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" ‘Additive functions with regularity properties -

I. KATAI -

1. Recently J. L. MAUCLAIRE and LEO. MURATA [1] proved that a multiplicative
function g(n), satisfying the conditions

el =1 (=12, ),
and

—-Zlg(n+1) gm) ~0" (x->°°)

has to be’ completely multiplicative. For a real z let ||z|| denote its distance from the
nearest integer. Their theorem is equivalent with the following assertion: If.f is
additive and - :

an LIl ~0 e

then f is completely additive.

I conjecture that the following assertion is true: If fis an additive function satis-
fying (1.1), then f(n)=clog n+g(n) where g(n) is an mteger valued additive func-
tion.

In [2] the following srmple assertlon was proved: If f(n), is addltlve and
nl| f(n+1)~f(n)|=0(1), then f(n)=clogn+g(n), where g(n) is an integer valued
additive function. Now we prove the following stronger

_ Theorem 1. Iff(n) is addztwe and
(L 2) nlIf (+1)~f (n)ll = 0('1’)
with a constant y<1, then . f(n)=clog n+g(n) Where g(n) is mteger valued

Proof. By the cited result of Mauclaire and Murata; we may assume that f is
completely additive. Let I, be the hearest mteger to (f(r+1)—f(n)), and a(n)=

=(f(r+1)~f ()~I,. Then we have -a(n)E['—‘——z—, 7], and from (1.2), nlo(n)|=

=0(n"). Let
. T(x) = maxm|o(m)|.
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We shall prove step by step the-following assertions:

(1) The assertion is true if T(x)=0(1) (x—oo).
2) If T(x)=0(x"), y<1, then T(x)=O0(log x).
(3) If T(x)—eo, then the fractional parts of ma(m) are everywhere dense in

[0, 1).
(4) Completion of proof.

We start from the identity

f((+12—1)—f((n+1)%) = ) —f(r+ 1) +f(r +2)—f(n+1),
which by ¢(n)—0 implies that
(%) o(n+1) = cm)—a((n+1)2—1) if n > n,.
Applying this identity for n+1,...,n+H—1 instead of n, we get

H-1

H
on+H)—o(n)= ;go (c(r+j+D—e(n+))= —-j;; a((n+j)*-1),

so that
R-1 R-1

Hé:) o(n+H)—Ra(n)=— 3 o((n+D*—1)(R-1) (n > ny).

Let n=mR and observe that

R-1

w - Fo o(mR+H) f(mR+R)—f(mR)- 2: Lons+u =
= a(m)+(In— 2 Inr+n)-
The absolute value of the left hand side of (1.3) is not greater than

RT((m + l)R) T((m + l)R)
mR m-

that is, less than 1/2 provided m>my, and R is not too large. Consequently it is
o(m); therefore

a4 ~ o(m)~Ro(mR) = —210((mR+1)2—1)(R—1),'
if- T ((m+l)R)<—'2?- The right hand side of (1.4) is majorated ]V)y
RT((m +1yR?)
mtR®
hence o
(L.5) ima m)— Rmo (mR)) = TLm DR
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Assume now that T(x) is bounded, T(x)=K. Putting m=N,, r=N,, and
m=N,, R=N, into (1.5) and using the triangle inequality we get
K K

[N1a (Ny)— Nyo(Ny)| = _+—1\_/—

for every large N,, N,. This shows that No(N) is a Cauchy sequence, consequently
No(N)—~A.

A &,

Let o (m)——;+z~

satisfying the relations: 1<g¢/p, 4log g/p<1/2. Consider the relation

, &uw—0. Furthermore, let p and g be arbitrary integers

-1 qU -1
F@=F@ =2 (FatD=f () = 3 o)+,

where J(U) is an integer depending on U. The sum on the right is

qul qU lem

A S —+ 2 ——Alog +o,,(1)

m=pU M m=p
as U--. Hence

S @~ ()~ Alog - = J(U)+ou (D),

which shows that J(U) is constant for U=>U,(p, q). Consequently for U—eco we

get that f(9)—f(p)—Alogg/p is an integer, which immediately implies our

assertion. A
Assume now that T(x)=0(x"), T(x)>Kx*. Using (1.4) with R=2 we get

(1.6) 2mo(2m) = mo(m)+mo((2m+1)2—1).
Furthermore, from () we get
an - emineemin={m+ ) (m) = 2% g ((2m + 12 1),

Let x>x, and assume that T(2x)>T(x). The maximum of |ns(n)| in [1, 2x]

is reached in (%, x]. If the maximum is taken for even n, then from (1.6),

T(2x) = T(x)+ max _m|o((2m+1)*— 1)[

me¢ (? x]
Since (2m+1)2—1=2m)(2m+2)=2x(2x+2)=4x(x+1), the last term is majorated
by x1T(4x(x+1)), therefore

TQx) = T(x)+z(i"‘—(3"‘ii)l.
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Assume that the max1mum s reached for 2m+ 1 e(x, 2x] Applymg (1 7), as earlier,

we deduce . .
T(2x) = (1 +— ) T(x) t5——v 2( N T(4x’)

Smce 4x(x+ l)<8x2 2(x l)>x for large x and T(x)/x -»O we have ,

T(8x )

_ T(8x) = T(x)+ +e,,

(x)

where ¢, =0 )
Assume that y>1/2 Then

T(ixz) 2‘)’—1, sx << ;x.ZIV—'l’
so that o
(1.8) (o T(2x) = T(x)-t—cx27 L

for x=x,. Putting x,‘—-2"x0 k= 0 1, 2 o N— 1),':'"vi?e deduce that
1.9 T(2"x0) = T(xo)-l-c'z X< (2%, )ZY'1

.By the monotomty of T, we have T(x)= O(xz” 1. So we have proved the followmg
assertion: If —;-<y<1 and T(x)<<xy then T(x)<<x2y 1, Repeatmg this - argu-
ment for y=y;, 2y;—1=y,, ..., in finitely many steps we get an exponent yle(O 1/2)
such that T(x)<x"xi  Assime now that y=1/2. Then ‘(1.8) holds, ie.
T(2x)=T(x)+c, and -instead of (1.9) we get.

T(2%x) = T(x))+O(N).

Consequently T(x)=Q(log x).: Since for y<1/2 we have T(x)<<x”<<x1/2, there-
fore we have T(x)=O(log x)- whenever - T(x)<x", y=<1.
!-Novvlzlet m, r_n,.be chosen so th_at .

T((m1+1)mz)< =g, T((mg+1)my) < —m1 ERRTIEPTRPIN
This implies (1.4). 'Ffo}n (1.5) we 'deduce that'
(110) |m1°'(m1) m,o'(mz)l = K(log mlmz) (_+ :12)
holds with a suitable constant K for every palr ml, m2 satlsfymg SR

(1.11) . (c1<)m1 < mz <e™
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with a small positive constant g, and.a;positive'constant ¢,; From (1.10).we get -

logmlmz
mIMQ L L_ ’

o(md—Ttatm) =

for m,, m, satisfying (1.1D), where B is a bounded variable.
. -:Now let .m;=U and- m; run over the interval [U, 2U—1]. Then we have ..

U — l : T
(1.12) 1@ = JW)+o(U)U 2 L+o(l°gUU].

From (1.12) we get immediately that ma(m) varies slowly. Consequently, if ma (m)
is not bounded then the set of the fractional parts of mo (m) is a dense subset in [0, 1).
Let a€[o0, 1) be chosen so that- {f(2)} {xlog2}. Let U; be-an.infinite- sequence
such tha‘t”{a'( )U }—»a Puttmg U= U J mto (1 12) and takmg mto account that

- 2U ~1,

Z llmg - log 2

. R R

we get that { f(2)} {o log 2}, Wthh contradlcts our assumption.
The proof of our theorem is complete

2. Let f(n) be a completely additive functxon, N1<N2< . an infinite sequence
of integers; . Jy=[N, N+(2+&)VN], and ¢>0. a constant, -~ ... ~ .=

Theorem 2. If
@1 S =o modl) for nedy, (j=1,2.)

where a,, oy, ... are arbztrary real numbers, then: ay=ay=...=0 and f(n) takes on
integer values only. : »

_..Proof. The method of proof is almost the. same as that,used m [3]. Flrst we
‘prove the following’

Lemma. Let 1<vl<v, v, 0 be constants. Assume that f(x) =a (mod l)
in the interval Jy=[N, vN]. Then for every NZNo(vl, v) we have

f(n) = 0 (mod 1) n< (v vl)N
Let p, g be arbltrary mtegers satlsfymg the condltlons
2.2 . P<q=vp, g=<@—v)N:
For m=[7]+1 weget . .

v - .N=<pm=gm< q(]—;’-+1]<% N+g = N+(@—v,)N =N, "
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consequently for every pair p, g satisfying (2.2),

f(P) =f(+1) (modl), ne (011_1‘, (v-—vl)N—l].

Let f(n)=y (mod 1). Let n be chosen so that (v, —1)"2<n®<(v—v,) N—1. Then
f(n®)=y (mod1), and so y=0. Hence

f(n)=0 (mod1), -;—-1-_—1- s=n=({@-v)N-1.

It remains to prove that f(k)=0. (mod 1) for k=(v,

==+

and letting N to be large, we have f(km)=0 (mod 1), and f(m)=0 (mod 1);
implying that f(k)=0 (mod 1). This proves the Lemma.

Now we prove the theorem. Let N;=N be temporarily fixed. For an integer & let

N N N

If the intervals I, I, ,, contain a common integer element m, then f(k)=f(k+1)
{mod 1). Indeed, mk, m(k+1)eJy, and (2.1) holds.

There is a common element m, if

N+(2+a)}/_ N N,
k+1 3

ie, if k*=(2+8VN—-1)k+N=0. This inequality holds in the mterval

kelk,, k3], where

@3 b= {4+ N1} -2 (@ IN-1}—4N,
@4) k= 2 {@+0 VN -1} + 1Y {@to IN-1F-an,
and so

f(k) = ?j (mOd 1)’ kE [kl’ ka]-

Itis obvious that k,=k,;(N) as N=N;—-cs. Furthermore, in view of (2.3) and

. 4), k =14, & >0 for every large N. Now we may apply the Lemma with
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k=N, v=(1+8y), vl=!+—;-’-. Putting N=N, we deduce that f(n)=0 (mod 1)

&

2
This completes the proof.

for n<=N;, ie., for every n.
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