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Additive functions with regularity properties 

L КАТА! 

1. Recently J. L . MAUCLAIRE and L E O M U R A T A [1] proved that a multiplicative 
function g(ri), satisfying the conditions 

|g(n)| = l (n = 1, 2,...), 
and 

•7 2 lg(n + l ) -g (n ) l - 0 ( * — ) " X nsx 

has to be completely multiplicative. For a real z let ||z|| denote its distance from the 
nearest integer. Their theorem is equivalent with the following assertion: If / is 
additive and 

(1.1) i 2 | | / ( n + l ) - / ( n ) | | ~ 0 
X n s x 

then / is completely additive. 
I conjecture that the following assertion is true: I f / i s an additive function satis-

fying (1.1), then f(n)=clog n+g(n), where g(n) is an integer valued additive func-
tion. 

In [2] the following simple assertion was proved: If f(n) is additive and 
л| | /(и+1)-/(и)| | = 0(1), then f(n)=с log n+g(n), where g(n) is an integer valued 
additive function. Now we prove the following stronger 

Theo rem 1. If f(n) is additive and 

(1.2) л||/(п+1)-/(и)11 = ООО . ' • • ' • / / Л " . 

with a constant y<l, thenf(n)=clogn+g(n), where g(n) is integer valued. 

Proof . By the cited result of Mauclaire and Murata, we may assume t h a t / i s 
completely additive. Let /„ be the nearest integer to (/(и+1)—/(л)), arid <г(л)= 

= (f(n+l)-f(n))-In. Then we have < 7 ( n ) e [ - i j ] , and from (1.2), n\o(n)\ = 

=0(ny) . Let 
T(x) = max m |<r(m)|. ffl^X 
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We shall prove step by step the following assertions: 

(1) The assertion is true if T(x)=0( 1) 
(2) If T(x) = 0(xr), y < l , then T(x)=0(logx). 
(3) If T(x)-~ oo, then the fractional parts of mo(m) are everywhere dense 

[0, 1). 
(4) Completion of proof. 

We start from the identity 

/ ( ( n + l ) 2 - l ) - / ( ( « + 1)2) = f(n) -J(n +1) +f(n+2) -J(n+1), 

which by <r(n)—0 implies that 

(* ) ff(n+l) = o(n)-o((n+\y-\) if / !>/ !„ . 

Applying this identity for n + 1, ..., n+H— 1 instead of n, we get 

o(n+H)-tr(ri)= 2\<r(n+j+l)-<r(n+j))=-2a({n+jy-l), 
J=o j=l 

so that 

J?o(n+H)-Ro(n)=-R£a((n + /)2—l)(/?—/) (n > nQ). 
ffS« 1=1 

Let n=mR and observe that 

(1.3) V °(mR+H) = J(mR+R)-J(mR) - *£ ImR+H = 
h=O . H=O 

= <r(m) + (Im-Z /mR+fl). 

The absolute value of the left hand side of (1.3) is not greater than 

RT((m + l)R) r((m + l)fl) 
mR m 

that is, less than 1/2 provided m>m0, and R is not too large. Consequently it 
a(m); therefore 

(1.4) ff(m)-Ra(mR) = - ff((m*+l)2-l)(l?-l), 
1=1 

if r ( ( i n + l ) / ? ) < y . The right hand side of (1.4) is majorated by 

IPT((m + iyR2) 
m2R2 

hence 

(1.5) \ma(m)—Rma(mR)\ + 
m 
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Assume now thflt T(x) is bounded, Putting wi—Afi, r—JVj, and 
m=N2, R=Nl into (1.5) and using the triangle inequality we get 

for every large NltN2. This shows that Na(N) is a Cauchy sequence, consequently 
No(N)-»A. 

A e Let a(m)=—h-7, em—0. Furthermore, let p and q be arbitrary integers m A 
satisfying the relations: l^q/p, A log q/p<1/2. Consider the relation 

qU-l qV-l 
№ - f ( p ) = 2 (/(n+ !)-/(»))= 2 °{n)+J(U), n=pV n=*pU 

where J(U) is an integer depending on U. The sum on the right is 

as U— Hence 

qU-l 1 qU-l Fm „ 

m=*pu m m=pv m q 

f(q)-f(p)-A log J- = /(£/)+%( 1), 

which shows that J (U) is constant for U>U0(p, q). Consequently for t/— <=° we 
get that f(q)—f(p)—A log qjp is an integer, which immediately implies our 
assertion. 

Assume now that T(x)=0(xy), T(x)>Kxy. Using (1.4) with R=2 we get 

(1.6) 2ma(2m) = ma(m)+mo((2m+\f-l). 

Furthermore, from (*) we get 

(1.7) (2m+l)tr(2m + l) = [ m + y ) « r ( m ) - ^ t l < r ( ( 2 m + l ) i ! - l ) . 

Let x>x0 and assume that T(2x)>T(x). The maximum of \ncr(n)\ in [1, 2x] 

is reached in x j . If the maximum is taken for even n, then from (1.6), 

T(2x)^T(x)+ max m|<r( (2m+l) 2 - l ) | . 

Since (2/M+1)2-1=(2/M)(2OT+2)S2X(2X+2)=4X(X+1), the last term is majorated 
by x" 1 T(4x(x+l ) ) , therefore 
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Assume that the maximum is reached for 2 m + 1 e(x, 2x\. Applying (1.7), as earlier, 
we deduce ' -

Since Ax(x+ l )<8x 2 , 2 ( x - l ) > x for large x and T(x)/x— 0, we have 

7X8*) S r (x) + I ^ + e j t , 

T(x) ' 
where e, = — 0 . . 

x 
Assume that y >1/2. Then 

— < x2y 1, ex « x2y 1, 

so that 

(1.8) , T(2x) r W + c x 2 ' - 1 

for x ^ x 0 . Putting ^ = 2 ^ 0 (&=0, 1, 2, ..., JV—1), we deduce that 

(1.9) T(2NXo) Z T(x0)+c2 x?-1 <<(2%) 2 ' " 1 . 

By the monotonity of T, we have T(x)=0(x2y~1). So we have proved the following 

assertion: If -j«=y«=l, and T(x)<zx?, then T(x)<scx2y-h _ Repeating this argu-

ment for y=yi,2y1 — l=y2,..., in finitely many steps we get an exponent yt €(0,1/2) 

such that Tixj^x^^zx1'2. Assume now that y = l/2. Then (1.8) holds, i.e. 

T(2x)^T(x)+c, and instead of (1.9) we get 

T(2Nx0) ^ T(x0) + O(N). 

Consequently r (x ) = 0(lpg x). Since for >»< 1/2 we have T(x)<zxy ^x112, there-
fore we have 7'(x)=0(Iog x) whenever T(x)«xy, 1. 
.Now let mx,m2 be chosen so that 

T((mi+l)m 2 ) < | m 2 , T( (m 2 +l)ro , ) «= 

This implies (1.4). From (1.5) we deduce that 

(1.10) \ml<r(jn1)-m2(T(m^\ s AT(log m ^ a ) ( — + — ] 

•• • ••• •• < i . V Wj W2/ v-."': V" ' 

holds with a suitable constant K for every pair mlt m2 satisfying 

(1.11) ( c ^ W j < m2 < e"m' 
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with a small positive constant a, and a)positiye constant c i ; From (1,10) we get 

m2 . m1m2 , 

for 7Mi,m2 satisfying (1.11), where B is a bounded variable. 
Now let m1 = U and- m2 run over the interval [U, 2U— 1]. Then we have 

2t;-i j HoeC/l * : : 
(1.12) / (2 ) = J(U)+A(U)U 2 ^ R + O • 

M,= V WL2 \ U J 

From (1.12) we get immediately that mo(m) varies slowly. Consequently, if ma(m) 
is not bounded then the set of the fractional parts of mo(m) is a dense subset in [0, 1). 
Let a€[0, 1) be chosen so that . {/(2)}^ {a log 2}. Let Uj be an infinite sequence 
such tha t{ f f ( £/;)£/,}—a. Putting U—UJ into (1.12), and taking into account that 

•• Wj-l ' .• . 

, 2 l/m2 - log 2, 

we get that {/(2)}= {a log 2}, which contradicts our assumption. 
The proof of our theorem is complete. 

2. Let f(n) be a completely additive function, Ar
1-=Ar

2<... an infinite sequence 
of integers, JV+(2+e))/N], and e>0 a constant, , 

Theorem 2. If • . , 

(2.1) /(«) = ctj (mod 1) for nUNj ( j = 1, 2, ^ 

where a l f a2, ... are arbitrary real numbers, then? a 1 = a 2 = . . . = 0 and f(n) takes on 
integer values only. 

P r o o f , The method of proof is almost the same as that,used in [3]. First we 
prove the following 

Lemma. Let 1 vlyv. be constants. Assume that f(x)=a (mod i) 
in the interval J N = [ N , V N ] . Then for every N^N0(vltv) we have 

/(«) = 0 (mod i), n < (v-vJN. 

Let p,q be arbitrary integers satisfying the conditions . 

(2.2) p rc q < vip, q < (v-vJN; 

For = + 1 we get 
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consequently for every pair p, q satisfying (2.2), 

/(P) =f(n + l) (modi), n€ ( " j ~ y > (»-»OAT-l ) . 

Let f(rt)=y (mod 1). Let n be chosen so that (i^ —l)~2-e:/i2-<(» —oJJV—1. Then 
/(n2)=y (mod 1), and so y=0. Hence 

J (n) = 0 (modi), — n ^ i v - v j N - l . vi~ l 

It remains to prove that f(k)=0 (mod 1) f o r ^ s ^ —1)_1. Putting m = ^ ^ j j -f-1, 

and letting N to be large, we have f(km)=0 (mod 1), and / ( m ) = 0 (mod 1)* 
implying that f(k) = 0 (mod 1). This proves the Lemma. 

Now we prove the theorem. Let Nj=N be temporarily fixed. For an integer k let 

r \N N ^ ^ 

If the intervals Ik,Ik+1 contain a common integer element m, then f(k)=f(k+1) 
(modi). Indeed, mk, m(k+l)zJN, and (2.1) holds. 

There is a common element m, if 

N+(2+e)]fN A T . 
k+1 T~°' 

i.e., if k2-((2+e)Y~N-l)k+N^0. This inequality holds in the interval 
fc2], where 

(2.3) k, = 1 {(2 + e) Y N - 1 } - 1 / { (2 + e) f R - 1}8-4AT, 

(2.4) k2 = i { ( 2 + e) ^ - l } + y] /{(2 + e ) ^ V - l } 2 - 4 N , 

and so 
f(k) = yj (modi), ke[kx, fej. 

It is obvious that k ^ k ^ N ) as N = N j - * ^ . Furthermore, in view of (2.3) and £ 
(2.4), jr—1 +£i> e x > 0 . f o r every large N. Now we may apply the Lemma with 
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kx=N, t;=(l+e1), Putting N=NS we deduce that / ( n ) s 0 (mod 1) 

for rt^-^Nj, i.e., for every n. 

This completes the proof. 
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