A note on boundedly complete decomposition of a Banach space

P. K. JAIN, KHALIL AHMAD and S. M. MASKEY

1. Introduction. Let *E* be a Banach space. A sequence (M_i) of subspaces of *E* is said to be a *decomposition* of *E* if each $x \in E$ can uniquely be expressed as $x = \sum_{i=1}^{\infty} x_i$, where $x_i \in M_i$ for each *i*, and convergence is with respect to the norm on *E*. The uniqueness implies the existence of (not necessarily continuous) associated projections P_i of *E* onto M_i such that $P_i P_j = \delta_{ij} P_j$, where $\delta_{ij} = 0$ for $i \neq j$ and $\delta_{ij} = 1$ for i = j, and we write $P_i(x) = x_i$. If each P_i is continuous, the decomposition is called a *Schauder decomposition* and we write it as (M_i, P_i) . A decomposition (M_i) is called *boundedly complete* if the relation $\sup_{1 \leq n < \infty} \left\| \sum_{i=1}^n x_i \right\| < \infty$ implies that $\sum_{i=1}^\infty x_i$ converges, where $x_i \in M_i$ for each *i*.

The study of decomposition of a Banach space was initiated in the work of GRINBLYUM [3] and developed further in [2, 9, 10, 11, 12]. The purpose of the present note is to give certain sufficient conditions for a decomposition to be boundedly complete.

2. In this section, we state and prove a lemma, on which we rely heavily when proving our main results.

Lemma. Let (M_i) be a Schauder decomposition of E. Then the following statements are equivalent:

(A) For each number $\lambda > 0$ there exists a number $r_{\lambda} > 0$ such that

$$\left\|\sum_{i=1}^{n} x_{i}\right\| = 1, \quad \left\|\sum_{i=n+1}^{\infty} x_{i}\right\| \ge \lambda \quad imply \quad \left\|\sum_{i=1}^{\infty} x_{i}\right\| \ge 1 + r_{\lambda}$$

 $(x_i \in M_i \text{ for each } i).$

Received August 20, 1981.

(B) For every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\left\|\sum_{i=1}^{n} x_{i}\right\| > 1 - \delta, \quad \left\|\sum_{i=1}^{\infty} x_{i}\right\| = 1 \quad imply \quad \left\|\sum_{i=n+1}^{\infty} x_{i}\right\| \le \varepsilon$$

 $(x_i \in M_i \text{ for each } i).$

Proof. (A) \Rightarrow (B). Suppose (A) holds and (B) is not true, then there exists an $\varepsilon > 0$ such that for every $\delta > 0$,

$$\left\|\sum_{i=1}^{n} x_{i}\right\| > 1 - \delta, \quad \left\|\sum_{i=1}^{\infty} x_{i}\right\| = 1, \quad \left\|\sum_{i=n+1}^{\infty} x_{i}\right\| > \varepsilon \quad (x_{i} \in M_{i}).$$

Then, for $\lambda = \frac{\varepsilon}{K}$, where K is a constant appearing in Grinblyum's K-condition for Schauder decomposition (see [8], p. 93), there exists no $r_{\lambda} > 0$ so as to satisfy (A). Indeed, let $r_{\lambda} > 0$ be arbitrary, $\delta = r_{\lambda}/(1+r_{\lambda})$ and $y_i = x_i / \left\| \sum_{j=1}^n x_j \right\|$. Then

$$\left\|\sum_{i=1}^{n} y_{i}\right\| = 1, \quad \left\|\sum_{i=n+1}^{\infty} y_{i}\right\| \ge \varepsilon/K \left\|\sum_{j=1}^{\infty} x_{j}\right\| = \lambda,$$
$$\left\|\sum_{i=1}^{\infty} y_{i}\right\| = 1/\left\|\sum_{j=1}^{n} x_{j}\right\| < \frac{1}{1-\delta} = 1+r_{\lambda}.$$

This is a contradiction and hence (A) implies (B).

(B) \Rightarrow (A). Assume that (A) is not true, i.e. there exists a $\lambda > 0$ such that for every $r_{\lambda} > 0$,

$$\left\|\sum_{i=1}^{n} x_{i}\right\| = 1, \quad \left\|\sum_{i=n+1}^{\infty} x_{i}\right\| \ge \lambda, \quad \left\|\sum_{i=1}^{\infty} x_{i}\right\| < 1 + r_{\lambda}.$$

Then, for $\varepsilon = \lambda(1-\eta)$ with $0 < \eta < 1$ arbitrary, there exists no $\delta > 0$ so as to satisfy (B). Indeed, let $\delta > 0$ be arbitrary with $\delta \le \eta$. Let $r_{\lambda} = \delta/(1-\delta)$ and $y_i = x_i / \left\| \sum_{j=1}^{\infty} x_j \right\|$. Therefore

$$\left\|\sum_{i=1}^{n} y_{i}\right\| = 1 / \left\|\sum_{j=1}^{\infty} x_{j}\right\| > \frac{1}{1+r_{\lambda}} = 1-\delta, \quad \left\|\sum_{i=1}^{\infty} y_{i}\right\| = 1$$
$$\left\|\sum_{i=n+1}^{\infty} y_{i}\right\| \ge \lambda / \left\|\sum_{j=1}^{\infty} x_{j}\right\| > \frac{\lambda}{1+r_{\lambda}} \ge \varepsilon,$$

which is a contradiction, hence (B) implies (A).

Note. The statements (A) and (B) in the lemma will be referred to as properties A and B, respectively.

366

3. Main results

Theorem 3.1. Let (M_i) be a Schauder decomposition of E. If (M_i) satisfies property A (or B), then (M_i) is boundedly complete. The converse may not be true. Proof. Suppose $\sup_{1 \le n < \infty} \left\| \sum_{i=1}^n x_i \right\| = \alpha < \infty$ with $x_i \in M_i$. Let $y_n = \sum_{i=1}^n x_i$, choose a sequence (n_k) of positive integers such that $\lim_{k \to \infty} \|y_{n_k}\| = \overline{\lim_{n \to \infty}} \|y_n\| = \beta$ (say). If $\beta = 0$, then $\sum_{i=1}^{\infty} x_i$ converges (to zero). If $\beta \ne 0$, we shall show that (y_{n_k}) is a Cauchy sequence. In fact, otherwise there would exist a $\delta > 0$ and subsequences (y_{n_k}) , $(y_{n_{l_i}})$, of (y_{n_k}) with $n_{k_j} > n_{l_j}$ (j=1, 2, ...) such that

$$||y_{n_{k_j}} - y_{n_{l_j}}|| \ge \delta \quad (j = 1, 2, ...).$$

Then, since

$$\left\|\frac{y_{n_{k_j}}-y_{n_{l_j}}}{\|y_{n_{l_j}}\|}\right| \ge \frac{\delta}{\alpha} = \lambda > 0,$$

we would have by property A

$$\left\|\frac{y_{n_{l_j}}}{\|y_{n_{l_j}}\|}+\frac{y_{n_{k_j}}-y_{n_{l_j}}}{\|y_{n_{l_j}}\|}\right\| \ge 1+r_{\lambda},$$

hence

$$||y_{n_k}|| \geq ||y_{n_l}|| (1+r_{\lambda}).$$

Thus

$$\beta = \lim_{j \to \infty} \|y_{n_{k_j}}\| \ge \lim_{j \to \infty} \|y_{n_{l_j}}\|(1+r_{\lambda}) = \beta(1+r_{\lambda}),$$

which is impossible since $\beta \neq 0$. Consequently, (y_{n_k}) is a Cauchy sequence. Hence $\lim_{k \to \infty} y_{n_k} = x \in E$. Therefore, (M_i) being a Schauder decomposition,

$$x = \lim_{k \to \infty} y_{n_k} = \lim_{k \to \infty} \sum_{i=1}^{n_k} x_i = \sum_{i=1}^{\infty} x_i.$$

This shows that $\sum_{i=1}^{\infty} x_i$ converges, whenever

$$\sup_{1\leq n<\infty}\left\|\sum_{i=1}^n x_i\right\|<\infty.$$

For the converse, consider the following counter-example which would complete the proof of the theorem.

Example 3.2. Let $(\chi, || ||)$ be a Banach space. Define

$$l_1(\chi) = \{(x_i): x_i \in \chi, \sum_{i=1}^{\infty} ||x_i|| < \infty\},\$$

the norm on $l_1(\chi)$ being given by

$$||(x_i)||^* = \sum_{i=1}^{\infty} ||x_i||.$$

Further, let us assume the Banach space χ to be such that the topological dual of the space $l_1(\chi)$ is its respective cross dual (see [6], Table 3.29, and [5]). Now, we observe that (N_i) with $N_i = \{\delta_i^{x_i}: x_i \in \chi\}$, where $\delta_i^{x_i}$ means the sequence $(0, 0, ..., x_i, 0, ...)$ i.e. the *i*-th entry in $\delta_i^{x_i}$ is x_i and all others are zero, forms a Schauder decomposition (see [4], p. 290, and [8], p. 95) of $l_1(\chi)$. Now, we define

$$\overline{N}_{1} = \left\{ \delta_{1}^{\frac{x}{2}} + \delta_{2}^{\frac{x}{2}} : x \in \chi \right\}, \quad \overline{N}_{2} = \left\{ \delta_{1}^{-\frac{x}{2}} + \delta_{2}^{\frac{x}{2}} : x \in \chi \right\}, \quad \overline{N}_{i} = N_{i}, \quad \text{for} \quad i \neq 1, 2$$

Then (\overline{N}_i) is a boundedly complete decomposition, but does not satisfy property A.

Remark. Properties A and B are not invariant under an isomorphism of the space E onto another space E_1 . Hence they are not isomorphic properties since (N_i) forms a boundedly complete decomposition, equivalent to (\overline{N}_i) , of E which satisfies property A.

Definition 3.3. A Schauder decomposition (M_i) is said to be monotone if $\left\|\sum_{i=1}^n x_i\right\| \leq \left\|\sum_{i=1}^{n+1} x_i\right\|$, for all *n*, where x_i is an arbitrary element of M_i .

Definition 3.4. A Banach space is uniformly convex if for every $\varepsilon > 0$ there exists $\delta > 0$ such that whenever ||x||, $||y|| \le 1$, and $||x-y|| \ge \varepsilon$, then $||(x+y)/2|| \le \le 1-\delta$.

Now, we give sufficient conditions for a decomposition to satisfy property A (or B).

Theorem 3.5. If (M_i) is a monotone decomposition of a uniformly convex space E, then (M_i) satisfies property B (hence property A).

Proof. Let property B be not true. Then for any given $\varepsilon > 0$ and $\delta > 0$ (in particular, we choose $\delta > 0$ of definition 3.4), there exists a sequence (x_i) , $x_i \in M_i$ such that

$$\left\|\sum_{i=1}^{\infty} x_i\right\| > 1 - \delta, \quad \left\|\sum_{i=1}^{\infty} x_i\right\| = 1 \quad \text{and} \quad \left\|\sum_{i=n+1}^{\infty} x_i\right\| > \varepsilon.$$

Therefore, monotonicity of (M_i) implies

$$1-\delta < \left\|\sum_{i=1}^n x_i\right\| \le \left\|\sum_{i=1}^\infty x_i\right\| = 1.$$

÷ *

Let $x = \sum_{i=1}^{n} x_i$ and $y = \sum_{i=1}^{\infty} x_i$. Then $||x||, ||y|| \le 1$, and $||x-y|| = \left\|\sum_{i=n+1}^{\infty} x_i\right\| > \varepsilon$,

and so $||(x+y)/2|| \le 1-\delta$. Hence

$$1 - \delta \ge \|(x+y)/2\| = \left\|\sum_{i=1}^{n} x_i + \frac{1}{2} \sum_{i=n+1}^{\infty} x_i\right\| \ge \left\|\sum_{i=1}^{n} x_i\right\| > 1 - \delta,$$

which is a contradiction.

Corollary 3.6. If (M_i) is a monotone decomposition of a uniformly convex space E, then (M_i) is boundedly complete.

References

- P. CASAZZA, On a geometric condition related to boundedly complete bases and normal structure in Banach spaces, *Proc. Amer. Math. Soc.*, 36 (1972), 443-447.
- [2] W. J. DAVIS, Schauder decompositions in Banach spaces, Bull. Amer. Math. Soc., 74 (1968), 1083-1085.
- [3] M. M. GRINBLYUM, On the representation of a space of type B in the form of the direct sum of the subspaces, Dokl. Akad. Nauk SSSR (N. S.), 70 (1950), 749-752.
- [4] M. GUPTA, P. K. KAMTHAN and K. L. N. RAO, Generalised Köthe sequence spaces and decompositions, Ann. Mat. Pura Appl. (4), 113 (1977), 287-301.
- [5] M. GUPTA, P. K. KAMTHAN and J. PATTERSON, Duals of generalised sequence spaces, J. Math. Anal. Appl., 82 (1981), 152-168.
- [6] P. K. KAMTHAN and M. GUPTA, Sequence spaces and series, Marcel Dekker, Inc. (New York, 1981).
- [7] A. R. LOVAGLIA, Locally uniformly convex Banach spaces, Trans. Amer. Math. Soc., 78 (1955), 225-238.
- [8] J. T. MARTI, Introduction to the theory of bases, Springer-Verlag (Berlin, 1969).
- [9] W. H. RUCKLE, The infinite sum of closed subspaces of an F-space, Duke. Math. J., 31 (1964), 543-554.
- [10] B. L. SANDERS, On a generalisation of the Schauder basis concept, Dissertation, Florida State University, 1962.
- [11] B. L. SANDERS, Decompositions and reflexivity in Banach spaces, Proc. Amer. Math. Soc., 16 (1965), 204-208.
- [12] B. L. SANDERS, On the existence of [Schauder] decompositions in Banach spaces, Proc. Amer. Math. Soc., 16 (1965), 987-990.
- [13] I. SINGER, Bases in Banach spaces I, Springer-Verlag (Berlin, 1970).

			and			
DE	PA	RT	MEN	T	OF	MATHEMATICS
UNIVERSITY OF DELHI						
DE	LH	I, 1	ND	A		

(N. A.) DEPARTMENT OF MATHEMATICS JAMIA MILLIA ISLAMIA NEW DELHI --- 110025, INDIA 369