in J then J{g)—J{g*') and 
J{q*)=J{q')- In particular, J(e)=J(e') provided e is idempotent. 

Proof . By definition, J(g')^J(g*), J(g*')^J(g) and g-g*-g = g, 
g* • g • g*=g*.- Lemma 2.3 implies that J((g • Q*)')=J(Q). On the other hand, by 
(B2), we have J((g • g*)')^J(g*'). Thus J(E)=J(E*L whence we conclude the 
equality J(g)=J(g*'). Similarly, starting with the equality g* • g • g* = g*, the 
equality J(g*)=J(g') yields. 

This lemma shows that in the case of partial right [left] bands the operation 
can be chosen to be the identity transformation. In what follows, the operation 

" " ' is always assumed to be identical in the case of partial right [left] bands. 

Lemma 2.5. The inverses of the idempotent elements in J are also idempotent. 

Proof . Suppose e€/a is idempotent and £ is an inverse of s. By Lemma 2.4, 
and £,<!;'€/„. Since E-E-E we have • e • £=(£ • E) • (e-£). Here 

and E • £ are idempotents in Ja. Thus, by (B5), their product is also idempotent. 

Lemma 2.6. Let g* and g** be two inverses of g£Ja. Then g* = g**-e for 
some idempotent element e in Ja. 

Proof . Assume that g'€Ja.. Then, by Lemma 2.4, g*, g**eJa> and 
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g*',g**'€Ja. Moreover, the elements g* • g and g** • g are idempotents in 
(B5) implies (g* • Q) • (g** • g) = g** • g. On the other hand, we obtain by (B3) that 
(g* • g) -(g** • g)=g*-(g • g**- e)—g* • g whence we have g* • g=g** • g. Thus 
g*=g* • g • g* = g** • (g • g*) where g • g* is an idempotent element in Ja. 

Lemma 2.7. If cr€Ja, cr'€/a- and g=a-e for some idempotent e in Ja. then 
any inverse a* of a is an inverse of g. 

Proo f . By Lemmas 2.2 and 2.4 we have (o-e) '^Ja . . Moreover, a* • a is an 
idempotent element in Ja. since o* iJa, by Lemma 2.4. Thus (B5) ensures e • (<r* • a) —. 
=a*-a . By applying (B3) we obtain that 

Q-a*.Q = (a • e) • o* • (a • e) = o • (e • (a* • u)) • e = (a* • a) • e = a • 6 = g 

and 

a* • g - a* — o* • ( c • e) • a* = (tr* • a) • e • (o* •CT)'<T* = (a* • a) • (a* • a) • a* = a*.-

The proof is complete. 

Define a relation on / by <7~T if and only if there exists a common in-
verse of o and T in J. 

Lemma 2.8. (i) The relation ~ is an equivalence. 
(ii) Let Then r if and only if J(c)=J(x), J(a')=J(z') and there 

exists an idempotent e in J (a') with a-x-e. 
(iii) Let o,x(_J. Then <r~ x if and only if the sets of inverses of a and x are 

equal. 

Proof , (ii) and (iii) immediately follow from Lemmas 2.6 and 2.7. Statement 
(i) is clear by (iii). 

Lemma 2.9. Suppose g£Ja, g'i.Ja- with a'^ct and o€Jx. Then g-a = a 
if and only if g is idempotent. 

Proof . If g is idempotent then a ' = a by Lemma 2.4. Since a • o'€Ja is also 
idempotent we have g • (<r • <j')=cr • <j' by (B5). Consequently, (B3) and (B4) imply 
Q • <T= (g • (ct • <J')) • o=a • a' • a—<s. Conversely, suppose g,a£ja, g'€/„>, <r'e Jß, 
and a 'Sa . Let 

(1) g-o = (x. 

Then {g- a)'=a' iJß'. Thus a ' = a follows from Lemma 2.3. Since g'• g and 
a • a' are idempotents in property (B5) implies the equality (a • a') • (g' • g) = g' • g. 
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By applying (1) and (B3) we obtain that 

Q = Q-Q'-e = e - ( ( f f - f f O - ( e ' - c ) ) = e-o-(<r'-(e'-Q)) = •*)) = 

= (*-<0-(e'-e) = e'-e-

Hence Q is, in fact, idempotent. 

Lemma 2.10. Lei Q,AU with J(Q)=J[P'). Then a* • Q=O** • g holds for 
arbitrary inverses a*, a** of a. 

P r o o f . By Lemma 2.6, o*=o** • e for some idempotent e in /(a')- Since 
E-Q=Q by Lemma 2.9 we infer that A* • g=A** • E • Q=G** • g. 

Lemma 2.11. If g~a and T is a common inverse of g and a then g • t • a=a. 

Proo f . Clearly, g-z€J(g)=J(o) is idempotent. Hence Lemma 2.9 immedia-
tely implies the required equality. 

In [6] W A R N E has introduced the concept of a semidirect product of a lower 
associative semilattice Y of left zero semigroups and an upper associative semilattice 
Y of right groups. We gave the definition before Theorem 2.1 for the special case of 
right zero semigroups instead of right groups. We generalize this concept by defining 
a semidirect product of a partial left band over I<g>TY and a right orthodox partial 
semigroup over J® 7 Y. 

Suppose we are given a semilattice F, a lower associative semilattice F of left 
zero semigroups / s (a €F) denoted by I and an upper associative semilattice F of 
right zero semigroups Js (a€F) denoted by J. Moreover, let Y- be a semilattice with 
identity a for all a in F. Suppose Y is a semilattice F of semilattices Ys (SeF) such 
that F is a subsemilattice in Y. Let 7be a partial left band over I®yY and J a right 
orthodox partial semigroup over J<g>YY. Suppose that A, B is an (I, J)-pair. 

Assume that A = {AA:OIJ} is a system of transformations of 7 and 
B= {Ba:a£l} is a system of transformations of J such that the following are valid: 

(CI) if aal, gU\ and g'£j„. then 
( a ) a A e a [ A ] , gB.O1*1 and (gBJ'Ux, where a^p and a ^ a , i i i 
(b) a i=a i=aP provided g is idempotent, 
(c) gBa~g whenever <x=P', 
(d) if a</?' then ax is the element of Y for which (e • g')'£Jx holds provided 

£€/„ is idempotent; 
(C2) if aOa, belp with aSjS and geJ then 

(a) gBab=gBaBb, 
(b) (a-b)Ae = aAe-bAeBa; 
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(C3) if g£Jx, <T£JP with a^P and ail then 
(a) aAe.„ = aA„At, 
(b) (g-<r)Ba = QBaA/aBa. 

The pair A, B with these properties is called an (/, J)-pair over A, E. 
Note that ajCY^ in (CI) (a) provided a£YS and as IA}<Ll0 and 

jBjeJjg. The idempotent e in (CI) (d) can be chosen arbitrarily in Jx for 
((£i • q'Y )=J ( fe • £?')' ) by (B6) provided and e2 are idempotents in Jx. More-

over, one can easily check by (CI) (a) that the right hand sides of the equalities in 
(C2) (b) and (C3) (b) are defined in I and J, respectively. 

Let us define a multiplication on the set U{/ a X/, :a6F} by 

(2) (a, g) (b, a) = (a • bAe, eB„ • a). 

Suppose aUa,Q£ja and b£lp,o<iJp. Then, by (CI) (a), we have bAt£lx , gBbzJXi 

and (gBb)'eJp where a ^ a and Pi^P- Therefore the products a-bAe and 
gBb• a are defined in I and J, respectively, and we have a• bAe£lXi, gBb-o£JXi by 
(B2). Thus (2) is, in fact, a multiplication on the required set. The groupoid thus 
defined is called a semidirect product of I and J and is denoted by S( / , J; A, B). 

Before proving that ©(/, J; A, B) is an orthodox semigroup we verify six lemmas 
for the (I, /)-pairs. 

Lemma 2.12. If azlx and gZJp, g'zJp with fi'^a. then gBa~g. 

Proof . By property (C3) (b), we have 

(3) gBa = (g • (g' • g))Ba = gBaAe, e • (g' • g)Ba. 

Since g'-gzJp is idempotent we have aAe..e€lp,, (g' • g)Ba£jfi. and ((g'• g)Ba)' 
by (CI) (b). Thus gBaAe, e ~ g follows from (CI) (c). Moreover, owing to (B2), we 
have a-aAg'.e£lp. Hence (CI) (c) ensures both (g' • g)Ba •aA > ^ 

g' • g and 
{g • g)BaBaAg, Q~{Q' • g)Ba. Making use of Lemma 2.8 (i) we obtain by (C2) (a) 
that g'• g~(g'• g)Ba. Then Lemma 2.5 implies (g'-g)Ba to be an idempotent in 
J p.. We have seen that gBaAe, Applying Lemma 2.8 (ii) one can easily infer 
that (3) implies gBa~g. Lemma 2.13. Let azlx and g€Jp, g'^Jp- Suppose gBaUx . If / T ^ a then 

Proof . In the equality (3) which clearly holds by (C3) (b) now we have 
aAa . . tO„f, and (g' • g)Ba£jxfi. where ajS'</T as By (B2), we obtain from 
(3) that Jai—J(gBa)=J(gBaA, ). Hence, owing to property (CI) (d), we have 
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J a = J ( { £ • q')') where e€/ap. is idempotent. (Bl), (B2) and Lemma 2.3 ensure 
that c t^f i . 

Lemma 2.14. Let ax,a2,p and fi'tY such that a Assume that 
and Then 

(i) I{a1Ae)^I{a2A^) provided a^I^ and a2Oa . 
(ii) J((Ef q ' ) ' ) ^ J - g'Y) provided ex and e2 are idempotents belonging to 

JXi and respectively. 

Proof . The product a2-a1 is defined in / by (B2)* and a2• Therefore 
properties (CI) (a), (c) and (d) imply l((a2 • a1)Ae)=I(a1Ae). However, we have 
(a2-a1)Ae=a2Ae-a1AeBa by (C2) (b) whence it follows by (B2)* and (CI) (a) that 
/((a2 • a1)Ae)=/(a1AoB )^I(a2Ae). Thus (i) is verified. Taking into consideration 
(CI) (c) and (d) statement (ii) is an immediate consequence of (i). 

Lemma 2.15. Let azla, QiJp and Q'U? such that as/?' . If gBa£jx 

and E is an idempotent in Jx^ then E-Q~QBG. 

Proof . If QBa£Jai then a ^ / 3 and hence e • q is defined. Moreover, aAezIx . 
Thus EB.A ~£ by (CI) (c). Hence we infer by Lemma 2.5 that SBAA is idempotent. a e 
Then Lemma 2.9 ensures that sBaA • &Ba= oB„. Therefore, by (C3) (b), we have Q 
(e- Q)Ba—QBa. Properties (CI) (c) and (d) imply that (i-e'YiJ^ provided i is an 
idempotent in JA. By (B6), this implies (e • Q)'£ JX. Thus, in consequence of (CI) (c), 
we have (s-Q)Ba~s-Q which ensures that QBQ~E- Q. 

Lemma 2.16. Let E and t] be idempotents in Ja and Jp, respectively, where 
oc^p. Moreover, let a£lx. Then t]Ba and a • rj are also idempotents in Ja. 

Proof . If <x=p then the statement immediately follows from (CI) (c), Lemma 
2.5 and (B5). Assume that a<j6 and (e • rf)'£jy. Then, by (B2) and Lemma 2.3, 
we have y<jS whence we can see by utilizing (B6) and (CI) (d) that t]BaeJa provi-
ded a € / r Thus Lemma 2.15 implies that E-ti~t]Ba. By (C3) (b), we obtain the 
equality r\Ba=(t] -r\)Ba=r\BaA t]Ba whence it follows on the one hand, that 
r\BaA iJx and therefore e • r\ ~i]BaA by Lemma 2.15. On the other hand, Lemma 2.9 
ensures t\BaA to be idempotent. Thus, since t]BaA ~ E • tj ~ f]Ba we conclude by Lem-n n 
mas 2.5 and 2.8 (I) that both s-rj and tjBa are idempotent. Hence a=y as 
(E-t])'£Jx=Jy. The proof of the lemma is complete. 

Lemma 2.17. If Q1 , Q2 and A1,A2U with the property that and 
g1~(72 and, moreover, Qx • a1 is defined then Q2 • a2 is also defined and • cr1~ Q2 • a2. 

Proof . One can see immediately by (B2) and Lemma 2.8 (ii) that qx • a1 is defined 
if and only if Q2 • <s2 is defined. Suppose Q[, Q2£JX. and Then, again by 
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Lemma 2.8 (ii), there exist idempotents e and t] in and respectively, such that 
Q2=Qi-e and <72=o-1-jj. Hence g2-g2=(q1 • e)-(o"! • t])=g1 • (e • a-J • tj by (B3). 
Assume that (e • Then, by (B2), y^/T and we can see by (B6) and (CI) (c) 
or (d) that oxBaiJa- provided aOr Thus Lemma 2.15 implies a1Ba~E-o1~ 
~(i?i • i?i) • Hence we obtain by Lemma 2.8 (ii) that e-o1—(g'1- g1)-o1-rj for 
some idempotent element f j in J ((e • ffi)'). Therefore g2 • <r2=gx • ({>i • • oi • »7 • — 
= g1-ol-(rj-rj). Here J {{q-I- Gi)')=J {{{q[- Qi) • Oi)') • is implied by Lemma 2.2 
whence it follows that / ( (g i • o-1) ')=/((e • tr1) ')=/(^). Since ij-ri is an idempotent 
in J (if) by Lemma 2.16 we conclude by Lemma 2.8 (ii) that g2 • cr2 ~ gt • ax which 
was to be proved. 

Now we can turn to verifying that 93(7, A, B) is an orthodox semigroup 
which is a band £8(1, J; A, B) of orthodox semigroups. 

L e m m a 2.18. 23(7, A, B) is a semigroup. 

Proo f . A straightforward calculation shows that the operation defined in (2) 
is associative. We have to apply properties (C3) (a)—(b), (CI) (a), (B3)*, (B3) and 
(C2) (a)—(b). 

L e m m a 2.19. In the semigroup S ( 7 , A , B) the elements (a, g) and (b,o) 
are inverses of each other if and only if g and a are inverses of each other in J. 

Proof . By definition, (a, g)(b, o)(a, g)=(a, g) and (b, a) (a, Q)(b, a)=(b, a) 
hold if and only if the following four equalities are satisfied in 7 and J. 

(4) a-bAe-aA„AeBb = a, 

(4)' b-aAa-bAeAaBa = b, 

(5) gBb-aAa -<rBa-g = g, 

(5)' <yBa.bAQ • gBb- o = a. 

Suppose first that (a, g) and (b, a) satisfy the equalities (4), (4)', (5) and (5)'. By 
(CI) (a), we have1 l(d)^I(bAe)s=I(aAaAeB). The equality (4) implies by (B2)* 
that I(aAaAeB)=I(d). Hence I(a)=I(bA"e)=I(aAaAeB). Similarly, by (4)', we 
have I(b)=I(aAa)—I(bAeAaB). Since 1(a) and 1(b) are left zero semigroups the 
equalities a-bAe=a and b • aAa~b are valid. In the equality (5) we have J(Q) = 
=J(gBb)=J(£,) where £ = gBb • <rBa. On the one hand, this implies by Lemma 2.13 
that J(g')^J(o) and hence, by Lemma 2.12, we conclude that gBb~g. On the 
other hand, applying Lemma 2.9 we obtain that f is an idempotent element in J(g) 
andtherefore gBb=£-gBb=gBb-oBa- gBb since J(gBb)=J(g) by Lemma 2.8 (ii). 
In the same way, we can deduce from (5)' that oBa^o and oBa=oBa - gBb-oBa. 
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Thus the elements gBb and oBa are inverses of each other in J. Consequently, Lemma 
2.8 (iii) ensures q and a to be inverses of each other in / which was to be proved. 

Conversely, assume that aGx, QtJx, b€lx-, o€Ja- and g and a are inverses of 
each other in / . Then we have gBb~g and oBa~a by (CI) (c). This implies by 
(CI) (a) that bAe€lx and aAaZlx- whence, in the same way, we obtain that 
aAaAeB^Ia and bAeAaB^Ix.. Since both Ia and Ix. are left zero semigroups the 
equalities (4) and (4)' follow. Moreover, we have b-aAa—b and abAe=a in (5) 
and (5)', respectively. Then the equalities (5) and (5)' are implied by the relations 
gBb~g and oBa~o by making use of Lemma 2.11. Thus (a, g) and (b, a) are inver-
ses of each other. 

Lemma 2.20. S( / , J; A, B) is an orthodox semigroup with band of idempotents 

(6) B = {(a, e): aOx and e is an idempotent in Ja for some aey} . 

Proof . By (B4), every element in / has an inverse which implies by Lemma 2.19 
that© (7, J; A, B) is regular. We show first that the set B defined in (6) is the set of all 
idempotents in ©(/, / ; A, B). Suppose that (a, e) is an idempotent element. Then, 
by definition, we have 
(7) a • aAc = a 
and 
(8) e50.e = e. 

The equality (7) ensures by (B2)* that I(aAe)=I(a). Then J(eBa)=J(e). On the 
other hand, we have / ( (e5 a ) ' )^ / (e ) by (CI) (a). Thus Lemma 2.9 implies by (8) 
that eBa is an idempotent in /(e). From J(eBa)=J(e) we infer by Lemma 2.13 that 
J(e')^J(e) which implies by Lemma 2.12 that zBa~e. Hence we obtain by making 
use of Lemma 2.5 that e is idempotent. Conversely, if a£ l a and e is an idempotent 
in Jx then we have aAtOx by (CI) (b) and eBa~s by (CI) (c). The former relation 
implies (7) as Ia is a left zero semigroup while the latter one, taking into consideration 
Lemma 2.5, ensures that eBa is an idempotent in Jx. Hence (8) follows by (B5). 
Thus we have verified that (a, s) is an idempotent element in S (7, / ; A, B). Owing 
to Lemma 2.5, the inverses of the idempotents in / are idempotent. Therefore we 
obtain by Lemma 2.19 that the inverses of the elements in B are contained in B. 
This completes the proof of the fact that S(7, / ; A, B) is orthodox. 

Lemma 2.21. The band of idempotents B of 23(7, / ; A, B) is a semilattice Y 
of rectangular bands 

Da = {(a, e): a€lx,B is an idempotent in /a} (a€ Y). 

Proof . By applying Lemma 2.19 we see that the set of all inverses of an ele-
ment {a, e) in B with aOx and e£Jx is just Da, that is, the ^-classes in B are the 
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sets D„(a€ Y). If foe^D,, and (b, OeD„ then (a, E)(b, Q=(a-bAt, eBb • C)€D^ . 
For we have bAeOx^ and eBb£jxf by (CI) (b). This implies a-bAteIxfi and 
£Bb-CtJxp by (B2)* and (B2), respectively. Thus we have D a D p g D a P which was to 
be proved. 

Consider the following subset in the band B: 

(9) B = {(a, E): a£Js and E is an idempotent in Jx for some a€Y}. 

Since F is a subsemilattice in Y Lemma 2.21 implies B to be a subband in B with the 
property that B is a union of some ^-classes of B. For every element (l,J) in the 
band 3 S ( J , J \ A , B ) , let us define a subset in 23(7,/; A, B ) as follows: if 
j U x with a in F then put 

(10) F 0 jj = {(a, g): aOx, for some a in rg}. 

L e m m a 2.22. The semigroup 93(7, J; A, B) is a band A, B) of the 
orthodox semigroups F a j ) ( ( / , J )6^(7, J ; A, B)). For every (J, J) in £8(1,3; A, B), 
the greatest ¡¿-class of idempotents in F^ j) is Fq ^DB. 

Proof . Let (a, e)€F a j} and (b, <r)£Fa n . By definition, we have 
(a, g)(b,o)=(a-bAe, QBb-o) where bAt^J and QB^/'** by (CI) (a). Thus 
(B2)* and (B2) imply a -bA e €l l ^ A ] and QB^OU1*1^ respectively, whence we 
infer (a, o)(b, &)£F(jjwjy This shows that the equivalence relation on 23(7, A, B) 
defined by (a,g)x(b,a) if and only if (a, g), (¿, <r)€F(,j) for some (I, J) in 
£8(1, J ; A, B) is compatible. The second assertion of the lemma immediately follows 
from Lemma 2.21. Thus the congruence relation x is subband-parcelling by Pro-
position 1.1 whence we conclude by Theorem 1.2 that F 0 ^ is an orthodox semi-
group for every (I, J) in £8(1, J; A, B). The proof is complete. 

The following theorem sums up the most important properties of a semidircct 
product of a partial left band and a right orthodox partial semigroup. 

T h e o r e m 2.23. Let Y be a semilattice, I a lower associative semilattice Y of 
left zero semigroups Is (a € F) and J an upper associative semilattice Y of right zero 
semigroups Js (a 6 Y). For every a in Y, consider a semilattice Ys with identity a. 
Let Ybe a semilattice Y of semilattices Ys ( aeF) such that F is a subsemilattice in Y. 
Let I be a partial left band over I <g>TY and J a right orthodox partial semigroup over 
J®TY. Suppose A, E is an (I, J)-pair and A, B is an (7, J)-pair over A, B. Then the 
semidirect product SB(7, A, B) of I and J is an orthodox semigroup with band of 
idempotents B defined in (6). The subset B in B defined in (9) is a subband in B. More-
over, 23(7, J; A, B) is a band 38(1, J; A, E) of the orthodox semigroups F a ^ ( 0 J ) £ 
e£?(I,J; A, E)) defined in (10) where the greatest Qt-class of idempotents in F a } ) is 
F a j ) n B . 
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3. The construction 

In this section we introduce the construction which will be applied in the next 
section to describe the strong subband-parcelling extensions of orthodox semigroups. 

Let F, I, J, A, B, Y, I, J, A and B have the properties required in Theorem 2.23. 
Suppose that 

(C4) for every a in Y, idempotents ia and ja in /„ and Ja, respectively, are distinguished 
such that aAj and aB{ provided a, fizY with aSj? and 
aOx>o'dJa. 

If a e F then denote by ls the element I in I for which holds. Similarly, by ] s 

we mean the element j in J with the property that By (CI) (a), it follows from 
(C4) that lAjy = and JB^—j-j^ provided a, fitY with a ^ f i and i€ / 5 , JeJ 5 . 

Let S be an orthodox semigroup with band of idempotents E=SS(J,J\ A, B). 
The band E is a semilattice F of the rectangular bands Es=IaXJs (aeF). For every 
s in S we denote by r(s) [/(s)] the element a in F which has the property that E^ss* 
[ £ j f o r some inverse s* of s. If seS then there exists a unique inverse s' of S 
such that (lKs),jr(s))^s'^(ilis),]Hs)). 

For every element s in S, let Ts be an isomorphism of r(s)Y onto l(s)Y. Suppose 
that rs*=T~1 provided s* is an inverse of s and s*EssQEsu whenever s* is an 
inverse of s and a e F with aSr (s ) . Since Y is a semilattice F of the semilattices 
Ys (a e F) with identity a such that F is a subsemilattice in Y it is not difficult to verify 
that Y 5 t s c Y i t j for every a e F with aS r ( j ) . 

Let us be given mappings hs: U {/„: a i / ( s ) } - U {/„: «S r ( i ) } and 
ys: U {Jx: a^r(s)}— U ^ : for each s in S and constants yi>s in 7/(sS) for each 
pair of elements s, s in 5 such that the following conditions are satisfied: 

(Dl) (a) if a all with iel5 and a^l(s) then ah,al-» where s(i,Ji)(s(i,]a))'= 

(b) if cUi with ]£JS and a^r(s), a' Ua. then ay^j\z with 
( ( W » ' ( W > = ( W 0 and fa,)' 

(D2) (a) if «€/. , bUp with / ( s ) ^ ^ i then ahs-bh={a-bAjaz;lx)hs, 
(b) if ee / a , Q'Ua. and <re/p with a ' s j ? £ r ( i ) then QXs-axs={QB^xy a)xs\ 

(D3) if ae/ a with a s / ( j ) and a U f with P ^ r ( s ) then 
(a) aA a xh s=in zh s-ah sA a , 
(b) aBaK xs = axs Ba i Xs; 

(D4) (a) if ae/„ with a^/(ss) then ahjis=c • aAys hss for some c in I,isS), 
(b) if e e / a with ccSr(ss) then ( j « s S - y s J • QXsX-s=QBcXs-s-for s o m e c 
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(D5) if a^l(ss) then (j.-y,JtJ„-it t ; 
ss s s 

(D6) if s,s,seS then '7s,f i• U « ^ ' 
(Dl) (a) if etE, a^r(e)=l(e) and aOa then ahe=c-aA.u ^ for some c in 7r(e), 

(b) if eiE, cc^r(e) = l(e) and qUa then Q'/.e = eBc-yetC for some c in 7r(c); 
(D8) ys s* is idempotent whenever sfS is idempotent or s is not an inverse of itself, 

and s* is an inverse of s in S. 

If h, x and y fulfil these conditions then we call them an (S, I, J)-triple. 
Note that ax'1 and axs are defined in (Dl) (a) and (b), respectively, as <xeYs, 

imply a^l(s) and, similarly, ctiYs, a^r(s) imply a^r(s). It is not dif-
ficult to check that it follows from conditions (CI) (a) and (Dl) that both sides of 
the equalities in (D2), (D3), (D4) and (D7) are defined. Similarly, (D5) ensures that 
both sides of (D6) are also defined. 

Before introducing the construction by means of which we descrite the strong 
subband-parcelling extensions of orthodox semigroups we prove some lemmas con-
cerning (S, 7, J)-triples which make the computations easier. 

L e m m a 3.1. If E is an idempotent in Ja and siS with a^r(s) then sxs is 
idempotent. 

P r o o f . By definition, i„ hsOx and hence, by (CI) (c), we have EB, h ~e. 
s  a T

s
 s  

Therefore Lemma 2.5 ensures eBisah to be also an idempotent in Jx, that is, 
eBix HS-£=E by (B5). Consequently, (D2) (b) implies that which was 
to be proved. 

L e m m a 3.2. If QZJa and Q* is an inverse of Q contained in Ja> and, moreover, 
seS with a^r(s) then a'^r(s) and QXs and Q*Xs are inverses of each other in J. 

Proo f . If aeYs then a ' e f o l l o w s from Lemma 2.4 and (Bl). Since r(s)eY 
the relation a ^ r ( s ) implies a ^ r ( s ) . Thus a ' s a ^ r ( j ) whence we obtain that 
both QXs and e*Xs are defined. By definition, i„hs£la and /„.t /ise7a,. Moreover, 
we have /„ hsA0*ila. by (CI) (a), (c) and Lemma 2.8 (ii). Since 7a- is a left zero 
semigroup the equality ia>t hs-iaT hsAe*=ix.z hs holds. On the other hand, we have 
QBia,t H s ~q and e*Bix_ by (CI) (c). Therefore we can see by applying the 
equality (D2) (b) twice and making use of properties (C3) (b), (C2) (a) and Lemma 
2.11 that 

QXs • e*Xs • QXs=(QBia.zhs • Q*)xs • exs= {(eBix,^„s • e*)Biax^s • e)xs= 

v ' e*B'*rs
hs • e^=(eBia.z/s • • e)Xs=6Xs-

Dually, one obtains Q*XS • QXS • 6*Xs—E*Xs which completes the proof. 
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Lemma 3.3. If s,stS then 

Proof. By definition, y s > i( .Jm and therefore j ,m-yS t i=y3 i S by Lemma 
2.9. Thus we have Y\-SEJK,# by (D5) as 1(SS)X~\T-s=I(SS). 

Lemma 3.4. Let ailx, criJx andseS with ccsl(s). Then we have ah, • bAahs= 
= (a • bAa)hs for every b in I. 

Proof . By (CI) (a), we have bA„Z.Iai where o^Sa. Thus both sides are 
defined. Taking into consideration (D2) (a), it suffices to verify that bAa=bAaAJaz.1Xs. 
In consequence of Lemma 3.1, is an idempotent in Ja. Hence G = a 

by Lemma 2.9 and therefore (C3) (a) implies the equality required. 
The following lemma is dual to Lemma 3.4. 

Lemma 3.5. Let aOx, AEJX andsiS with ct^r(s). Then we have QB„Xs - O%S= 

= {gBa-o)xs for every g in J. 

Proof . Suppose that oc£Ys and g£jfi with /}ei^. By (CI) (a), we have 
QBaeJ„ and (eBaYtJ^ where a ^ j S and a^Sa. The remark after the definition 
of an (/,/)-pair ensures that a^a i€Y s p. Since a S r ( i ) follows from a S r ( j ) 
we have a1, cc'1^r(s). Thus both sides of the equality are defined. It suffices to 
prove by (D2) (b) that gBaBixr ^ = gBa. Here iaThs€lx. Since Ix is a left zero semi-
group we have a-ixchs—a whence the equality to be proved follows immediately 
by making use of (C2) (a). 

Lemma 3.6. If s and s* are inverses of each other in S then yss*s and ys>s*s are 
idempotent elements in Jl(sy 

Proof. By definition and Lemma 3.3, we obtain that both yM*>s and y'ss*s belong 
to / I ( s ). Moreover, by (D6), we have 

7sS*,S ' Or (s) * yss*,ss*)xs y SS*, S ' y SS*,S' 
Here jr(s) • yss*,ss*=yss*,ss* is an idempotent in Jr(s) by (D8) and hence, by Lemma 3.1, 
C/r(S) • Vss*,ss»)Xs€//(s) is also idempotent. Thus Lemma 2.8 (ii) implies that s ~ 
~Vss*,»*yss*.s» that is, ySs*,s-yss*,s=yss*,s-£ for some idempotent e in Jl(s}. Multiply-
ing this equality on the right by the idempotent element y^* s • s in J,(s) and apply-
ing (B5) we obtain that y«*,s-yss*>J=7s^,s, that is, is, indeed, idempotent. 
A similar argument shows that ys<s*s is also idemdontent. 

Let us define a groupoid S=<5(S,1, J; h, x, y) in the following way. The un-
derlying set of S is 

S = {(a, s, &): s£S, a£li and where 

aeYr(s), ss'= ( i j , ( t ) ) and s's=(Jl(s), J)} 
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and the operation is defined by 

(11) (a, s, a)(a, s, a) = (a •aA„hs, ss, (jPzs. • ys,s) • a) 

where ft is the element of Y with the property that aA„hseIfi. 
We have to show that the products occurring in (11) are defined in I and J and, 

moreover, that the set S is closed under the multiplication defined in (11). Suppose 
that azllaal, oUi,s and where ss'=(i,jr(s)), ss'=(1,]^), s's=(il(s),J) 
and s's=(ll(i),j). By (CI) (a) we have aAaU\*j and aB s £j i* ' . As we have seen, 
a i€F/(J)KS) since a € Y^ and <y.xs € Yl(s). Thus ¿ ¡ ^ / ( i ) and ax^/-(s). Therefore 
aA„hs and <jBsXs are defined and aAJi,a£lX-1, oBsx-swhere,by(D1)(a), we 
have s(iAj, ]l(s)r(s)) (s( lAj , J /( l)r(i)))' = (U,7(,WKS))tj-i) and ((i/(j)r(s), )' (</(sW5), jB})s = 
=(*</«*»»V Here ( ^ M ^ f c 7 1 = r ( s s ) and (l(s)r(s))x-=l(ss). Hence P= 
=a 1 T7 1 €l r

f W ) and 0TiS€7/(sS). Property (D5) implies that • y s J ' U p ^ s where 
fixsTs=a1Ts. Lemma 3.2 implies that (oB-)'xs is also defined and it is an inverse of 
((tBs)/~s. Thus we obtain by (Dl) (b) and Lemma 2.4 that ( < r B s x s ) ' t pro-
vided (cBgYtJ s / . Since o i ^ a i s and a i ^ a we have y?=a1r71=a, O.1Xs=PTsXs and 
a.[xs^ocT-s. Thus we see that the products a • aA„hs and (y i t •?*,§) • <*Baxs •& in (11) 
are defined and a - a A „ h s ( j ^ • ysS) • oB-i-• oUf^'J where fi<E YKsS) and 
JfiTsS' ys,sf~Jji!s-- Here x€J/(jS) and /eJ /(jS) whence we infer that x-l=l. All we 
have to verify is that ss(ss)'—(i • k, ]r(sS)) and (ss)'ss= ( l ^ , 1 • ]). We will show 
the first equality. The second one follows dually. In the band 38(1, J; A, B) we 
have 

(S'S)(5S') = (lHs), j)(l, J r (s )) = ('l(s) -iAjjE',-j,(s)). 

Taking into consideration the remark after (C4) we obtain that 

(s's)(ss') = (iAjAJm, jBjBj^). 

Since y'eJ,(j) and I e/r(i) where J /(s) is a right zero semigroup and /r(5) a left zero 
semigroup we infer by (Wl) (a) and (W2) (a) that 

(s's)(ss') = (lAj, jBd@(Uj,jns)rai). 

Similarly, by applying the remark after (C4) and the fact that Jr(5) is a left zero semi-
group one sees that 

(iJr(!.))(k> Jr (ss)) ~ (i ' (s) > Jr(s)B]i •Jr(Ss)) = 

= (i • K(s) • k> Jr(s)Bi •Jr(si)) = (i • £) Jr(s)B]i •Jr(ss)) — 0 • k> Jr(ss))-
i 
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In the last step we have utilized that and is a right zero semigroup. 
Now we can easily check that 

0 • Jr(sa) = (ss%s(JAj, }ns)rls)))(s(lAj, J,(s)f (S)))' = 

= s(lAj,]lU)r(s))(x(¡Aj, j,(s),(5)))' @s(lAj,]l(s)r(s))s'@s(s's)(ss')s' = sssY<%ss(ss)' 

hold in the semigroup S. On the other hand, ss(ss)'£C(i- R , b y the definition 
of (JS)'. This completes the proof of the fact that (ss)(ss)' = (1 • Jc, J ^ ) -

By applying the technique used in Lemmas 3.1, 3.2, 3.4, 3.5 and 3.6 one can 
prove the following lemmas. 

L e m m a 3.7. S is a semigroup. 

L e m m a 3.8. Let (a,s,a)£S with aUa, o'Ua.. Then (a', s', a*zs.-£)eS 
and the equality 
(12) {a, s, s', a*xs- • ( A r ; 1 ' K ' £Xa> s> a) = (a> s> a) 

holds for every inverse a* of a, for every a' in and for every idempotent e in 
J'^Jl- Consequently, S is regular. 

Since the proofs need rather long and complicated calculations we left them to 
the reader. 

Observe that the relation (£ defined on S by 

(13) (a,s,g)(£(a,s,g) if and only if s=s 

is a congruence relation. The idempotent ([-classes are 

Ce = {(a, e, Q): (a, e, Q) <= S}, (e£E). 
L e m m a 3.9. The mapping <p: U { C e : e € £ } - S ( / , / ; A, B) defined by 

(a, e, o)(p=(a, q) is an onto isomorphism. 

Proo f . <p is one-to-one and onto since if (a, g)€23(/, J; A, B) with a ill, 
Q£j{ then e=(i,j) is the unique idempotent element in S such that (a, e, g)€ S 
and, obviously, we have (a, e, g)cp=(a, Q). A straightforward calculation shows 
that ((a, e, a)(a, e, a))cp=(a, e, a)cp, (a, e, a)q>, that is, <p is an isomorphism. 

Lemma 2.20 shows that S(7, J\ A, B) is an orthodox semigroup. Hence 
U {Ce:etE} is also an orthodox semigroup which implies that the idempotents in 
S form a subsemigroup. Since S is regular by Lemma 3.8 S is also orthodox. More-
over, Lemma 2.22 ensures by the proof of Proposition 1.1 that the congruence rela-
tion £ defined in (13) is (C, C)-parcelling where, by using the notations of (6), (9) 
and Lemma 2.22 we define C=B<p~1 and to be the congruence relation on the 
band of idempotents of S corresponding under < p t o the congruence on B. 
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Theorem 3.10. Let Y,I,J, A, B, Y, I, J, A and В have the properties required 
in Theorem 2.23. Suppose that (C4) holds for A and B. Let S be an orthodox semi-
group with band of idempotents 38(1, J ; A, B). Moreover, let h, у be an (S, I, J)-
triple. Then S=<5 (S, I, J; h, x,y) is an orthodox semigroup and the relation (£ 
defined in (13) is a strong subband-parcelling congruence on S such that the factor 
semigroup S/(£ is isomorphic to S. 

Proof . The reasoning carried out before stating the theorem shows that all we 
have to prove is that £ is strong. We verify that, for every s in S, there exists 
(a, s,a) 6 S with a€/ r (s) and erfE//(J) idempotent such that (a, s, a) is i f - and 
^-equivalent to idempotents in C. By Lemma 1.3 and Theorem 1.4, we can restrict 
ourselves to elements s with (ir(s), jr(s))iiis^C (l1(s), j!(s)). These are precisely those 
elements for which s=s" holds. Suppose that s fulfils this property and a€/J/(<j>. 
Then (a, s,jl(s)) eS and we have seen in Lemma 3.8 that (a', s',jl(s)xs> • (yr(5) • ?s,s0)€S 
and (16) holds with a=jl(s) and e=ySjS,-y's>s, for any Since jl(s)xs- is an 
idempotent in / r ( s ) by Lemma 3.1 and the idempotents in / r ( s ) form a right zero 
semigroup we have y ' ; ( s ) z s ' T V - T h u s 

(a, s, j ; (s)) (a', s', y's,„')(a, s, ; l ( s )) = (a, s, jHs)) 

where one can easily check that (a, s,jl(s))(a', s', y's^)=(a, ss', ys>s, -у^ОеС. Since 
s=s" a similar argument shows that (a, s,Q£S with C=ys,s' Xs'y's-^'jits) and 

( f l s , Q(a', s\ y's>s) = (a', s', 

Here by Lemma 3.6 and (D6). Thus we 
have i~ys,s's-(ys\s-y's',s)-ji<.s) by Lemma 2.17. Since is idempotent by 
Lemma 3.6 and, clearly, both (ys<>s-)V>s) and yi(s) are idempotents in / / ( s ) we ob-
tain that This implies that С is also idempotent and, since we 
infer that C=7,(s). 
Since (a', s', y's^)(a, s, jKs))=(a', s's, jl(s)) € С we conclude that (a,s,jl(s)) and (a', s', y'ss) 
are inverses of each other in S and therefore (a, ss', ySi s> • y's (a, s, 7i(s))^f 
Z£(a', J'J,7I(s)). Thus we have proved the theorem. 

4. The main result 

In this section we prove that any strong subband-parcelling extension of an 
orthodox semigroup S is isomorphic to some semigroup S(S, 7, J\ h, x, y)-

An orthodox semigroup T is said to be a strong subband-parcelling extension of 
the orthodox semigroup S if S is isomorphic to T/x for some strong subband-par-
celling congruence x on T. 

2* 
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Before drawing up our main result we verify two lemmas which make the proof 
of the theorem easier. 

Lemma 4.1. Let T be an orthodox semigroup whose band of idempotents is a 
semilattice Y of rectangular bands Ea (a 6 Y). Let t and u be elements in T such that, 
for some inverses t' and u' of t and u, respectively, we have E{tt')^E(u'u). If 
xdE{tt') and ziE(uxu) then zuxt=zut. 

Proof . By assumption, we have E(z)=E(uxu')=E(uxttV)=E(uttV). Mo-
reover, tt'u'utt'=tt' as E(tt')^E(u'u). Thus we obtain that 

zuxt = zux(tty = zux(tt')u'u(tt')t = z(uxtt'u')(utt'u')ut — zutt'u'ut = zut. 

Lemma 4.2. Let T be an orthodox semigroup with band of idempotents B. 
Suppose E, ö is an associated pair in B. Let x be a strong (E, 5)-parcelling congruence 
on T. Let T/x be denoted by S. Then there exists a cross-section :sdS, usx—s} 
of the x-classes contained in SB such that ueíB whenever e is idempotent and, fur-
thermore, us and Ms* are inverses of each other and usus*=uss* provided s is idem-
potent or s is not an inverse of itself and s* is an inverse of s in S. 

Proof . Let the band of idempotents in S be E which is a semilattice Y of 
rectangular bands Ea (a € 7). Let us choose and fix an element ea in Ex for every a 
in Y. Moreover, choose and fix an element ix of B in each «-class ea. If e2A,ex in S 
then we have i j x j and iJ3tia for every element j of the «-class e contained in E. 
For exe=e implies ixjxj, the equality ia(ixj)=ixj trivially holds and (iaj)ix=ia 

follows from the fact that x\E=ö\B^3> whence we infer (ixj)ia@ix by 
((ixj)ix)x=ea. Thus we have seen that every «-class e with eMex contains an element 
itB such that it%ix. The dual assertion holds for the x-classes e with eS£ex. Now lét 
us choose and fix an element i*tB in every «-class e with eMex or e<£ex such that 
i*e0lix and itZ£ia, respectively. In particular, it is clear that i*^=ix. If fSlex then 
there exist uniquely determined elements e1 and e2 in E such that ex0tf&e2 and 
eiSeex®e 2 . Then e1e2 —f Define if to be it • it. Since, for each a in Y, 
Bn{jtB:jx=f for some fiE with f@ea} is a rectangular band the set {if:f2ie^ 
forms a subband in it and therefore {i}: f@ex} is also a rectangular band. Let us 
define ue to be ¡'* for every e in E. 

Now let s be a non-idempotent element in S such that ep for some ci, /? 
in 7. Let s' be the inverse of s with eJ£s'Skep. Proposition 1.5 ensures the existence 
of elements t,t' in SB which are inverses of each other and tx=s, t'x—s'. If s=s' de-
fine us=iatip. Now consider the case when s^s'. Since both tt' and t't belong to 
B and (tt')x=ea, (t't)x=efi the elements us=ijip and us,=ipt'ix are also in 
SB, they are inverses of each other and usus.—ia, us.us=ifi. Clearly, we have usx=s 
and us.x—s'. Thus we have defined us for those s in S for which exMs&ef for 
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some a, /?6 Y. Finally, let s be any element in S. Assume that efflsSCf where eaEx and 
fiEp. Then s=easep satisfies exMs^ep. Define us to be u-s=i*usi*f. Obviously, we 
have u-x=s. The idempotents i* (e€E) are chosen such that the definition of us is 
independent of the choice of e and / . If s and s' are inverses of each other in S such 
that s is not an inverse of itself and ss'=e£Ex, s's=fdEp then s^eje^ 
¿¿efis'ex=s'. Thus u- and ur are inverses of each other in SB and we have usur=i*, 
uru-s=i}. Thus the required conditions are fufilled by the cross-section {us:s€S, 
Msx=i} which completes the proof of the lemma. 

Now we turn to the main theorem of the paper. 

Theorem 4.3. Suppose T is an orthodox semigroup and x is a strong subband-
parcelling congruence on T. Denote Tjx by S. Then there exist F, I, J, A, B, Y, I, J, A, B 
satisfying the conditions of Theorem 2.23 and (C4) and there exists an (S, I, J)-triple 
h, x, y such that T is isomorphic to <3 (S, 7, J; h, x, y). 

Proof . Assume that x is a (B0, ¿>)-parcelling congruence on T where B0,S 
is an associated pair on the band of idempotents B0 in T. Denote the semilattice 
BJ3) by Y. One can easily see by Theorem 1.2 that Y=B0/@ is a subsemilattice in Y 

and r i s a semilattice F of semilattices Y- with identities a in F. Since x is a strong 
(B0, <5)-parcelling congruence the band of idempotents E in S is isomorphic to 
BJS. Thus E is a semilattice F of rectangular bands EX(OL£Y). Let us choose and fix 
an element es in every ^-class ES. Moreover, for every a in Y, select an element ia 

in the ^-class a such that ixx=es provided a£Fa . This can be done by Lemma 1.3. 
If aeF then let IS and JS stand for the -class and ^2-class, respectively, in ES 

containing es. If a€T then denote by IX the ¿'-class in B0 containing ix and let JX 

be the set of all elements cr in 7" for which ax is idempotent and ijfta. Suppose the 
transformation "" ' on J— U {JX:CTIY} assigns an inverse to each element. Clearly, 
such a transformation exists on J. Define a partial operation " - " o n J = U {/s: 
aeF} as follows: if a(J-, bcj^ then a b is defined if and only if as/? and if this 
is the case then A-B means their product in E. It is clear that A• that is, 
a-balp. With respect to this partial operation / is a lower associative semilattice 
F of the left zero semigroups I s (aeF). Analogously, one can define a multiplication 
on the set 1= U {IX: a € Y} with respect to which I becomes a lower associative 
semilattice Y of the left zero semigroups IX (a e Y). For every I in I, denote by F 
the set {iel:ix=i}. The elements ix (aeY) are chosen such that J is a disjoint 
union of the subsets I1 (l€/). Let L\=FLC\IA provided a €YS and l€/5. By Lemma 
1.3, these subsets are non-void and, since x is a congruence, one can immediately 
see that 7= U { I X : ( I , a)e7<g>ry} and 7 is a partial left band over I<2)YY. Let us 
define J dually to I. Obviously, J is an upper associative semilattice F of the right 
zero semigroups J s (a £Y). Finally, define a partial operation on / in the following 
way: if QiJx, q'£Jx-, oZJp, o'aJp. and a 's /S then let q -<j mean the product of q 
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and <7 in .T and, in the opposite case, let Q • a be undefined. Clearly, we have g • oMia 

and hence g-o£ja. Denote by J1 the set {j€J:jx=j). Similarly to the case of / 
one can see that J— U {JJ:]U}. Moreover, if (J, a)(.J®YY then j{=J'C\Ja 

is non-void and, since « is a congruence we have g -aiP'1 provided giJ\ c 6 / E 

and their product is defined in J. Since (g • o)'~o'g' in T where ~ is used to mean 
the least inverse semigroup congruence on T and (O'O)<F'Q'=O'Q' we have 
J((g • o)')^J{o' • o)=J(<j'). This proves (B2). Properties (Bl), (B3), (B4) and (B5) 
trivially hold in J. As far as (B6) is concerned, if g and a are idempotents in Ja and 
Jp, respectively, and x€Jy, x'zJy. with a ^ y , P^y' then x'gxQio holds in B0 if 
and only if xax'Slg. Thus we have shown that / is a right orthodox semigroup over 

For every element s in S, let s' stand for the inverse of s satisfying er(s) . 
Let us choose a cross-section {¿A,:seS, u,x=s} of the «-classes possessing the 

properties required in Lemma 4.2. The proof of Lemma 4.2 ensures that this cross-
section can be chosen such that ue,=is for every a in F. Denote by u's the in-
verse of us fulfilling ir(s) Z£u's £%ii{s). Clearly, we have usx=s. 

Let xs be the isomorphism of r ( i ) F onto l(s)Y which corresponds the element /? 
with usixus3iip to every a in r(s)Y. Clearly, xe is the identity automorphism of r(e)Y= 
=l{e)Y provided e€7s. Moreover, if s and s* are inverses of each other in S then 
Ts»=T7\ If a e F and a g r ( i ) then s 'E ssQES r s . 

Now we verify that every element t in T is uniquely represented in the form 
t=ausa where s=tx€S, a€ls/ and o€J*'zs for some a in Fr(s). Let ttT and denote 
tx by s. Let a be an element in 7 which is ^-related to t. Obviously, such an a exists 
and is unique. Suppose that a£l a and 

otZY .̂ Then s—tx3i(tx^es, that is, oz—r(s) 
and On the other hand, we have <r=4 : u'siSHat u'saus3iiaz as u'saus€ccxs. 
Since ax=er(s)r s's=s's we obtain that We can easily see that ausa= 
=ausi„ u'st=a(usi„ u^at=at=t as afflt and a, usi„ u's£tx. As far as the uniqueness 
of this representation is concerned, observe that if s£S and a t l f , aZJxx

s with 
a € 7r(s) then (ausa)x=ss'ss's=s and au,a3iausaa'usa=a. Therefore if an element t 
is represented in both of the forms ausa and ausa then s=s and a—a. From the 
latter equality a = a follows where and a O s . Multiplying the equality 
au,G=aus<f by iax u's on the left we conclude a=a. Put 

S = {(a, s, <r): siS, aelf and for some a in yr(s)}. 

We have shown in this paragraph that the mapping & : T-~ S which assigns (a, s, a) 
to t=ausa is one-to-one and onto. In the sequel we give an (S, 7, /)-triple h, x, y 
such that <P becomes an isomorphism of T onto <5(S, I, J; h, x, y)-

First we deal with the idempotent «-classes. If tx=e€£ then t=aueo= 
=aixueiaa=aiaawhere aefx. For a s r ( e ) = / ( e ) and ue is an idempotent 
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element in T with ue2iHe). If a all and oaJl then (aa)x=ij. Therefore every 
element t in T with the property that tx is idempotent is uniquely representable in 
the form ao where aalx and craJx for some a in Y. Now we will use this represen-
tation for the elements of the idempotent ^-classes. Let laIs,jaJp and otaYi, 
paYp. Assume that a all and oajj, a'a J p.. Then (<ra)x=Ji and thus era is uni-
quely written in the form alcr1 where al and t71€/iJI)(J5). Let us denote ax 

by aA„ and o^ by oBa and, moreover, (JO GO' by IA} and (Ji)'(JT) by JBV Clearly, 
iAjaltf and JBjfJap. Observe that aaa'aa.x. Moreover, (oBa)'aJ,x[ if and only if 
ao'oaaa'i. Thus x^P and a^a immediately follow. If a is idempotent then 
aix=a\=a.p. Suppose a=p'. Then oao'=oo' whence a1=p. Furthermore, 
aBa=4 a a—aa=aa=aix~a. However, if a</?' then we clearly have {ixayaJXi 

as oixo'Q)aao'. Thus we have verified that the families A — {Aa\aaJ) and B= 
= {Ba:aaI} of transformations of I and J, respectively, satisfy (CI). 

Now let aalx, balp with a s / ? and a a J. By definition, we have 

(14) <xab = <r(a-b) = (a-b)Aa-<jBa.b, 

where (a-b)A„aIXi and oBa.baJXi. On the other hand, 

(14') (rab = (cra)b = (aA„ • aBJb = aAa(aBa • b) = (aA„ • bAaBJ • aBaBb, 

where the product a A, • bAaB is defined in I as it was noted after the definition of an 
(/, 7)-pair. Since aab is uniquely representable in the form aQa0 with a0aIXo, (r0^JXo 

for some a0€ Y we infer that (14) and (14') imply (C2) to be valid. Dually, one can 
prove that (C3) also holds. Since x is a congruence relation (C2) and (C3) show by the 
definition of A and B that (Wl) and (W2) are fulfilled by A, B. This completes the 
proof of the facts that A, B is an (I, J)-pair and A, B is an (I, J)-pair over A, B. 
(C4) trivially holds for A, B with ix=jx, aaY. 

Let s be an element in S. Define the mapping hs: U {/a:as/(s)}— 
U by 

ahs = usau's ixt-1 

provided a all and a s l(s). Similarly, let U { / a : « S r ( j ) } - U {Jx:a^l(s)} 
be the mapping for which 

aXs = ' i t , " > " s 

whenever aaJ\ with P^r(s). Clearly, ahsalx^}' and <TXs£Jp{syis as usau'saax~\ 
(ahs)x=sls'eST-1=sl(siy and u'sous0lu'sipusap%s, (<rzs)x=e^s'js = respecti-

vely. Here a€Ys and PaY$. It is obvious that a s / ( s ) and p^r ( s ) . Therefore 
(Dl) (a) and (b) are satisfied by h and x, respectively. After the properties ,(D2)— 
(D8) we have noted that both sides of the respective equalities are defined. Thus we 
must check only that the equalities are valid. 
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In order to prove (D2) (a) assume that aela,b£lp and By defini-
tion, we have 

ahs-bhs3&usa{u's ixx.ius)bu's = usa{ixu's iax.ius)bu's = 

= usa(i„-ixs)bu's = us(a-bAiaz.1Xs)-i„-iXsBbu's. 

Here bA,^_1x,Bb in the band B0 whence we obtain that 

a ' ' bAi„:*xs' ^XsBb-
Thus 

ahs• bhs3%usa • bA-,xx-iXsu's(9t(a • bAi„-iXs)hs 

and, since both ahs bhs and (a-bAixt.lx^)hs belong to / ^ - i , they are equal. For 
(D2) (b), suppose that g€Jx, g'£Jx-, and a ' S ^ r ( i ) . Then we have 

QXs-OXs = lark's e"sieuU'^aUs = l«ts
 u's Q (us bzs U's h)ffUs = 

= ixtsu's hsAe)(gBifih)ffus. 

Here iPxJisAe^ixSigB i f izht whence it follows by Lemma 4.1 that 

QXs-aXs= i„ ys(eBhTb,-c)us = (gBhThs-a)xs. 

Now we check that property (D3) is satisfied. Assume that a€lx with a ^ l ( s ) 
and ot.Jp with psr(s). Suppose that aA„xOx^ and aBahiJp^. Then, by defini-
tion, we have 

(15) aAaxhs = us(aA„x)u'siXl^i = = 

= us ifr, u'saus a u's a* us iXi u's t-1, 

where a* and (axs)* are arbitrary inverses of a and o-/5, respectively. Since usipx us,ep 
and o£jp we have 

(16) usipxysous = usipxysipcus = ipXshs • ffus. 

On the other hand, aA„x €ax which implies ousau'so*ы^1. Thus 

(17) (ousau's<r*)(usiXiu's)iXiXri = (crusau'so*)iXiX-i. 

Since ou,au'sa*3Ha • ahs- a* the equality 

(18) (<rusau'sa*)iXiX-i = a-ahs-a*iXiX-i = ahsA„ % 
yields. The equality in (D3) (a) follows from (15) by applying (16), (17) and (18). 
Moreover, observe that this equality ensures ^ J =a 1 r f \ As far as the dual property 
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(D3) (b) is concerned, one can see by definition that 

oBohJ.s = bir^si^ahs)^ = ip.rji's'p^iah^u,. 
Since oBah aJPt we have o(ahs)o* efii- Therefore Lemma 4.1 implies 

aBah.X, = HIRS
US^(ahs)us. 

Furthermore, WjO'(aAs)c7*Hs€i91Ts=a1 whence we obtain that and hence 

oBaKxs = \ipi:ysa(ahs)us= ousau'siaix-ius = i^-a%s-au's i„-ius. 

Utilizing that both a and usi„-^us are contained in a it follows that 

aB a h z s = iXi • o x • ai«K ¿«J»"s = \-oXs-a- = °XsBa• ht^X* 

which was to be proved. 
Now we define constants cs - and ys<s for each pair of elements s, s in S. Since 

(usu^x=ss=usSx there exist uniquely determined elements cs S in / f ^ and ys5 

in such that a€Yr(sS) and 

= cs,sussVs,s-
Here t/ jJ s£S s whence we infer that a=r(ss) and arS3=l(ss). This implies yStS— 
=Ksu*us a s T h u s ys,seSB0' t h a t is> i s a l s o contained in 
If a s / ( i s ) then 

y's,sixys,s ~ "S W« ix WIS MS MS € ATSL1 TS TS 

which proves (D5). If i, s, SeS then we have 

£ = 7iS,l • ('i-(sSs) TJ5 • s)zs = 7jS,s 'r(sss) TiS t| us Or(ssf) TJS • ?J, s) = 

= Usss Uss Us U(sii) Ms ' R T VS WJS 11$ Us. 
H e r e and hence w ^ ^ u f ) • /K^ ) t i i<€r(iss) . Therefore 
we obtain that ^ = u's^usu-sws. On the other hand, ys>iV y-sj=u'sfsususu^u-su=^^ 
in the semigroup T and thus in / , too. This verifies (D6). If s is idempotent or s is 
not an inverse of itself and s* is an inverse of s in S then, by definition, ySjS*=-
= usstusus*=uss*uss». Hence ys,s* is idempotent which shows (D8). 

In order to verify (D7) suppose that e£E, aSr(e) and fl€/a, QiJx. Then 
ue=ce eye e as ue, ce_e and ye>e belong to r(e)=l(e). Thus, on the one hand, we have 

ahe = ueau'Jx,-i = ueaix = ueay'eeix = ce eye eay'e e\x = ce eaAy^ . 

On the other hand, 

6Xe = hze
u'eQue = lzQUe = i*QCe,e ' 7e,e = „ " 7e, e 

which shows that (D7) also holds. 
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Finally, we prove (D4). Let s,stS and a£la with a^l(ss). Utilizing that both 
ususau'su's and usi„7ius are contained in a r ^ r j 1 one sees that 

ahsh„ = us(u-sau'-iax-i)u's iaT-itJi = usu-3aus u's usi„-^u's („->,;• = 

= u i a u ' i < i ^ ^ c s r s u s S y s < i a y ' s -u'sSi„-ix;^csrsusSys My'srsip 

where y H o w e v e r , the latter element is S£-related to i „ - i t - i as well as 

ahjis. Thus we obtain that 

ahihs = cs, S uss {is, ¡ay's, s b) "ss iatr1
t;1 = cJiS • aAr^ha, 

that is, (D4) (a) is fulfilled. Now let s,seS and QtJa with cc^r(ss). Applying 
Lemma 4.1 we infer that 

QXs'h = i*TS.su'si*xu'sQusu-s = i„sTsu'su'sQusus. 

Here usu3=csSus-sysS and usus~y'ssu'ss whence it follows that U'SUSQUSU-S® 

Kusus^y's,susics,susiV,,S®y's,s!4Qcs,sussys,s- Consequently, we have 

QXsXs = iizsi-sy's,sU'ss8Cs,sUssYs,s-

(D5) ensures (i„ -y ) ' € / „ . and therefore (B6) implies that (i„ . •y' =)'€/„, . ss s, s s s S S ' ss 
Thus we can deduce from the last equality that 

('atss ' Vs, s) ' BXs Xs 'atjj " 7s, s lxxs TJVS, s "ss Q^s, s "ssVs, s ~ 

= »«sSU'ssiiQCs,-sUssys,-s = QBcStJ.ss-ys,s 

as Qcs -{%Q8/tia. This shows (D4) (b) which completes the proof of the fact that 
h, x, y is an (5, I, y)-triple. 

All that remained to be proved is that the one-to-one and onto mapping <P 
defined above is an isomorphism of Tonto <5(5, /, / ; h, x, y). Let t and t be elements 
in T with t<P=(a,s,o) and t<P=(a, s, a), respectively. This means that t=ausa 
and t=ausa where at i f , and a i l f , for some a in Yr(s) and 
a in YKi), respectively. Suppose that aAaeIXi and <rBaeJa. Here a x 6 Y K m s ) 

by (CI) (a). Thus we have a i t f 1 ^ 7KjS) and «iTs€ F / ( j i ). (D5) and (B6) ensure that 
T M S t ^ l ^ v ; 1 ^ and u s 5y sJ^ t / ^ i " ^ ^ ® ! ^ 1 - H e nce it follows that 

Vj'Cj.sHssrs.s'ajts " V / 1 " ^ , * ' * ^ = 1 «ss**,t,"11 z^s.s\V 
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Applying this equality one can see that 

(auso)(au-s&) = aus-aAa • oBs • u-sa = aus •aA„ • iXl • oBs • u-sa = 

= aus-aA„ • (u's ¿^t-1 us)(ust_u's) i ̂  • oBs • usa = 

= a{Us-aAau's T-US(t_U'S • <TB5-Us)G = 

(19) = a • dAahs • cSy-susSys>s • oBsxs • a = 

= a • aAahs(iv-ics>-sussys,siv-)<TBaXs • ° = 

= a-aA„hs(i^z-iusSr -i ys>r.)aBsxs • a = 

= (a • aA„hs)usS ( O ^ ; 1 ^ • ys,s) • <rBsx-s • a). 

This proves that $ is a homomorphism and therefore an isomorphism. The proof of 
the theorem is complete. 

As an application of Theorem 3.10 and 4.3 we describe the structure of orthodox 
semigroups by means of their bands of idempotents and greatest inverse semigroup 
homomorphic images. An alternative structure theorem was given by Y A M A D A [7]. 
However, our construction is more economic as it makes use of structure mappings 
in a single variable only. 

Let S be an inverse semigroup with semilattice of idempotents Y. For every a 
in Y, let Ix and Jx be a left zero semigroup and a right zero semigroup with distingui-
shed elements ix and jx, respectively. Let 7 be a lower associative semilattice Y of the 
left zero semigroups Ix (a € Y) and J an upper associative semilattice Y of the right 
zero semigroups Jx (a€ 7). Assume that A, B is an (7, /)-pair satisfying the property 
that 

(C4)' aAj^ip-a and oB^ = a-jp provided a , /?€F with a s / ? and fl€7a, 
<7€/a. 

Let hs: U {Ix: ass^s}-* U {/,: a s « " 1 } and ys: U {/.: a s ^ " 1 } - U {/„: a S i ^ s } 
be mappings such that fah sQI s x s-i for <xSs~ys, JxX.s'==Js-ixs for a S s s - 1 and the 
following conditions are fulfilled: 

(D2)' (a) if aOx,biIp with then ahs-bhs = (a-bAjsxs-iXs)hs, 
(b) if q U x , a t Jp with a S j S s j i - 1 then QXs-̂ Xs = (QBis. lfshs-a)xs; 

(D3)' if ae l x with a s j - i j and with /?Sss_ 1 then 
(a) aAaxhs = is-ipshs • ahsAa, 
(b) <?Bahsxs = axsBa -jsxs-ixs; 

(D4)' (a) if a£lx with a S ( j s ) _ 1 j s then ah§hs = c • aAyhsS for some c in IsKii)-i 
and y in Jw.la, 
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(b) if QIJA with a^ss(ss)-1 then QXSX-S = EBCXSS-Y for some С in IlSisS)-i 
and у in / ( jS )-.„; 

(D7)' (a) if a€/„ and a s / ? then ahp — c-aAy for some с in Ip and у in Jp, 
(b) if QTJA and a s / ? then QXP = QBC• У for some С in IP and У in JP. 

A pair of mappings h, x possessing these properties is called a reduced (S, I, J)-pair. 
Let us define a multiplication on the set 

S - {(a, s, a): s£S, a€/„-», i j 
as follows: 

(a, s, A)(a, s, a) = (a -aAahs, ss, <TBSXj). 

If the constant у in (D4)' can be chosen such that it depends on s and s only 
and, moreover, (D7)' holds with the у corresponding to the pair (/?, /?) then the reduc-
ed (S, 7, 7)-pair h, x can be easily extended to an (S, I, J)-triple. Then Theorem 3.10 
immediately implies that S forms an orthodox semigroup with respect to this multi-
plication whose band of idempotents is isomorphic to 3$(I, J; A, B) and whose grea-
test inverse semigroup homomorphic image is isomorphic to S. However, as с is not 
needed to be independent of the choice of a and g in properties (D4) and (D7) since 
Ia is a left zero semigroup for every a in Y, we need not assume this property for у 
if Jx is a right zero semigroup for each a in Y. Therefore the conclusion for S drawn 
up above holds for any reduced (S, 7, /)-pair. The orthodox semigroup obtained in 
this way will be denoted by © (S, I, J; h, y). 

Conversely, if T is an orthodox semigroup with band of idempotents E then its 
least inverse semigroup congruence is clearly a strong (E, ^-parcelling congruence. 
The second part of the following theorem immediately follows from Theorem 4.3, 
one has to observe only that, in this special case, the constants ys s can be eliminated 
in (D4) (b) and (19) as well as the contants cs ~ can in (D4) (a) and (19). 

Theorem 4.4. Let S be an inverse semigroup with semilattice of idempotents Y. 
For every a in Y, let Ix be a left zero semigroup and Jx a right zero semigroup with 
distinguished elements ix and jx, respectively. Suppose I to be a lower associative semi-
lattice Y of the left zero semigroups Ix (a €7) and J an upper associative semilattice 
Y of the right zero semigroups Jx (a€ Г). Let А, В be an (7, J)-pair satisfying (C4)'. 
Assume that h, x is a reduced (S, I, J)-pair. Then 1, J; It, x) is an orthodox semi-
group with band of idempotents isomorphic to SS (J, J\ A, B) and with greatest inverse 
semigroup homomorphic image isomorphic to S. 

Conversely, if T is an orthodox semigroup with band of idempotents E which is a 
semilattice Y of rectangular bands then E is isomoprhic to 38(1, J; A, B) for some 
I, J, A and В which fulfil the conditions required above. Moreover, denoting by S the 
greatest inverse semigroup homomorphic image of T, there exists a reduced (S, I, /)-
pair h, x such that T is isomorphic to 2>(S, I, J; h, /). 



Strong subband-parcelling extensions of orthodox semigroups 213 

References 

[1] A. H . CLIFFORD and G . B . PRESTON, The Algebraic Theory of Semigroups. 1, Amer. Math. Soc. 
(Providence, R. I., 1961). 

[2] J . M . HOWIE, An Introduction to Semigroup Theory, Academic Press (London, New York, San 
Francisco, 1976). 

[3] N. KIMURA, The structure of idempotent semigroups (I), Pacific J. Math., 8 (1958), 257—275. 
[4] M. B. SZENDREI, On subband-parcelling congruences of orthodox semigroups, Colloq. Math. 

Soc. János Bolyai, 20. Algebraic Theory of Semigroups (Szeged, 1976), 613—627. 
[5] M. B. SZENDREI, Strong subband-separating extensions of orthodox semigroups, Acta Math. 

Acad. Sci. Hungar., 35 (1980), 437—450. 
[6] R. J. WARNE, On the structure of semigroups which are unions of groups, Trans. Amer. Math. 

Soc., 186(1973), 385—401. 
[7] M . YAMADA, On a regular semigroup in which the idempotents form a band, Pacific J. Math., 

33 (1970), 261—272. 

JÓZSEF ATTILA UNIVERSITY 
BOLYAI UNSTITUTE 
ARADI VÉRTANÜK TERE 1 
6720 SZEGED, HUNGARY 


