An inequality between symmetric function means of positive operators

T. ANDO
Dedicated to Professor B. Szökefalvi-Nagy on his seventieth birthday

1. There are various methods of averaging of an n-tuple $\vec{A}=\left(A_{1}, \ldots, A_{n}\right)$ of bounded positive (semi-definite) operators on a Hilbert space. The most basic are the arithmetic mean $\left(A_{1}+\ldots+A_{n}\right) / n$ and the harmonic mean $n\left(A_{1}^{-1}+\ldots+A_{n}^{-1}\right)^{-1}$ (provided all A_{i} are invertible). Anderson and Trapp [2] called $\left(A_{1}^{-1}+\ldots+A_{n}^{-1}\right)^{-1}$ the parallel sum of the n-tuple \vec{A}, and denoted it by $A_{1}: \ldots: A_{n}$, or in short $\prod_{i=1}^{n}: A_{i}$. Further they gave a variational description for parallel sum;

$$
\begin{equation*}
\left\langle x,\left(\prod_{i=1}^{n}: A_{i}\right) x\right\rangle=\inf \left\{\sum_{i=1}^{n}\left\langle x_{i}, A_{i} x_{i}\right\rangle \mid x=\sum_{i=1}^{n} x_{i}\right\} \tag{1}
\end{equation*}
$$

where $\langle x, y\rangle$ denotes the inner product of the vectors x and y. Formula (1) was then used to define the parallel sum for a general n-tuple of positive operators.

For an n-tuple of positive numbers, $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, Marcus and Lopes [5] defined symmetric function means (or Marcus-Lopes means) $E_{k, n}(\vec{\alpha})$ by

$$
\begin{equation*}
E_{k, n}(\vec{\alpha}) \equiv \frac{e_{k, n}(\vec{\alpha})}{e_{k-1, n}(\vec{\alpha})}, \quad k=1,2, \ldots, n \tag{2}
\end{equation*}
$$

where $e_{k, n}(\vec{\alpha})$ is the normalized k-th elementary symmetric function of $\vec{\alpha}=$ $=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, that is;

$$
e_{0, n}(\vec{\alpha}) \equiv 1 \quad \text { and } \quad e_{k, n}(\vec{\alpha}) \equiv \frac{\sum_{1 \leqq i_{1}<\ldots<i_{k} \leqq n} \prod_{j=1}^{k} \alpha_{i_{j}}}{\binom{n}{k}}
$$

Using an equivalent version of definition (2), Anderson, Morley, and Trapp [3] introduced two kinds of symmetric function means for an n-tuple $\vec{A}=\left(A_{1}, \ldots, A_{n}\right)$
of positive operators;

$$
\begin{aligned}
& \mathfrak{G}_{1, n}(\vec{A}) \equiv\left(\sum_{i=1}^{n} A_{i}\right) / n \quad \text { (arithmetic mean), } \\
& \mathfrak{s}_{n, n}(\vec{A}) \equiv n\left(\prod_{i=1}^{n}: A_{i}\right) \quad \text { (harmonic mean) }
\end{aligned}
$$

and

$$
\begin{gathered}
\Im_{k, n}(\vec{A}) \equiv \sum_{i=1}^{n}\left\{\left(\frac{1}{n-k+1} A_{i}\right):\left(\frac{1}{k-1} \Theta_{k-1, n-1}\left(\vec{A}_{(i)}\right)\right)\right\}, \quad k=2, \ldots, n \\
s_{k, n}(\vec{A}) \equiv \prod_{i=1}^{n}:\left\{k A_{i}+(n-k) \mathfrak{s}_{k, n-1}\left(\vec{A}_{(i)}\right)\right\}, \quad k=1, \ldots, n-1
\end{gathered}
$$

where $\vec{A}_{(i)}$ denotes the $(n-1)$-tuple $\left(A_{1}, \ldots, A_{i-1}, A_{i+1}, \ldots, A_{n}\right)$. By definition both $\mathfrak{S}_{k, n}(\vec{A})$ and $\varsigma_{k, n}(\vec{A})$ are invariant under permutations of A_{1}, \ldots, A_{n}, and the maps $\vec{A} \mapsto \mathfrak{G}_{k, n}(\vec{A})$ and $\vec{A} \mapsto \mathfrak{s}_{k, n}(\vec{A})$ are positively homogeneous and monotone with respect to coordinatewise ordering. If all A_{i} are invertible, then

$$
\Theta_{k, n}\left(\vec{A}^{-1}\right)^{-1}=\mathfrak{s}_{n-k+1, n}(\vec{A}), \quad k=1, \ldots, n
$$

where $\quad \vec{A}^{-1}=\left(A_{1}^{-1}, \ldots, A_{n}^{-1}\right)$. For any n-tuple \vec{A}

$$
\mathfrak{s}_{1, n}(\vec{A})=\mathfrak{S}_{1, n}(\vec{A}) \quad \text { and } \quad \Im_{n, n}(\vec{A})=\mathfrak{s}_{n, n}(\vec{A})
$$

Besides the easily proved inequalities

$$
n\left(\prod_{i=1}^{n}: A_{i}\right) \leqq\left\{\begin{array}{l}
\Im_{k, n}(\vec{A}) \\
s_{k, n}(\vec{A})
\end{array}\right\} \leqq\left(\sum_{i=1}^{n} A_{i}\right) / n, \quad k=1, \ldots, n
$$

not much is known about the order relation among $\Im_{j, n}(\vec{A})$ and $\mathfrak{s}_{k, n}(\vec{A}), j, k=2, \ldots$ $\ldots, n-1$. If all A_{i} are scalars, that is, $\vec{A}=\vec{\alpha}$, then both $\Im_{k, n}(\vec{\alpha})$ and $\mathfrak{s}_{k, n}(\vec{\alpha})$ coincide with the Marcus-Lopes mean $E_{k, n}(\vec{\alpha})$. Therefore it follows via spectral theory that if \vec{A} is a commuting n-tuple then

$$
\mathfrak{S}_{k, n}(\vec{A})=\mathfrak{s}_{k, n}(\vec{A}) \geqq \mathfrak{s}_{k+1, n}(\vec{A})=\mathfrak{S}_{k+1, n}(\vec{A}), \quad k=2, \ldots, n-2
$$

The equality $\Im_{k, n}(\vec{A})=\mathfrak{s}_{k, n}(\vec{A}) ; k=2, \ldots, n-1$ is not valid in general for a noncommuting n-tuple.
-Anderson, Morley, and Trapp [3] asked if the inequalities
(or equivalently

$$
\Im_{k, n}(\vec{A}) \geqq \Im_{k+1, n}(\vec{A}), \quad k=2, \ldots, n-2
$$

and

$$
\left.\mathfrak{s}_{k, n}(\vec{A}) \geqq \mathfrak{s}_{k+1, n}(\vec{A}), \quad k=2, \ldots, n-2\right)
$$

$$
\Im_{k, n}(\vec{A}) \geqq \mathfrak{s}_{k, n}(\vec{A}), \quad k=2, \ldots, n-1
$$

are valid for every n-tuple \vec{A}. They mentioned, without proof, that in case $n=3$ the inequality $\mathcal{G}_{2,3}(\vec{A}) \geqq \mathfrak{s}_{2,3}(\vec{A})$ could be derived via electrical network consideration.

The purpose of the present paper is to give a mathematical proof to the inequality $\mathfrak{S}_{2,3}(\vec{A}) \geqq \mathfrak{s}_{2,3}(\vec{A})$.
2. Our proof is based on a solution of an extremal problem, due to Flanders [4].

Lemma. Given two set of vectors x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{n}, define a functional $\psi(A)$ for an invertible positive operator A by

$$
\psi(A) \equiv \sum_{i=1}^{m}\left\langle x_{i}, A x_{i}\right\rangle+\sum_{j=1}^{n}\left\langle y_{j}, A^{-1} y_{j}\right\rangle
$$

Then $\inf _{A} \psi(A)=2\left\|\left[\left\langle x_{i}, y_{j}\right\rangle\right]\right\|_{1}$, where $\left\|\left[\left\langle x_{i} ; y_{j}\right\rangle\right]\right\|_{1}$ is the trace norm of the $m \times n$ matrix $\left[\left\langle x_{i}, y_{j}\right\rangle\right]$.

See [1] and [4] for a proof.
Theorem. For any triple $\vec{A}=\left(A_{1}, A_{2}, A_{3}\right)$ of positive operators

$$
\begin{equation*}
\mathfrak{G}_{2,3}(\vec{A}) \geqq \mathfrak{s}_{2,3}(\vec{A}) \tag{3}
\end{equation*}
$$

Proof. All A_{i} can be assumed invertible. Since $\mathfrak{s}_{2,3}(\vec{A})=\Xi_{2,3}\left(\vec{A}^{-1}\right)^{-1}$, and

$$
\left\langle x, \Theta_{2,3}\left(\vec{A}^{-1}\right)^{-1} x\right\rangle=\sup _{y} \frac{|\langle y, x\rangle|^{2}}{\left\langle y, \Im_{2,3}\left(\vec{A}^{-1}\right) y\right\rangle}
$$

operator inequality (3) is equivalent to

$$
\left\langle x, \mathfrak{G}_{2,3}(\vec{A}) x\right\rangle^{1 / 2} \cdot\left\langle y, \mathbb{G}_{2,3}\left(\vec{A}^{-1}\right) y\right\rangle^{1 / 2} \geqq|\langle x, y\rangle| \quad \text { for all } \quad x, y,
$$

which is equivalent, in view of the arithmetic-geometric means inequality, to

$$
\begin{equation*}
\left\langle x, \Im_{2,3}(\vec{A}) x\right\rangle+\left\langle y, \Im_{2,3}\left(\vec{A}^{-1}\right) y\right\rangle \geqq 2|\langle x, y\rangle| \quad \text { for all } x, y . \tag{4}
\end{equation*}
$$

Since

$$
\Theta_{2,3}(\vec{A})=\frac{1}{2}\left\{A_{1}:\left(A_{2}+A_{3}\right)+A_{2}:\left(A_{3}+A_{1}\right)+A_{3}:\left(A_{1}+A_{2}\right)\right\}
$$

formula (1) gives

$$
\left\langle x, \mathfrak{G}_{2,3}(\vec{A}) x\right\rangle=
$$

$$
\begin{equation*}
=\inf _{x_{1}, x_{2}, x_{3}} \frac{1}{2} \sum_{i=1}^{3}\left\{\left\langle x+x_{i}, A_{i}\left(x+x_{i}\right)\right\rangle+\left\langle x_{i+1}, A_{i} x_{i+1}\right\rangle+\left\langle x_{i+2}, A_{i} x_{i+2}\right\rangle\right\} \tag{5}
\end{equation*}
$$

where $x_{j} \equiv x_{j-3}$ for $j=4,5$, and similarly

$$
\begin{gather*}
\left\langle y, \Theta_{2,3}\left(\vec{A}^{-1}\right) y\right\rangle= \\
=\inf _{y_{1}, y_{2}, y_{3}} \frac{1}{2} \sum_{i=3}^{3}\left\{\left\langle y+y_{i}, A_{i}^{-1}\left(y+y_{i}\right)\right\rangle+\left\langle y_{i+1}, A_{i}^{-1} y_{i+1}\right\rangle+\left\langle y_{i+2}, A_{i}^{-1} y_{i+2}\right\rangle\right\} \tag{6}
\end{gather*}
$$

where $y_{j} \equiv y_{j-3}$ for $i=4,5$. Then Lemma yields, for fixed $x, x_{1}, x_{2}, x_{3}, y, y_{1}, y_{2}$, and y_{3},

$$
\begin{gather*}
\left\langle x+x_{i}, A_{i}\left(x+x_{i}\right)\right\rangle+\left\langle x_{i+1}, A_{i} x_{i+1}\right\rangle+\left\langle x_{i+2}, A_{i} x_{i+2}\right\rangle+\left\langle y+y_{i}, A_{i}^{-1}\left(y+y_{i}\right)\right\rangle+ \\
\quad+\left\langle y_{i+1}, A_{i}^{-1} y_{i+1}\right\rangle+\left\langle y_{i+2}, A_{i}^{-1} y_{i+2}\right\rangle \geqq 2\left\|S_{i}\right\|_{1}, \quad i=1,2,3 \tag{7}
\end{gather*}
$$

where

$$
S_{i} \equiv\left[\begin{array}{lll}
\left\langle x+x_{i}, y+y_{i}\right\rangle & \left\langle x+x_{i}, y_{i+1}\right\rangle & \left\langle x+x_{i}, y_{i+2}\right\rangle \\
\left\langle x_{i+1}, y+y_{i}\right\rangle & \left\langle x_{i+1}, y_{i+1}\right\rangle & \left\langle x_{i+1}, y_{i+2}\right\rangle \\
\left\langle x_{i+2}, y+y_{i}\right\rangle & \left\langle x_{i+2}, y_{i+1}\right\rangle & \left\langle x_{i+2}, y_{i+2}\right\rangle
\end{array}\right] .
$$

Now according to (5), (6) and (7), the inequality (4) will follow from

$$
\begin{equation*}
\sum_{i=1}^{3}\left\|S_{i}\right\|_{1} \geqq 2|\langle x, y\rangle| . \tag{8}
\end{equation*}
$$

To see (8), consider a 3×3 Hermitian matrix

$$
T=\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & -1 & 2 \\
-1 & 2 & -1
\end{array}\right]
$$

Since T has $-3,0$ and 3 as its eigenvalues, $\|T\|_{\infty}$, the operator norm of T, is equal to 3 . Easy computation shows $\sum_{i=1}^{3} \operatorname{tr}\left(S_{i} T\right)=6\langle x, y\rangle$. Then

$$
\sum_{i=1}^{3}\left\|S_{i}\right\|_{1}=\frac{1}{3} \sum_{i=1}^{3}\left\|S_{i}\right\|_{1} \cdot\|T\|_{\infty} \geqq \frac{1}{3}\left|\sum_{i=1}^{3} \operatorname{tr}\left(S_{i} T\right)\right|=2|\langle x, y\rangle| .
$$

This completes the proof.
The method in the above proof can be used to prove $\mathcal{S}_{2, n}(\vec{A}) \geqq \mathfrak{S}_{n-1, n}(\vec{A})$ for every n-tuple \vec{A}. But the inequality $\Im_{k, n}(\vec{A}) \geqq \mathfrak{s}_{k, n}(\vec{A})$ stands still open.

Added in proof. In the revised version of [3] a different proof is presented.

References

[1] T. W. Anderson and I. Olkin, An extremal problem for positive definite matrices, Linear and Multilinear Algebra, 6 (1978), 257-262.
[2] W. N. Anderson and G. E. Trapp, Shorted operators. II, SIAM J. Appl. Math., 28 (1975), 160-175.
[3] W. N. Anderson, T. D. Morely, and G. E. Trapp, Symmetric function means of positive operators, Linear Alg. Appl., to appear.
[4] H. Flanders, An extremal problem in the space of positive definite matrices, Linear and Multilinear Algebra, 3 (1975), 33-39.
[5] M. Marcus and L. Lopes, Inequalities for symmetric functions and Hermitian matrices, Canad. J. Math., 9 (1957), 305-312.

