The stability of d'Alembert-type functional equations

L. SZÉKELYHIDI

In this paper we deal with the following problem: if f, g, h, k are complex valued functions on the Abelian group G with the property, that the function $(x, y) \rightarrow$ $\rightarrow f(x+y)+g(x-y)-h(x) k(y)$ is bounded, what can be said about the functions f, g, h, k ? Obviously, this problem is a generalization of the well-known functional equations

$$
\begin{align*}
& f(x+y)+f(x-y)=2 f(x) g(y) \tag{0}\\
& f(x+y)+g(x-y)=h(x) k(y)
\end{align*}
$$

Special cases of this problem has been treated by many authors. The specialcase $k=1$ is of "additive type" and can be reduced to the problem: if $(x, y) \rightarrow$ $\rightarrow f(x+y)-f(x)-f(y)$ is bounded, what can be said about f ? The problem in this form is treated in [2], [4], [5], [6], [8]. The special case $g=0$ and $h=k=f$ is treated in [3], and the case $g=0$ and $h=f$ is treated in [9]. Further, the special case where $f=g=h$ and $k=2 f$ is treated in [3], and the case where $f=g=h$ is treated in [10]. In this paper we completely solve the above problem.

First we make a simple observation: evidently, if f, g, h, k is a solution of the functional equation (1) and a, b are arbitrary bounded complex valued functions on G, then the functions $f+a, g+b, h, k$ solve our problem. Our main result is the following: if f, g, h, k are unbounded functions, then essentially this is the only solution of our problem.

In the sequel we shall use the following notation and terminology: C denotes the set of complex numbers. If G is a group and $M: G \rightarrow C$ is a function for which $M(x+y)=M(x) M(y)$ holds for all x, y in G, then we call M an exponential. The function $A: G \rightarrow C$ is called additive, if $A(x+y)=A(x)+A(y)$ holds whenever x, y is in G. If $F: G \rightarrow C$ is a function, then F_{e} and F_{o} denotes the even and the odd

[^0]part of F respectively, that is,
$$
F_{e}(x)=-\frac{1}{2}(F(x)+F(-x)), \quad F_{0}(x)=\frac{1}{2}(F(x)-F(-x))
$$
for all x in G.
In what follows we suppose, that G is a fixed Abelian group in which the mapping $x \rightarrow 2 x$ is an automorphism.

We shall use the following theorem:
Theorem 1. If $f, g: G \rightarrow C$ satisfy (0), then there are an exponential $M: G \rightarrow C$, an additive function $A: G \rightarrow C$ and α, β constants such that we have the following possibilities:
(i) $f=0, g$ is arbitrary,
(ii) $f=A+\alpha, \quad g=1$,
(iii) $f=\alpha M_{e}+\beta M_{o}, \quad g=M_{e}$.

The proof of this theorem can be obtained by the method of [1], using the results of [7].

Lemma 2. Let $f, g, h: G \rightarrow C$ be functions for which the function $(x, y) \rightarrow$ $\rightarrow f(x+y)-g(x) h(y)$ is bounded. Then there are an exponential $M: G \rightarrow C$, a bounded function $a: G \rightarrow C$ and α, β constants such that we have the following possibilities:
(i) f is bounded, h is arbitrary, $g=0$,
(ii) f is bounded, $h=0, g$ is arbitrary,
(iii) f, g, h are bounded,
(iv) $f=\alpha \beta M+a, \quad g=\alpha M, \quad h=\beta M$.

Proof. The first three cases are trivial, hence we may suppose that f, g, h are unbounded. Let $\alpha=g(0), \beta=h(0)$ and $a=f-\beta g$. Obviously, a is bounded, and the identity

$$
f(x+y)-g(x) h(y)-a(x+y)=\beta g(x+y)-g(x) h(y)
$$

implies that $\beta \neq 0$, and the function $(x, y) \rightarrow g(x+y)-g(x) \beta^{-1} h(y)$ is bounded. By [9], it follows (iv).

Lemma 3. Let $f, g: G \rightarrow C$ be functions for which the function $(x, y) \rightarrow f(x+y)+$ $+f(x-y)-2 f(x) g(y)$ is bounded. Then there are an exponential $M: G \rightarrow C$, an additive function $A: G \rightarrow C, a$ bounded function $a: G \rightarrow C$ and α, β constants such that we have the following possibilities:
(i) $f=0, g$ is arbitrary,
(ii) f, g are bounded,
(iii) $f=A+a, g=1$,
(iv) $f=\alpha M_{e}+\alpha M_{o}, g=M_{e}$.

Proof. The first two cases are trivial. We may suppose that f is unbounded. This implies that $g \neq 0$. If $g=1$, then by [8], (iii) follows. Suppose that $g \neq 1$. Let $F(x, y)=f(x+y)+f(x-y)-2 f(x) g(y)$ for all x, y in G. By [10] and Theorem 1, there is an exponential $M: G \rightarrow C$ for which $g=M_{e}$, in particular g is even. Now consider the identity

$$
2 g(z) F(x, y)=F(x, y+z)+F(x, y-z)-F(x+y, z)-F(x-y, z),
$$

which shows that either g is bounded, or $F=0$. Suppose, that g is bounded, and observe that the following identities hold:

$$
\begin{equation*}
f_{e}(y) g(x)-f_{e}(x) g(y)=\frac{1}{4}(F(x, y)-F(y, x)+F(-x,-y)-F(-y,-x)) \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
f_{0}(x+y)-f_{0}(x) g(y)-f_{0}(y) g(x)= \tag{3}\\
=\frac{1}{4}(F(x,-y)-F(-y, x)-F(-x, y)+F(y,-x)) .
\end{gather*}
$$

By (2) we obtain that f_{e} is bounded, and by (3) we see that the function $x \rightarrow f_{o}(x+y)-f_{o}(x) g(y)$ is bounded for all fixed y in G. Since f_{o} cannot be bounded, by [9] it follows that g is an exponential. As $g \neq 0$, we have $g(0)=1$, and for all x in G,

$$
1=g(0)=g\left(\frac{x}{2}\right) g\left(-\frac{x}{2}\right)=g\left(\frac{x}{2}\right) g\left(\frac{x}{2}\right)=g(x),
$$

a contradiction. Hence g is unbounded and $F=0$, that is, (iv) follows by Theorem 1.
Theorem 4. Let $f, g, h, k: G \rightarrow C$ be functions for which the function $(x, y) \rightarrow$ $\rightarrow f(x+y)+g(x-y)-h(x) k(y)$ is bounded. Then there are an exponential $M: \dot{G} \rightarrow C$, an additive function $A: G \rightarrow C$, bounded functions $a, b, c: G \rightarrow C$, and constants $\alpha, \beta, \gamma, \delta$ such that we have the following possibilities:
(i) f, g, h, k are bounded,
(ii) f, g are bounded, $h=0, k$ is arbitrary,
(iii) f, g are bounded, h is arbitrary, $k=0$,
(iv) f is bounded, $g=\alpha \beta M+b, \quad h=\alpha M, \quad k=\beta M^{-1}$,
(v) $f=\alpha \beta M+a, \quad g$ is bounded, $\quad h=\alpha M, \quad k=\beta M$,
(vi) $f=\frac{1}{2} \alpha A+a, \quad g=-\frac{1}{2} \alpha A+b, \quad h=\alpha, \quad k=A+c$,
(vii) $f=\frac{1}{2} \beta A+a, \quad g=\frac{1}{2} \beta A+b, \quad h=A+c, \quad k=\beta$,
(viii) $f=\frac{1}{4} \alpha \beta A^{2}+\frac{1}{2}(\alpha \delta+\beta \gamma) A+a, \quad g=-\frac{1}{4} \alpha \beta A^{2}+\frac{1}{2}(\alpha \delta-\beta \gamma) A+b$,
$h=\alpha A+\gamma, \quad k=\beta A+\delta$,
(ix) $f=\frac{1}{2}(\alpha \gamma+\beta \delta) M_{e}+\frac{1}{2}(\alpha \delta+\beta \gamma) M_{o}+a, \quad h=\alpha M_{e}+\beta M_{o}$,

$$
g=\frac{1}{2}(\alpha \gamma-\beta \delta) M_{e}-\frac{1}{2}(\alpha \delta-\beta \gamma) M_{o}+b, \quad k=\gamma M_{e}+\delta M_{o} .
$$

Proof. The first three cases are trivial, and if f or g is bounded, then by Lemma 2 we have (iv) or (v). Now we may suppose that f, g are unbounded, and $h \neq 0$, $k \neq 0$. Let $h\left(x_{0}\right) \neq 0, k\left(y_{0}\right) \neq 0$, and we introduce the new functions:

$$
\begin{array}{cl}
F(x)=h\left(x_{0}\right)^{-1} k\left(y_{0}\right)^{-1} f\left(x+x_{0}+y_{0}\right), & G(x)=h\left(x_{0}\right)^{-1} k\left(y_{0}\right)^{-1} g\left(x+x_{0}-y_{0}\right), \\
H(x)=h\left(x_{0}\right)^{-1} h\left(x+x_{0}\right), & K(x)=k\left(y_{0}\right)^{-1} k\left(x+y_{0}\right) .
\end{array}
$$

We have that F, G are unbounded, $H(0)=K(0)=1$, and the function D defined by

$$
\begin{equation*}
D(x, y)=F(x+y)+G(x-y)-H(x) K(y) \tag{4}
\end{equation*}
$$

is bounded. First we present some simple identities concerning F, G, H, K, D, which we shall need in the sequel:

$$
\begin{gather*}
H(x+y)+H(x-y)-2 H(x) K_{e}(y)= \tag{5}\\
=D(x, y)+D(x,-y)-D(x+y, 0)-D(x-y, 0)
\end{gather*}
$$

$$
\begin{align*}
& H_{0}(y) K_{0}(x)-H_{0}(x) K_{0}(y)=\frac{1}{4}(D(x, y)-D(y, x)-D(x,-y)+ \tag{6}\\
& +D(-y, x)+D(-x,-y)-D(-y,-x)-D(-x, y)+D(y,-x)
\end{align*}
$$

$$
\begin{equation*}
=\frac{1}{2}(D(x, x)-D(x,-x)+D(y,-y)-D(y, y)+D(x+y, y-x)-D(x+y, x-y)) \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
H_{o}(x+y) K_{o}(x-y)-H_{o}(x) K_{o}(x)+H_{o}(y) K_{o}(y)= \tag{8}\\
=\frac{1}{4}(D(x, x)+D(-x,-x)-D(x,-x)-D(-x, x)+D(y,-y)+D(-y, y)- \\
-D(y, y)-D(-y,-y)+D(x+y, y-x)+D(-x-y, x-y)-D(x+y, x-y)- \\
-D(-x-y, y-x))
\end{gather*}
$$

and finally, if $H_{o}=0$, that is, H is even, then

$$
\begin{gather*}
K(x+y)+K(x-y)-2 K(x) H(y)=2 D(y, x)-D(0, x+y)-D(0, x-y)- \tag{9}\\
-D\left(\frac{x+y}{2}, \frac{x+y}{2}\right)+D\left(\frac{-x-y}{2}, \frac{x+y}{2}\right)-D\left(\frac{y-x}{2}, \frac{x-y}{2}\right)+D\left(\frac{x-y}{2}, \frac{x-y}{2}\right) .
\end{gather*}
$$

These identities can be checked by an easy computation and they show, that the expressions on the left hand sides are bounded. Finally, we shall need the relations

$$
\begin{gather*}
F(x)=H\left(\frac{x}{2}\right) K\left(\frac{x}{2}\right)+D\left(\frac{x}{2}, \frac{x}{2}\right)-G(0) \tag{10}\\
G(x)=H\left(\frac{x}{2}\right) K\left(-\frac{x}{2}\right)+D\left(\frac{x}{2},-\frac{x}{2}\right)-G(0)
\end{gather*}
$$

Now we assume that H is bounded, and show that (vi) follows. By (5) K_{e} is bounded, and if H is not even, then by (6) K_{o} is bounded, too, which is impossible by (10). Hence H is even, and then by (9) and Lemma 3 either $K=A+a$ and $H=1$, or $K=M_{e}+\beta M_{o}, H=M_{e}$. In the latter case M_{e} is bounded, and by the identity $M_{e}(x+y)-M_{e}(x-y)=2 M_{o}(x) M_{o}(y)$ the function M_{o} is bounded, too, that is, K is also bounded, which is impossible by (10). This means that $H=1$ and $K=A+a$, where $A: G \rightarrow C$ is additive, and $a: G \rightarrow C$ is bounded. By (10) and by the definition of F, G, H, K we have (vi).

Hence we may suppose in the sequel, that H is unbounded.
From (5) by Lemma 3 we have two cases. In the first case $K_{e}=1, H=A+c$, where $A: G \rightarrow C$ is additive and $c: G \rightarrow C$ is bounded. Here $A \neq 0$ and $H_{o} \neq 0$, hence by (6) $K_{\mathrm{o}}=\alpha A+d$, where $d: G \rightarrow C$ is odd and bounded, and α is a constant. If $\alpha=0$, then by (6) either H_{o} is bounded, which is impossible, or $K_{0}=0$, that is $K=K_{e}=1$ and from (10) we obtain (vii) using the definition of F, G, H, K.

Let $\alpha \neq 0$, then we substitute H_{o} and K_{o} into (6) and we have that the function

$$
(x, y) \rightarrow A(x)\left(\alpha c_{o}(y)-d(y)\right)-A(y)\left(d(x)-\alpha c_{o}(x)\right)
$$

is bounded. If there is a y in G, for which $d(y) \neq \alpha c_{0}(y)$, then $A=0$, which is impossible. Hence $d=\alpha c_{o}$, and $H=A+c_{o}+c_{e}, K=\alpha A+\alpha c_{o}+1$. Substituting into (8) we have that the function

$$
(x, y) \rightarrow A(x)\left(c_{o}(x+y)+c_{o}(x-y)-2 c_{o}(x)\right)-A(y)\left(c_{o}(x+y)-c_{o}(x-y)-2 c_{o}(y)\right)
$$

is bounded. Substituting $x+y$ for x and $x-y$ for y, we have that the function

$$
\begin{equation*}
(x, y) \rightarrow A(x+y) c_{o}(x+y)-A(x-y) c_{o}(x-y)-A(y) c_{o}(2 x)-A(x) c_{o}(2 y) \tag{11}
\end{equation*}
$$

is bounded. Let $p(x)=A(x) c_{0}(x)$ and $P(x, y)=p(x+y)-p(x-y)-A(x) c_{o}(2 y)$, then (11) implies the boundedness of $x \rightarrow P(x, y)$ for all fixed y in G. On the other hand, the identity

$$
\begin{gathered}
P(x+y, z)+P(x-y, z)-P(x, y+z)+P(x, y-z)= \\
=A(x)\left(c_{o}(2 y+2 z)-c_{o}(2 y-2 z)-2 c_{o}(2 z)\right)
\end{gathered}
$$

shows, that for all fixed y, z in G the function $x \rightarrow A(x)\left(c_{o}(2 y+2 z)-c_{o}(2 y-2 z)-\right.$ $-2 c_{o}(2 z)$) is bounded, and hence

$$
c_{o}(2 y+2 z)-c_{o}(2 y-2 z)=2 c_{o}(2 z)
$$

holds for all y, z in G. Interchanging y and z, we have that c_{o} is additive and as it is bounded, $c_{o}=0, H=A+c_{e}, K=\alpha A+1$. Substituting into (7) we get that the function

$$
(x, y) \rightarrow A(x)\left(c_{e}(x+y)-c_{e}(x)\right)-A(y)\left(c_{e}(x+y)-c_{e}(y)\right)
$$

is bounded. Writing $x+y$ for x and $x-y$ for y we obtain that the function

$$
\begin{equation*}
(x, y) \rightarrow A(x+y) c_{e}(x+y)-A(x-y) c_{e}(x-y)-2 A(y) c_{e}(2 x) \tag{12}
\end{equation*}
$$

is bounded. Let $p(x)=A(x) c_{e}(x)$ and $P(x, y)=p(x+y)-p(x-y)-2 A(y) c_{e}(2 x)$, then (12) implies that P is bounded. On the other hand, the identity

$$
\begin{aligned}
& P(x+y, z)+P(x-y, z)-P(r, y+z)+P(x, y-z)= \\
& \quad=-2 A(z)\left(c_{e}(2 x+2 y)+c_{e}(2 x-2 y)-2 c_{e}(2 x)\right)
\end{aligned}
$$

shows that the functional equation

$$
c_{e}(2 x+2 y)+c_{e}(2 x-2 y)=2 c_{e}(2 x)
$$

holds. Interchanging x and y we get that c_{e} is constant. Since $H(0)=1$, therefore $c_{e}=1$ and $H=A+1, K=\alpha A+1$. Using (10) and the definition of F, G, H, K we obtain case (viii).

Finally, we have to return to the second case at (5), where by Lemma 3, $H=M_{e}+\alpha M_{o}, K_{e}=M_{e}$. Here $M: G \rightarrow C$ is an exponential, and α is a constant. Of course $M_{o}=0$ is impossible, and so (6) implies $K_{o}=\beta M_{o}+a$, where $a: G \rightarrow C$ is bounded and β is a constant. Hence by (10) we have for all x in G that

$$
\begin{aligned}
& F(x)=\frac{1+\alpha \beta}{2} M_{e}(x)+\frac{\alpha+\beta}{2} M_{o}(x)+\left(M_{e}\left(\frac{x}{2}\right)+\alpha M_{o}\left(\frac{x}{2}\right)\right) a\left(\frac{x}{2}\right)+d(x), \\
& G(x)=\frac{1-\alpha \beta}{2} M_{e}(x)-\frac{\alpha-\beta}{2} M_{o}(x)-\left(M_{e}\left(\frac{x}{2}\right)+\alpha M_{o}\left(\frac{x}{2}\right)\right) a\left(\frac{x}{2}\right)+e(x)
\end{aligned}
$$

where $d, e: G \rightarrow C$ are bounded functions (we have used that a is obviously odd). Substituting into (4) and using that D is bounded, we have that the function

$$
\begin{equation*}
(x, y) \rightarrow H\left(\frac{x+y}{2}\right) a\left(\frac{x+y}{2}\right)-H\left(\frac{x-y}{2}\right) a\left(\frac{x-y}{2}\right)-H(x) a(y) \tag{13}
\end{equation*}
$$

is bounded. Let $p(x)=H\left(\frac{x}{2}\right) a\left(\frac{x}{2}\right)$ and $P(x, y)=p(x+y)-p(x-y)-H(x) a(y)$.

Then (13) implies that P is bounded. On the other hand, using that H is unbounded, we infer from the identity

$$
\begin{gathered}
P(x+y, z)+P(x-y, z)+P(x, y-z)-P(x, y+z)= \\
=H(x)\left(a(y+z)-a(y-z)-2 M_{e}(y) a(z)\right)
\end{gathered}
$$

that the functional equation

$$
a(y+z)-a(y-z)=2 M_{e}(y) a(z)
$$

holds. If $a \neq 0$, then M_{e}, and consequently H is bounded, which is impossible. Hence $a=0$, and we obtain case (ix). The theorem is proved.

Remark. Theorem 4 shows that for unbounded functions $f, g, h, k: G \rightarrow C$ the only possibility for $(x, y) \rightarrow f(x+y)+g(x-y)-h(x) k(y)$ to be bounded is that $f+a, g+b, h, k$ be a solution of (1) with some bounded functions $a, b: G \rightarrow C$.

Remark. The proofs of the above theorems and lemmata show that the main result can be generalized for other functional analytic function properties instead of "boundedness". More precisely, let W be a complex linear space of complex valued functions on $G \times G$ with the properties:
(i) if F belongs to W, then $(x, y) \rightarrow F(x+u, y+v)$ belongs to W,
(ii) constant functions belong to W,
(iii) if F belongs to W, then all the functions

$$
\begin{gathered}
(x, y) \rightarrow F(y, x),(x, y) \rightarrow F(x,-y), \\
(x, y) \rightarrow F(x+y, x-y),(x, y) \rightarrow F(x+y, 0),(x, y) \rightarrow F(x-y, 0) \\
(x, y) \rightarrow F\left(\frac{x+y}{2}, \frac{x+y}{2}\right),(x, y) \rightarrow F\left(\frac{x+y}{2},-\frac{x+y}{2}\right), \\
(x, y) \rightarrow F(x, x),(x, y) \rightarrow F(2 x, 0),
\end{gathered}
$$

and for all z in $G,(x, y) \rightarrow F(x, z)$ belong to W,
(iv) if for a function $f: G \rightarrow C$ the function $(x, y) \rightarrow f(x+y)+f(x-y)-2 f(x)$ belongs to W, then there is a function $A: G \rightarrow C$ such that $A(x+y)+A(x-y)=$ $=2 A(x)$ holds for all x, y in G, and $(x, y) \rightarrow f(x)-A(x)$ belongs to W.

Then Theorem 4 holds, if we set everywhere "belongs to W " instead of "bounded". For instance, if $W=(0)$, then we obtain from Theorem 4 the general solution of (1). As less trivial examples, "boundedness" can be replaced by "almost periodicity", or in the cases $G=R$ (the real line) or G compact Abelian, by "continuity", provided the mapping $x \rightarrow 2 x$ is a homeomorphism.

References

[1] J. AczĖL, Lectures on functional equations and their applications, Academic Press (New York-London, 1966).
[2] M. Albert, J. A. Baker, Functions with bounded n-th differences, unpublished manuscript.
[3] J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc., 80 (3) (1980), 411 416.
[4] N. G. de Bruinn, Functions whose differences belong to a given class, Nieuw Arch. Wisk., 23 (1951), 194-218.
[5] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222-224.
[6] D. H. Hyers, Transformations with Bounded m-th Differences, Pacific J. Math., 11 (1961), 591-602.
[7] Pl. Kannappan, The functional equation $f(x y)+f(x y)^{-1}=2 f(x) f(y)$ for groups, Proc. Amer. Math. Soc., 19 (1968), 69-74.
[8] L. Székelyhidi, The stability of linear functional equations, C. R. Math. Rep. Acad. Sci. Canada, 3 (1981), No. 2, 63-67.
[9] L. SzÉkelyhidi, On a theorem of Baker, Lawrence and Zorzitto, Proc. Amer. Math. Soc., 84 (1982), 95-96.
[10] L. Székelyhidi, On a stability theorem, C. R. Math. Rep. Acad. Sci. Canada, 3 (1981), No. 5, 245-255.

[^0]: Received July 8, 1981, and in revised form November 28, 1981.

