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The stability of d'Alembert-type functional equations 

L. SZÉKELYHÍDI 

In this paper we deal with the following problem: i f f , g, h, k are complex valued 
functions on the Abelian group G with the property, that the function (x, y)-» 
-f(x+y)+g(x—y)—h(x)k(y) is bounded, what can be said about the functions 

f,g, h,kl Obviously, this problem is a generalization of the well-known functional 
equations 
(0) f(x+y)+f(x-y) = 2f(x)g(y), 

(1) f(x+y)+g(x-y) = h(x)k{y). 

Special cases of this problem has been treated by many authors. The special 
case k=1 is of "additive type" and can be reduced to the problem: if (x, —• 
-*f(x+y)-f(x) —f(y) is bounded, what can be said about / ? The problem in this 
form is treated in [2], [4], [5], [6], [8]. The special case g = 0 and h=k—f is treated 
in [3], and the case g = 0 and h—f is treated in [9]. Further, the special case where 
f=g=h and k—2f is treated in [3], and the case where f=g=h is treated in [10]. 
In this paper we completely solve the above problem. 

First we make a simple observation: evidently, if / , g, h, k is a solution of the 
functional equation (1) and a, b are arbitrary bounded complex valued functions 
on G, then the functions f+a,g+b,h,k solve our problem. Our main result is the 
following: if f,g,h,k are unbounded functions, then essentially this is the only 
solution of our problem. 

In the sequel we shall use the following notation and terminology: C denotes 
the set of complex numbers. If G is a group and M:G—C is a function for which 
M(x+y)=M(x)M(y) holds for all x,y in G, then we call M an exponential. The 
function A.G-+C is called additive, if A(x+y)=A(x) + A(y) holds whenever 
x, y is in G. If F:G—C is a function, then Fe and F0 denotes the even and the odd 
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part of F respectively, that is, 

FA*) = f»W = j (F(x)-F(-x)) 

for all x in G. 
In what follows we suppose, that G is a fixed Abelian group in which the map-

ping x—2x is an automorphism. 
We shall use the following theorem: 

Theorem 1. If f , g: G—C satisfy (0), then there are an exponential M: G — C, 
an additive function A: G—C and a, /? constants such that we have the following pos-
sibilities: 

(i) / = 0, g is arbitrary, 
(ii)f=A+a, g= 1, 

( i i i ) / = <xMe+pM0, g = Me. 

The proof of this theorem can be obtained by the method of [1], using the results 
of [7]. 

Lemma 2. Let f g, h:G—C be functions for which the function (x, y) — 
-f(x+y)—g(x)h(y) is bounded. Then there are an exponential M.G—C, abounded 

function a: G—C and a, fi constants such that we have the following possibilities: 
(i) f is bounded, h is arbitrary, g=0, 

(ii) / is bounded, h = 0, g is arbitrary, 
(iii) / , g, h are bounded, 
(iv) / = afiM+a, g = <xM, h = fiM. 

Proof . The first three cases are trivial, hence we may suppose that f , g, h are 
unbounded. Let a=g(0), P=h(0) and a=f—fig. Obviously, a is bounded, and 
the identity 

f(x+y)-g(x)h(y)-a(x+y) = pg(x+y)-g{x)h(y) 

implies that /M0, and the function (x, y)~*g(x+y)—g{x)f}-lh(y) is bounded. 
By [9], it follows (iv). 

Lemma 3. Let f,g: G—C be functions for which the function (x, y)—f(x+y)+ 
+f(x—y)—2f(x)g(y) is bounded. Then there are an exponential M: G—C, an 
additive function A: G—C, a bounded function a: G—C and a, /? constants such 
that we have the following possibilities: 

(i) / = 0 , g is arbitrary, 
(ii) / , g are bounded, 
( i i i ) / = A+a, g = 1, 
(iv) / = a.Me+a.M0, g - Me. 
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Proof . The first two cases are trivial. We may suppose that / i s unbounded. 
This implies that g?£0. If g = 1, then by [8], (iii) follows. Suppose that g?£ 1. Let 
F{x, y)=f(x+y)+f(x-y)-2f(x)g(y) for all x,y in G. By [10] and Theorem 1, 
there is an exponential M: G—C for which g—Me, in particular g is even. Now 
consider the identity 

. 2g{z)F(x, y) = F(x,y + z)+F(x, y-z)-F(x+y, z)-F(x-y, z), 

which shows that either g is bounded, or F = 0 . Suppose, that g is bounded, and ob-
serve that the following identities hold: 

(2) fe(y)six)-fe{x)g{y) = J {F(x, y)-F(y, x)+F{-x, -y)-F(-y, - x ) ) , 

(3) /o(*+j) - / 0 (*)gOO-/„OOg(*) = 

= j(F(x, -y)-F(-y,x)-F(-x,y) + F(y, -x)). 

By (2) we obtain that fe is bounded, and by (3) we see that the function 
x —/0 (x+y) —/„(x)g(y) is bounded for all fixed y in G. Since f0 cannot be bounded, 
by [9] it follows that g is an exponential. As g^0, we have g (0 )= l , and for all x 
in G, 

l = g(0) = g ( | ) g ( - i . ) = g ( | ) g ( f ) = : g ( x ) , 

a contradiction. Hence g is unbounded and F=0, that is, (iv) follows by Theorem 1. 

T h e o r e m 4. Let f,g,h,k: G—C be functions for which the function (x, y) — 
-^f(x+y)+g(x—y)—h(x)k(y) is bounded. Then there are an exponential M: G-~C, 
an additive function A:G-*C, bounded functions a,b,c:G-»C, and constants 
a, /?, y, 5 such that we have the following possibilities: 

(i) / , g, h, k are bounded, 
(ii) f , g are bounded, h=0, k is arbitrary, 

(iii) f,g are bounded, h is arbitrary, k=0, 
(iv) / is bounded, g = a f i M + b , h — a M , k -
(v) f = afiM+a, g is bounded, h - txM, k — pM, 

(vi) / = ^-aA+a, g=-^-ccA+b, h = a, k = A+c, 

(yii)f=jPA+a, g = ±pA+b, h = A+c, k = p, 

(viii) f — J<xPA2+j(ccS+py)A+a, g = —~«0A2 + j (oi8-py)A+b, 

h = <xA+y, k = PA+3, 

9» 
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( i x ) / = j (ay+fig)M t +j(<zd+f iy )M„+a, h = *Me+pM0, 

8 = \ ( a y - p 5 ) M e ~ ( a < 5 - P y ) M a + b , k = yMe+5Ma. 

Proof . The first three cases are trivial, and i f / o r g is bounded, then by Lemma 
2 we have (iv) or (v). Now we may suppose that / , g are unbounded, and h^O, 
k^O. Let h(x0)^0, k(y0)^0, and we introduce the new functions: 

F(x) = h (*0) ~ ̂  (y0) ~ Xf(x++y0), G(x) = hix^kiy^gix + xo-yo), 

H(x) = hix^hix+x 0), K(x) = k(y0)-^k(x+y0). 

We have that F, G are unbounded, H(0)=K(0)= 1, and the function D 
defined by 
(4) D(x,y) = F(x+y)+G(x-y)-H(x)K(y) 

is bounded. First we present some simple identities concerning F, G, H, K, D, 
which we shall need in the sequel: 

(5) H(x+y) + H(x-y)-2H{x)Ke{y) = 

= D{x,y)+D{x, -y)-D(x+y, Q)-D(x-y,Q), 

(6) H.{y)K0{x)-H.{kx)K0(y) = ± (D(x, y) — D(y, x)-D(x, -y) + 

+ D(-y, x)+D(-x, -y)-D(-y, -x)-D(~x,y)+D(y, -x), 

(7) H(x+y)K0(x-y)-H(x)K0(x)+H(y)K0(y) = 

= - {D(x, x)-D(x, -x)+D(y, —y) — D(y, y)+D(x+y,y-x)-D(x+y, x-y)\ 

(8) H0(x+y)K0{x-y)-H0{x)K0{x) + HSy)K0(y) = 

= j (D(x, x)+D(-x,-x)-D(x, -x)-D(-x, x)+D{y, -y)+D(-y, y)-

-D(y,y)-D(-y, -y) + D(x+y,y-x)+D(-x-y,x-y)-D(x+y,x-y)-

-D(-x-y,y-x)), 

and finally, if H0—0, that is, H is even, then 

(9) K{x+y)+K(x-y)-2K(x)H{y) = 2D(y, x)-D(0, x+^)-Z)(0 , x-y)-

X-¥M=¥- ^ M ^ ^ M ^ 
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These identities can be checked by an easy computation and they show, that the 
expressions on the left hand sides are bounded. Finally, we shall need the relations 

(10) = 

G(X) = H{±)K(-$+D(±, - i ) - G ( 0 ) . 

Now we assume that H is bounded, and show that (vi) follows. By (5) Ke is 
bounded, and if H is not even, then by (6) K0 is bounded, too, which is impossible 
by (10). Hence H is even, and then by (9) and Lemma 3 either K=A+a and H= 1, 
or K= Me + PM0, H=Me. In the latter case Me is bounded, and by the identity 
Me(x+y)—Me(x—y)=2M0(x)M0(y) the function Ma is bounded, too, that is, K 
is also bounded, which is impossible by (10). This means that H= 1 and K=A+a, 
where A: G—C is additive, and a: G—C is bounded. By (10) and by the definition 
of F, G, H, K we have (vi). 

Hence we may suppose in the sequel, that H is unbounded. 
From (5) by Lemma 3 we have two cases. In the first case Ke=1, H=A+c, 

where A:G-~C is additive and c: G—C is bounded. Here A^0 and H^0, 
hence by (6) K0—aA+d, where d: G—C is odd and bounded, and a is a constant. 
If a=0 , then by (6) either H0 is bounded, which is impossible, or ^„=0, that is 
K=Ke=l and from (10) we obtain (vii) using the definition of F, G, H, K. 

Let a then we substitute H0 and K0 into (6) and we have that the function 

(x, y) - A{x) (ac„(y)-d(y))-A(y) (d(x)~ac0(x)) 

is bounded. If there is a y in G, for which d(y)^ac0(y), then A=0, which is im-
possible. Hence d=ccc„, and H=A+c0+ce, K=xA+txc0+l. Substituting into (8) 
we have that the function 

(x, y) - A(x) (c„(x+y)+c0(x-y)-2c0(x))-A(y) (c0(x+y)-c0(x-y)~2ca(y)) 

is bounded. Substituting x+y for x and x—y for y, we have that the function 

(11) (x, y) - A(x+y)c0(x+y)-A(x-y)c0(x-y)-A(y)c0(2x)-A(x)c0(2y) 

is bounded. Let p(x)=A(x)c0(x) and P(x, y)=p(x+y)—p(x—y)-A{x)c0(2y), 
then (11) implies the boundedness of x-*P(x, y) for all fixed y in G. On the other 
hand, the identity 

P(x+y, z)+P(x y, z) P(x, y+z)+P(x, y-z) = 

^ A(x) (c0(2y+2z) -c9(2y -2z) -2c?(2z)) 
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shows, that for all fixed y, z in G the function x—A(x) (c0(2y+2z)—c0(2y—2z) — 
—2c0(2z)) is bounded, and hence 

c0(2y+2z)-c„(2y-2z) = 2c„(2z) 

holds for all y, z in G. Interchanging y and z, we have that c„ is additive and as it is 
bounded, co=0, H=A + ce, K=aA +1. Substituting into (7) we get that the 
function 

(x, y) - A(x) (ce(x+y)-ce(x))-A(y) (c,(x+y)-c.(y)) 

is bounded. Writing x+y for x and x—y for y we obtain that the function 

(12) (x,y) - A (x+y)ce(x +y) - A (x-y)ce(x-y) - 2 A (y)ce(2x) 
is boimded. Let p(x) = A(x)ce(x) and P(x, y)=p(x+y)-p(x-y)-2A(y)ce(2x), 
then (12) implies that P is boimded. On the other hand, the identity 

P(x+y, z)+P(x -y, z) - P(r, y+z)+P(x, y - z) = 

= -2A(z) (ce(2x+2y) + ce(2x — 2y) — 2ce(2x)) 

shows that the functional equation 

- • ce(2x+2y)+cc(2x-2y) = 2ce(2x) 

holds. Interchanging x and y we get that ce is constant. Since H(0) = 1, therefore ce — \ 
and H=A +1, K—aA +1. Using (10) and the definition of F, G, H, K we obtain 
case (viii). 

Finally, we have to return to the second case at (5), where by Lemma 3, 
H=Me+aM0, Ke=Me. Here M: G—C is an exponential, and a is a constant. Of 
course Ma=0 is impossible, and so (6) implies K0=fiM0+a, where a: G—C is 
bounded and /? is a constant. Hence by (10) we have for all x in G that 

F(x) = + a [ j } + d(x), 

G(x) = ^ Me(x)-^- Ma(x)-[j)+aM0 a[ j ) + e(x), 

where d,e: G—C are bounded functions (we have used that a is obviously odd). 
Substituting into (4) and using that D is bounded, we have that the function 

(13) ( , , , ) a ( ^ ) - t f ( ^ ) a { ^ ) - H ( x ) a ( y ) 

is bounded. Let p ( x ) = # j y j a j y ] and P{x, y)-p(x+y)-p(x-y)-H(x)a(y). 
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Then (13) implies that P is bounded. On the other hand, using that H is unbounded, 
we infer from the identity 

P{x+y,z)+P{x-y,z)+P(x,y-z)-P(x,y+z) = 

= H(x)(a(y+z)-a(y-z)-2Me(y)a(z)) 

that the functional equation 

a(y+z)-a(y-z) = 2Me(y)a(z) 

holds. If a T̂ O, then Me, and consequently H is bounded, which is impossible. 
Hence a=0, and we obtain case (ix). The theorem is proved. 

Remark . Theorem 4 shows that for unbounded functions f,g,h,k: G-*C 
the only possibility for (x, y)-*f(x+y)+g(x—y)—h(x)k(y) to be bounded is that 
f+a, g+b, h, k be a solution of (1) with some bounded functions a,b: G—C. 

Remark . The proofs of the above theorems and lemmata show that the main 
result can be generalized for other functional analytic function properties instead of 
"boundedness". More precisely, let W be a complex linear space of complex valued 
functions on GxG with the properties: 

(i) if F belongs to W, then (x, >>)—F(x+u, y+v) belongs to If, 
(ii) constant functions belong to W, 

(iii) if F belongs to W, then all the functions 

(x, y) - F(y, x), (x, y) - F(x, -y), 

(x, y)-F(x +y,x-y), (x, y)-F(x+y, 0), (x, y)-F(x-y, 0) 

(x, y) - F(x, x), (x, y) - F(2x, 0), 

and for all z in G, (x, y)—F(x, z) belong to W, 
(iv) if for a function / : G - C the function (x, y)^f{x+y)-\-ftx-y)-2f(x) 

belongs to W, then there is a function A:G-~C such that A(x+A(x—y)= 
- 2A (x) holds for all x, y in G, and (x, y)~*f(x)—A(x) belongs to W. 

Then Theorem 4 holds, if we set everywhere "belongs to W" instead of "boun-
ded". For instance, if W=(0), then we obtain from Theorem 4 the general solution 
of (1). As less trivial examples, "boundedness" can be replaced by "almost periodi-
city", or in the cases G=R (the real line) or G compact Abelian, by "continuity", 
provided the mapping x—2x is a homeomorphism. 
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