and the second second

Additive functions with regularity properties

I. KÁTAI

1. Recently J. L. MAUCLAIRE and LEO MURATA [1] proved that a multiplicative function g(n), satisfying the conditions and the second states of the

$$|g(n)| = 1$$
 (n = 1, 2, ...),

and

$$\frac{1}{x}\sum_{n\leq x}|g(n+1)-g(n)|\to 0\quad (x\to\infty)$$

has to be completely multiplicative. For a real z let ||z|| denote its distance from the nearest integer. Their theorem is equivalent with the following assertion: If f is additive and (*x* →∞)

(1.1)
$$\frac{1}{x}\sum_{n\leq x}\|f(n+1)-f(n)\| \to 0 \quad (x\to\infty)$$

then f is completely additive.

I conjecture that the following assertion is true: If f is an additive function satisfying (1.1), then $f(n) = c \log n + g(n)$, where g(n) is an integer valued additive function.

In [2] the following simple assertion was proved: If f(n) is additive and $n \|f(n+1) - f(n)\| = O(1)$, then $f(n) = c \log n + g(n)$, where g(n) is an integer valued additive function. Now we prove the following stronger

(1.2) Theorem 1. If
$$f(n)$$
 is additive and
 $n \| f(n+1) - f(n) \| = O(n^{\gamma})$

with a constant $\gamma < 1$, then $f(n) = c \log n + g(n)$, where g(n) is integer valued.

Proof. By the cited result of Mauclaire and Murata, we may assume that f is completely additive. Let I_n be the nearest integer to (f(n+1)-f(n)), and $\sigma(n) =$ $=(f(n+1)-f(n))-I_n$. Then we have $\sigma(n)\in\left[-\frac{1}{2},\frac{1}{2}\right]$, and from (1.2), $n|\sigma(n)|=$ $=O(n^{\gamma})$. Let

$$T(x) = \max_{m \leq x} m |\sigma(m)|.$$

Received October 1, 1981.

 ϕ_{ij}

We shall prove step by step the following assertions:

- (1) The assertion is true if T(x)=O(1) $(x \to \infty)$.
- (2) If $T(x) = O(x^{\gamma}), \gamma < 1$, then $T(x) = O(\log x)$.

(3) If $T(x) \rightarrow \infty$, then the fractional parts of $m\sigma(m)$ are everywhere dense in [0, 1).

(4) Completion of proof.

We start from the identity

$$f((n+1)^2-1)-f((n+1)^2) = f(n)-f(n+1)+f(n+2)-f(n+1),$$

which by $\sigma(n) \rightarrow 0$ implies that

(*)
$$\sigma(n+1) = \sigma(n) - \sigma((n+1)^2 - 1)$$
 if $n > n_0$.

Applying this identity for n+1, ..., n+H-1 instead of n, we get

$$\sigma(n+H) - \sigma(n) = \sum_{j=0}^{H-1} (\sigma(n+j+1) - \sigma(n+j)) = -\sum_{j=1}^{H} \sigma((n+j)^2 - 1),$$

so that

$$\sum_{H=0}^{R-1} \sigma(n+H) - R\sigma(n) = -\sum_{l=1}^{R-1} \sigma((n+l)^2 - 1)(R-l) \quad (n > n_0).$$

Let n=mR and observe that

(1.3)
$$\sum_{H=0}^{R-1} \sigma(mR+H) = f(mR+R) - f(mR) - \sum_{H=0}^{R-1} I_{mR+H} = \sigma(m) + (I_m - \sum I_{mR+H}).$$

The absolute value of the left hand side of (1.3) is not greater than

$$\frac{RT((m+1)R)}{mR}=\frac{T((m+1)R)}{m},$$

that is, less than 1/2 provided $m > m_0$, and R is not too large. Consequently it is $\sigma(m)$; therefore

(1.4)
$$\sigma(m) - R\sigma(mR) = -\sum_{l=1}^{R-1} \sigma((mR+1)^2 - 1)(R-1),$$

if $T((m+1)R) < \frac{m}{2}$. The right hand side of (1.4) is majorated by

$$\frac{R^2T((m+1)^2R^2)}{m^2R^2},$$

.

hence

(1.5)
$$|m\sigma(m)-Rm\sigma(mR)| \leq \frac{T((m+1)^2R^2)}{m}.$$

8•

Assume now that T(x) is bounded, $T(x) \le K$. Putting $m = N_1$, $r = N_2$, and $m = N_2$, $R = N_1$ into (1.5) and using the triangle inequality we get

$$|N_1\sigma(N_1)-N_2\sigma(N_2)|\leq \frac{K}{N_1}+\frac{K}{N_2}$$

for every large N_1 , N_2 . This shows that $N\sigma(N)$ is a Cauchy sequence, consequently $N\sigma(N) \rightarrow A$.

Let $\sigma(m) = \frac{A}{m} + \frac{\varepsilon_m}{A}$, $\varepsilon_m \to 0$. Furthermore, let p and q be arbitrary integers satisfying the relations: 1 < q/p, $A \log q/p < 1/2$. Consider the relation

$$f(q) - f(p) = \sum_{n=pU}^{qU-1} (f(n+1) - f(n)) = \sum_{n=pU}^{qU-1} \sigma(n) + J(U),$$

where J(U) is an integer depending on U. The sum on the right is

$$A\sum_{m=pU}^{qU-1}\frac{1}{m} + \sum_{m=pU}^{qU-1}\frac{\epsilon m}{m} = A\log\frac{p}{q} + o_U(1)$$

as $U \rightarrow \infty$. Hence

$$f(q)-f(p)-A\log \frac{q}{p} = J(U)+o_U(1),$$

which shows that J(U) is constant for $U > U_0(p, q)$. Consequently for $U \to \infty$ we get that $f(q)-f(p)-A \log q/p$ is an integer, which immediately implies our assertion.

Assume now that $T(x) = O(x^{\gamma})$, $T(x) > Kx^{\gamma}$. Using (1.4) with R = 2 we get (1.6) $2m\sigma(2m) = m\sigma(m) + m\sigma((2m+1)^2 - 1)$.

Furthermore, from (*) we get

(1.7)
$$(2m+1)\sigma(2m+1) = \left(m+\frac{1}{2}\right)\sigma(m) - \frac{2m+1}{2}\sigma((2m+1)^2 - 1).$$

Let $x > x_0$ and assume that T(2x) > T(x). The maximum of $|n\sigma(n)|$ in [1, 2x] is reached in $(\frac{x}{2}, x)$. If the maximum is taken for even *n*, then from (1.6),

$$T(2x) \leq T(x) + \max_{m \in \left(\frac{x}{2}, x\right]} m |\sigma((2m+1)^2 - 1)|.$$

Since $(2m+1)^2 - 1 = (2m)(2m+2) \le 2x(2x+2) = 4x(x+1)$, the last term is majorated by $x^{-1}T(4x(x+1))$, therefore

$$T(2x) \leq T(x) + \frac{T(4x(x+1))}{x}.$$

Assume that the maximum is reached for $2m+1 \in (x, 2x]$. Applying (1.7), as earlier, we deduce

$$T(2x) \leq \left(1+\frac{1}{x-1}\right)T(x)+\frac{1}{2(x-1)}T(4x^2).$$

Since $4x(x+1) < 8x^2$, 2(x-1) > x for large x and $T(x)/x \rightarrow 0$, we have

$$T(8x) \leq T(x) + \frac{T(8x^2)}{x} + \varepsilon_x,$$

where $\varepsilon_x = \frac{T(x)}{x} \to 0.$

Assume that $\gamma > 1/2$. Then

$$\frac{T(8x^2)}{x} < x^{2y-1}, \quad \varepsilon_x \ll x^{2y-1},$$

so that

(1.8) $T(2x) \leq T(x) + cx^{2\gamma-1}$

for $x \ge x_0$. Putting $x_k = 2^k x_0$ (k=0, 1, 2, ..., N-1), we deduce that

(1.9)
$$T(2^{N}x_{0}) \leq T(x_{0}) + c \sum x_{k}^{2\gamma-1} \ll (2^{N}x_{0})^{2\gamma-1}$$

By the monotonity of T, we have $T(x) = O(x^{2\gamma-1})$. So we have proved the following assertion: If $\frac{1}{2} < \gamma < 1$, and $T(x) \ll x^{\gamma}$, then $T(x) \ll x^{2\gamma-1}$. Repeating this argument for $\gamma = \gamma_1, 2\gamma_1 - 1 = \gamma_2, ...$, in finitely many steps we get an exponent $\gamma_1 \in (0, 1/2)$ such that $T(x) \ll x^{\gamma_1} \ll x^{1/2}$. Assume now that $\gamma = 1/2$. Then (1.8) holds, i.e. $T(2x) \le T(x) + c$, and instead of (1.9) we get

$$T(2^N x_0) \leq T(x_0) + O(N)$$
. The second strength region of x_0 and y_0 are given by

Consequently $T(x) = O(\log x)$. Since for $\gamma < 1/2$ we have $T(x) \ll x^{\gamma} \ll x^{1/2}$, therefore we have $T(x) = O(\log x)$ whenever $T(x) \ll x^{\gamma}, \gamma < 1$. Now let m_1, m_2 be chosen so that

$$T((m_1+1)m_2) < \frac{1}{2}m_2, \quad T((m_2+1)m_1) < \frac{1}{2}m_1.$$

This implies (1.4). From (1.5) we deduce that

(1.10)
$$|m_1\sigma(m_1)-m_2\sigma(m_2)| \leq K(\log m_1m_2)\left(\frac{1}{m_1}+\frac{1}{m_2}\right)$$

holds with a suitable constant K for every pair m_1, m_2 satisfying

$$(1.11) (c_1 <) m_1 < m_2 < e^{\sigma m_1}$$

with a small positive constant σ , and a positive constant c_1 . From (1.10) we get

$$\sigma(m_2) - \frac{m_1}{m_2} \sigma(m_1) = B \frac{\log m_1 m_2}{m_1 m_2}$$

for m_1, m_2 satisfying (1.11), where B is a bounded variable. Now let $m_1 = U$ and m_2 run over the interval [U, 2U-1]. Then we have

(1.12)
$$f(2) = J(U) + \sigma(U)U\sum_{m_1=U}^{2U-1} \frac{1}{m_2} + O\left(\frac{\log U}{U}\right).$$

From (1.12) we get immediately that $m\sigma(m)$ varies slowly. Consequently, if $m\sigma(m)$ is not bounded then the set of the fractional parts of $m\sigma(m)$ is a dense subset in [0, 1). Let $\alpha \in [0, 1)$ be chosen so that $\{f(2)\} \neq \{\alpha \log 2\}$. Let U_j be an infinite sequence such that $\{\sigma(U_j)U_j\} \rightarrow \alpha$. Putting $U=U_j$ into (1.12), and taking into account that

$$\sum_{i=1}^{2U_i-1} 1/m_2 \rightarrow \log 2,$$

we get that $\{f(2)\} = \{\alpha \log 2\}$, which contradicts our assumption.

The proof of our theorem is complete.

2. Let f(n) be a completely additive function, $N_1 < N_2 < \dots$ an infinite sequence of integers, $J_N = [N, N + (2 + \varepsilon))/\overline{N}]$, and $\varepsilon > 0$ a constant.

A 1.1 generative statement of the statement of the statement

Theorem 2. If

(2.1)
$$f(n) \equiv \alpha_j \pmod{1} \quad for \quad n \in J_{N_j} \quad (j = 1, 2, ...)$$

where $\alpha_1, \alpha_2, \ldots$ are arbitrary real numbers, then $\alpha_1 = \alpha_2 = \ldots = 0$ and f(n) takes on integer values only.

Proof. The method of proof is almost the same as that used in [3]. First we prove the following

Lemma. Let $1 < v_1 < v_1$, v_1 , v_2 be constants. Assume that $f(x) \equiv \alpha \pmod{1}$ in the interval $J_N = [N, vN]$. Then for every $N \ge N_0(v_1, v)$ we have

$$f(n) \equiv 0 \pmod{1}, \quad n < (v-v_1)N.$$

Let p, q be arbitrary integers satisfying the conditions. 合法

(2.2) $p < q < v_1 p, \quad q < (v - v_1)N;$ For $m = \left[\frac{N}{p}\right] + 1$ we get $N < pm < qm < q\left(\frac{N}{p}+1\right) < \frac{q}{p}N + q < v_1N + (v - v_1)N = vN;$

te e en la electricada

e . 1940.

consequently for every pair p, q satisfying (2.2),

$$f(p) \equiv f(n+1) \pmod{1}, n \in \left(\frac{1}{v_1-1}, (v-v_1)N-1\right).$$

Let $f(n) \equiv \gamma \pmod{1}$. Let n be chosen so that $(v_1-1)^{-2} < n^2 < (v-v_1)N-1$. Then $f(n^2) \equiv \gamma \pmod{1}$, and so $\gamma = 0$. Hence

$$f(n) \equiv 0 \pmod{1}, \quad \frac{1}{v_1 - 1} \leq n \leq (v - v_1) N - 1.$$

It remains to prove that $f(k) \equiv 0 \pmod{1}$ for $k \equiv (v_1 - 1)^{-1}$. Putting $m = \left[\frac{1}{v_1 - 1}\right] + 1$, and letting N to be large, we have $f(km) \equiv 0 \pmod{1}$, and $f(m) \equiv 0 \pmod{1}$, implying that $f(k) \equiv 0 \pmod{1}$. This proves the Lemma.

Now we prove the theorem. Let $N_i = N$ be temporarily fixed. For an integer k let

$$I_{k} = \left[\frac{N}{k}, \frac{N}{k} + (2+\varepsilon)\frac{\sqrt{N}}{k}\right].$$

If the intervals I_k , I_{k+1} contain a common integer element *m*, then $f(k) \equiv f(k+1)$ (mod 1). Indeed, mk, $m(k+1) \in J_N$, and (2.1) holds.

There is a common element m, if

$$\frac{N+(2+\varepsilon)\sqrt{N}}{k+1}-\frac{N}{k}\geq 0,$$

i.e., if $k^2 - ((2+\varepsilon)\sqrt{N} - 1)k + N \le 0$. This inequality holds in the interval $k \in [k_1, k_2]$, where

(2.3)
$$k_1 = \frac{1}{2} \{ (2+\varepsilon) \sqrt{N} - 1 \} - \frac{1}{2} \sqrt{\{ (2+\varepsilon) \sqrt{N} - 1 \}^2 - 4N},$$

(2.4)
$$k_{2} = \frac{1}{2} \{ (2+\varepsilon) \sqrt{N} - 1 \} + \frac{1}{2} \sqrt{\{ (2+\varepsilon) \sqrt{N} - 1 \}^{2} - 4N},$$

and so

 $f(k) \equiv \gamma_j \pmod{1}, \quad k \in [k_1, k_2].$

It is obvious that $k_1 = k_1(N)$ as $N = N_j \rightarrow \infty$. Furthermore, in view of (2.3) and (2.4), $\frac{k_2}{k_1} \ge 1 + \varepsilon_1$, $\varepsilon_1 > 0$ for every large N. Now we may apply the Lemma with

 $k_1 = N, v = (1 + \varepsilon_1), v_1 = 1 + \frac{\varepsilon_1}{2}$. Putting $N = N_j$ we deduce that $f(n) \equiv 0 \pmod{1}$

for $n < \frac{\varepsilon_1}{2} N_j$, i.e., for every *n*.

This completes the proof.

References

- J. L. MAUCLAIRE and LEO MURATA, On the regularity of arithmetic multiplicative functions. I, Proc. Japan Acad. Ser. A, 56 (1980), 438-440.
- [2] I. KATAI, Some problems in number theory, Studia Sci. Math. Hungar., to appear.
- [3] I. KATAI, On the determination of an additive arithmetical function by its local behaviour, Collog. Math., 20 (2) (1969), 265-267.

EÖTVÖS LORÁND UNIVERSITY DEPARTMENT OF NUMERICAL ANALYSIS AND COMPUTER SCIENCE MÜZEUM KRT. 6---8 1088 BUDAPEST, HUNGARY