
Acta Sci. Math., 45 (1983), 51—66 

The modulus of variation of a function 
and the Banach indicatrix 

V. O. ASATIANI and Z. A. CHANTURIA 

Dedicated to Professor Beta Szokefalvi-Nagy on his 70th birthday 

It is well known that the notion of variation of a function was introduced by 
C . JORDAN in 1881 in the paper [12], devoted to the convergence of Fourier series; 
In 1924 N . WIENER [22] generalized this notion and introduced the notion of /"-varia-
tion. Finally, L . YOUNG [23] introduced the notion of ^-variation of a function. 

De f in i t i on 1 (see [23]). Let <Z> be a strictly increasing continuous function 
on [0, and 0(0)—0. / will be said to have bounded <£-variation on [a,b], 
or if 

v 0 ( f ) = sup J *(!/(**)-/(**-i)l) < 
It k=1 

where TI — { a ^ x ^ x ^ . . . is an arbitrary partition. 
If <P(u)=u, then V0 coincides with the Jordan class V and when $(«)=«", 

p > 1, it coincides with the Wiener class Vp. In 1973 Z . A . CHANTURIA [5] introduced 
the notion of the modulus of variation of a function. 

D e f i n i t i o n 2. Let / be bounded'on [a, b]. The modulus of variation of the 
function f is the function v(n,f) defined by u(0,/) = 0 and for n^l, 

n — 1 
u(n, /) = sup 2" l/(^2t + l)-/(^2t)| , nn t=0 

where i7„ .is an arbitrary system of disjoint intervals (x2k, x2k+1), k = 0,1, ... n — 1, 
of the interval [a, b\. 

The modulus of variation o(n, f ) is non-decreasing and convex upwards 
([5], [19]). Such a function will be called a modulus of variation. If a modulus of 
variation o(n) is given then the class of functions / , given on [a, b], for which 
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o(n, f)=0(o(ri)) when w — w i l l be denoted by V[v]. It is known that if $ is 
convex and <P(u) u *) on [0, <5] then V0c:F[w#_1(l/»)] ^ a strict inclusion ([5], [8]). 

In 1925 S. BANACH [3] introduced the function N(y,f) for continuous func-
tions / : for every + N(y,f) is equal to the number (finite or infinite) 
of solutions of equations f(x) = y. Following I . P . NATANSON [16] (p. 112) N(y,f) 
will be called the Banach indicatrix. BANACH [3] proved that a continuous function 
/ belongs to V if and only if N(y,f) is summable on [m(f), M(/)] , where 
#n( / )= inf / (*) and AT(/)= sup f(x). 

S. M . LOZINSKI [14] generalized the notion of the Banach indicatrix for bounded 
functions which have only discontinuities of the first kind. Denote this class by 
W(a, b). S . M . LOZINSKI [13] showed that the Banach theorem is valid without 
assuming the continuity of / . 

One can obtain the class W(a, b) from C(a,b) by a monotone transforma-
tion of the argument, as it follows from the following theorem of O. D. TSERETELI [20] 
(p. 42) and [21] (p. 131): Let f£W(a,b). Then there exist functions / and F satis-
fying the following conditions: x increases on [a,b], F is continuous on \x(fl), '/.(b)] 
and f(x) = F(X(x)). 

The definition of Lozinski is equivalent to the following 

D e f i n i t i o n 3 . Let f£W(a, b). The Banach indicatrix of / is defined by 
N(y,f):=N(y, F), where F is determined by the relation f(x)=F(z(x)). 

Since the variation of a function does not vary for monotone transformations 
of the argument, thus by virtue of Tsereteli's theorem, Lozinski's result is a con-
sequence of Banach's theorem. 

T . ZEREKIDZE [24] proved the analogue of Banach's theorem for the classes Vp : 
If -feW(a, b) and p> 1 then from the condition 

f [N(y, fW'" dy < -
— OO 

it follows that fíVp. The converse does not hold. 
The purpose of the present paper is to study the relationship between the degree 

of summability of the Banach indicatrix and the modulus of variation of the func-
tion in question. The results obtained are then applied to some problems of the the-
ory of Fourier series. 

Let Q be an increasing concave function on [0, Í2(0)=0, lim Í2(x)=°°, 

lim —LJ-—0. The following theorem holds. 
x 

*) <P(M)~!P(K) on [a, b] if there exist positive constants A and B such that A&(u)< 
~zW(u)~zB$(u), when «€[0,6]. 
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Theorem 1. Iff£W{a,b) and 
M(/) 

( 1 ) f Q{N{y,f))dy<~, 

the modulus of variation v(n,f) of f satisfies the following relation 

(2) 2l2Q(n)-Q(n-1)-Q(n +1)]d(n, f ) < co. 
n=1 

The proof is based on the following lemma. 

Lemma 1. If f£W{a,b), then 
M ( f ) 

»(*, / )=§ 3 J N n ( y , f ) d y , 
" • ( f ) where 

N (v f \ = \ N { y ' f ) Wflm N(y' f ) ~ n> 
U when N(y, f ) > n. 

Proof . By virtue of Tsereteli's theorem it suffices to prove the lemma for 
f£C{a, b). By the definition of the modulus of variation of a function, for any 
£ > 0 one can find 2n points {x j^}^ 1 such that 

a 4£> < x^ ^ ... s= < b 
and 

v{n, f ) s= | / ( x ^ + 1 ) - / ( x ^ ) l +£• 
Jfc = 0 

Introduce the function 

gn(x) = 

Let 

f(x(
k
ty) when x = xĵ >, k = 0, 1, ..., In -1, 

/(*oE)) when x = a, 
f(x2n-i) when x = b, and 
linear for all other x€[a, b]. 

mk = min {f{x?>), / ( * & ) } , Mk = max {/(x«) , / ( x ^ ) } -

Then on any segment [x££), x ^ J the equation g„(x) — y, y£[mk, Mk], has a 
unique solution, whereas the equation f{x) = y has at least one solution, i.e., for 
any y, N(y, g„)^N(y,f). On the other hand, N(y, g„)^2n + \. Therefore 

(3) N{y, g„) ^ min {7V(j;, / ) , 2n +1} 35 3 min {N(y, / ) , n} = 3Nn {y, f ) . 

Let us estimate the variation of the function g„. We have 

2n-l 

k = 1 
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whence by virtue of Banach's theorem and relation (3), 
M<0„) M(/) 

v(n,f)^v(gn)+e= f N(y,gn)dy+e^ 3 / 
rn(g„) m( / ) 

Since e is arbitrary, the lemma is proved. 

P r o o f of T h e o r e m 1. Introduce the notations 

<r(n) = [Q(n)-Q(n-l)]n, en = {y, N(y,f) = n}, 

En= U ek = {y; 1 s N{y,f)^n), £„ '= U ** = {y\ N(y, f ) > «}. 
k=1 t=n+l 

It is easy to see that by the properties of Q we have 
1) <7 (n)3=i2(n), n = 1,2, . . . , 

2) i = l , 2 , — n n+1 
Using these relations and Abel's transformation, we get 

M ( f ) M ( f ) 

f Q(N(y,f))dy ^ f o(N(y, f))dy — 

In virtue of Lemma 1, 

M(f) 
U(n, / ) ^ 3 / iV.O', / ) dy = 3 / t f Q,, / ) + 

From here and (4) it follows that 
M ( f ) 
f Q{N(y,f))dys 

- T.I J^i 
+ ̂  J N(y> f ) d y — 

- t h — r r H D ( f c ' — " » ( « , / ) • 
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But since 
k\iEk - (k-1)nEk_ 1 = \iEk_j - kfiek 

thus 
M(/) , „ 
/ Q(N(y,f))dy^T 2№{k)-Qik+l)-Q{k-l)]o(k,f) + 

+ 2 <r(k)nek- 2 ^ n E ^ . 
Jt = l k = 1 k 

From the latter relation it follows that 
M(/) 

»=1 m{S) *=1 k 
M ( f ) 

= 3 7 ' / ) ) d > + 3 2 ^ ( 2 
m(/) J=1 u = i J ) 

M(/) „ M(/) 
= 3 / a ( i v o > , / ) ) ^ + 3 2 S 6 / Q ( i v c , / » < o o . 

m(/) * = 1 m(/) 

Theorem 1 is proved. 
We give some corollaries of Theorem 1. 

Co ro l l a ry 1. If f£W(a,b) andfor oc>0, 
M ( f ) 

(5) / In* (N(y, f ) dy < 

then 
- I n ' - ^ n + l) , « 

2 - j » ( « , / ) < n=l w 
Proof . Like before, we may assume that f£C(a,b). Then for J>€[»i(/), Af(/)], 

therefore (5) is equivalent to 

M(f) 

Take now i2(x)=ln" (1 +jt). Then 

2i2(n)-i2(n + l ) - i 2 ( n - l ) > c + 

whence by virtue of Theorem 1 we obtain the statement of Corollary 1. 

Coro l l a ry 2. If few (a, b) andfor p> 1, 
Af(/) 
/ NV&fidy^-, 

m(f) 
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then 
~ u ( n j ~ ) 
> — - oo . 

„2-1 /p 
n=l " 

In fact, for the proof it is sufficient to take i2(x)=x1/p. 
Theorem 1 cannot be converted since Theorem 2 holds. 

Theorem 2. Let Q satisfy the above conditions. Then there exists a function 
fa£C(a, b) for which (2) is valid, but (1) is not fulfilled. 

Proof . Let us show first that there exist an increasing sequence of integers 
{fik}~=0 and a sequence of positive numbers {bk}^=l such that 

(6) 
t = i 

and 

(7) z a i i h - K - d b t = - . 
4=1 

Let 

Since the function i2_1 is convex and can be represented as 

fl"1(*)= J Pit) dt, 
o 

where P(Ot on [0, and since 

x-<*> X 

we have 
lim Pit) =oo. 

Taking into account the above facts we have 

•^+1-№ = i3-1(k+l)-i3-1(fc)-2afc+1-2at-l ^ f P(t)dt-5, 
k +1 

i.e., nk+i—°° when k-*<x>; thus {fik}™=0 increases, beginning with some 
number k0. It will be assumed without loss of generality that k0=0. 

Since Q is convex upwards, i2ix—y)s£2ix) — i2iy) for hence 

Qink+1)-Q(jik) Q(Q-\k+l)-2ock+1)-Q(Q-\k)-2ak-i) s 
(o) 

k + l - Q i Q - i i t y + Q Q ) = l+i2(3). 
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Denote Xk=Q{jik—fik-^). It is obvious that A*-*-00, k—°°. 
oo 

We shall divide the set of natural numbers N into subsets N = H N t in the 
*=i 

following way: N ^ {1}. If the sets N l5 ..., N t are already constructed, then 
k 

Nk + 1 is constructed as follows: Let N f c = N \ l J N; and Ak= min then 
i=l >€Nt 

N I + 1 = { « ; 2Ak). 

If |N£ + 1 | ^ |N t | then we put N t + 1 = N ^ + 1 and if | N £ + 1 | < t h e n to the set 
we add |N4| —|N£+1| natural numbers successively, beginning with the maximal 

term of the set |N£+1|. The obtained set will be N k + 1 . 
In virtue of the construction, 

(9) 1) | N 4 + 1 | S | N » | a n d 2) Ak+1^2Ak. 

Suppose 

= W h e n 'm€Nk' . 
It is clear that by virtue of (9), bm^bm+1. Then we have 

oo oo | °° 1 oo ^ 

2 bm = 2 2 T^JJ- = 2 ~ r = Ai 2 ^ ^ °°> 
m=1 k=l M£NFC L̂ FCL k = 1 ^k k=l 

whence, applying (8), we get 

k = 1 

On the other hand, 

OO OO
 00 1 

2 ^mK = 2 2 t-mK = 2 A k ~ 7 ~ = 
m=1 k=lm£N„ k=1 Ak 

Thus, the required sequences are constructed. 

Let 2 b i = y k a n d rnk=nk—nk-i- Note that mk is an odd number. Let us 
j=k 

construct the function / 0 in the following way: divide the segment [l/2fc, 1/2*1-1] 
into mk parts by means of points 

{ * № i + 1 , l/2fe = *<*> < *<*> < ... < < > < = 1/2*-1 

and let 

j {>' / i+Jk+i)+(-l) i( j ; t -Jt+i)} when x = x[k), i = 1, ..., mk + l, 
/ o ( x ) = |linear when jcetxf*, x«\], 

lo when x = 0. 



58 V. O. Asatiani and Z. A. Chanturia 

Since _yt->-0 when fc—thus f0 is continuous on [0,1]. Further, N(y, /0)=mk 

when y€(yk+i,yk), hence, using (7), we get 
M ( f ) j>t 

f O(N(y,f0))dy= 2 f Q(N(y,f0))dy= 2 bkQ(mk) = »(/> k = 1y lt + , * = 1 

oo 

= 2 bkQ(pk-nk-i) = 
k = 1 

Next we show that 

(10) 2 [2« ( n ) - Q (n +1) - Q (n -1)] v {n, /„) < 
n=i 

Consider two auxiliary functions 

fyk+1 when x6[l/2k, l/2k~r), k = 1, 2, ..., 
when x = 0, 

and f2—f0—f. Then, it is obvious that 

( 1 1 ) v(n,f0) 3 u(n,/i) + »(n,/2). 

In virtue of the monotonicity of the function f , for all n, 

(12) < n , f j = y 2 = 2 b-,. 
i = 2 

Let us estimate now the modulus of variation of the function f2. For a natural 
n we choose the number k such that 

fc-i k 

Hk-i = 2 n = 2™i = A V 
¡=1 i=1 

Then v(n,f2) — v(n — l,f2)=bk whence, according to (7), 

2 [Q(n)-Q(n-1)][v(n, f2)-o(n-1, M = 
(13) 

= 2 2 [Q(n)-Q(n-I)]bk = 2 [^(nk)-^(^'k-l)]bk = 
fc = l n=(/k_, + l k=1 

Using the relations (11), (12), and (13) we have 

2[2Q(k)-G(k+l)-Q(k-l)]o(k, f J ^ 2№(k)-Q(k+l)-Q(k-l)]v(k,f1) + 
Jt=i t = i 

+ J [G(/c) — Q(k— 1)][o(k, f2)-v(k-1, /2)] + [i2(n)-i3(« + l)]u(H :/2)== 

^ ^2[i2(l) + i2(«)-i3(n + l)] + 5 ^ Q(l)y2+B, 

whence the validity of relation (10) follows. Theorem 2 is proved. 
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The following theorem states the dependence between the degree of summability 
of the Banach indicatrix and the classes V0. 

Theorem 3. Let 0 be a continuous increasing convex function on [0, =»), 

4>(0) = 0, l i m - ^ - = 0 , and let u-0 u 

(14) fl(*) = 
r 1 

¿ l ^ { f ) d t w h e n ^ t 1 ' 0 0 ) ' 
0 when x€[0, 1). 

If f£W (a, b) and (1) is fulfilled, then /£ V0. 

For the proof of this theorem two lemmas are needed. 

Lemma 2 (see [11], p. I l l or [19], p. 160). Let 0saj,0sbn\, and let the 
k k 

relations 2ai — 2 be true for k=\,2,...,m. Then for convex functions <P 
¡=1 ¡=i 

the inequality 
m tit 

i=l i = 1 holds. 

Lemma 3. Let and let 0 be a convex increasing function on [0, 
and <f>(w)>0 for u> 0. Then 

(15) i *<«.>--. 

Proof . Since is convex, therefore <£(m)/w increases, and hence w/tf>_1(w) 

also increases, i.e., the sequence { }., , . 1 decreases. Starting from this, by [n^il/n) J 
virtue of Cauchy's theorem on numerical series, the convergence of the first series 
under (15) is equivalent to that of the series 

( 1 6 ) kam*=km-
From the convergence of series (16) it follows that there exists a natural number 
«o such that a2„<i>-1(l/2") for Since u/$(u)l, from the latter inequality 
we obtain 

a2„ ^ $-1(1/2") 
<P(a2„) ~ <P(<i>-\\l2n)) 2"$-1(l/2") when n n0, 

or 

2»<P(a2n)^a2n 0-1(1/2„y n>n 0. 
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From this relation and from the convergence of series (16) we obtain that 

¿ 2 "4>(a2n) and ¿<P(a„) 
n=l n=l 

converge. The lemma is proved. 

Proof of Theorem 3. Let us show first that Q satisfies the conditions of 
Theorem 1. In fact, we have 

1) lim = lim — f ^ . dt = .'lim — f ^ , N dt = ' X x-~ X Jx t ^ i f ) X— X J i ^ - ^ l / i ) 

= lim = 0, 
H I / * ) 

2) lim i2(x) -• lim f J**,. & lim f . lim — • ,„, . * „ = 

3) the function Q is convex upwards, since Q'(x)=—, },, , is a decreasing 
x# _ 1 ( l /x ) 

function. 
Since all the conditions of Theorem 1 are fulfilled, thus (2) is also satisfied. 

We will show that (2) implies the relation 

(17) l [ f l ( n ) - i 2 ( « - l ) ] [ » ( « , / ) - » ( « - ! , / ) ] < 
n=l 

To this end it is sufficient to prove that 

(18) l im[ f i (n ) - f l (n - l ) ]o (n , / ) = 0. 
n-*-oo 

By virtue of the convergence of series (2), for any e > 0 one can find an n such that 
for any m>n the relation 

m 
2 [2Q(k)—Q(k+i) — Q(k— l)]»(fc, f ) < e 

holds, whence, by virtue of the monotonicity of v(n,f ) and the fact that i2(m+l) — 
-i2(m)—0, m—<=°, we get 

m 
e>v(n,f) 2 [2Q(k)-Q(k + l)-Q(k-l)] = 

k=n 

= o (« , / ) [0 (n ) - i2 (» i - l ) + Q(m)- i2 (m+l ) ] S j » ( n , / ) [ i 2 ( n ) - Q ( n - l ) ] . 

Thus (18) is proved and it proves also (17). 
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But then, since 

o ( i , ) - f l ( « - i ) = JiW^m * 

we have 

and this, by virtue of Lemma 3, gives 

(19) j ? * 0 > ( n , / ) - o ( n - l , / ) ) < o o . 
n=l 

We may now show that / € V&. Let us take an arbitrary partition 77= 
= {a ̂  x0 < Xj < . . . < xm ̂  ¿}; without loss of generality it may be assumed that 

S | / (x k + 1)-/(x f c) | . 

For every « = 1,2, ...,m we have ' 

2 \f(xk)-f(xk-d\ s V(n, f ) = 2 (»(*, f)-v(k-1, /))• *=1 ft=1 

Therefore, if we take a* = |/(x*)~ / ( x ^ ) ) and bk = v(k, f)—v(k—l,f), and apply 
Lemma 2 and relation (19), we have 

m m 

2 <KI/(**)-/(**-i)l) ^ 2 * ( » ( / < , / ) ) ^ 
k=1 k=l 

Thus, as it was required, we proved that / € F®. 

C o r o l l a r y 3. [24] Let f£W(a,b), and for p> 1, 

M ( f ) 

f [N(y,f)Y»dy^~>. 
Mf) 

C o r o l l a r y 4. /€W(a , b), and for a > l , 
MC/) 

Then f£Vv, where 4>(x)=exp ( - x 1 / ( 1 - a ) ) in (0, <5), <5>0. 

We shall show that Theorem 3 cannot be converted. 



62 V. O. Asatiani and Z. A. Chanturia 

T h e o r e m 4. Let the function $ satisfy the conditions of Theorem 3, and let 
Q be defined by (14). Then there exists a function fo£V0 which does not satisfy 
relation (1). 

Proo f . In virtue of Theorem 2 there exists a function / 0 which satisfies rela-
tion (2) and does not satisfy relation (1). But the previous theorem shows that from 
(2) it follows /„€ V0. 

The results obtained will be applied to some problems of the theory of Fourier 
series. 

1. By the well-known Jordan theorem, if a 27r-periodic continuous function 
/ has bounded variation, then its Fourier series o ( f ) converges uniformly ([12]). 
This theorem was generalized by WIENER [22] for the class C f l V2, by MARCINKIEWICZ 
[15] (p. 4 0 ) for the class C f l K p , by L . YOUNG [23] for the class CDV0, where 
$(w)=exp (—u~"), 0 < a < l / 2 . SALEM [18] obtained the most general condition 
on 4>, providing the uniform convergence of Fourier series of the class C D V 0 , 
whiclTreads as follows: Let $ be a convex increasing function, and let f be 
a function, complementary in the sense of Young*) to the function <P\ if f£CC\V0 

and 

(20) 
then a ( f ) converges uniformly. 

K. I. OSKOLKOV [17] proved that (20) is equivalent to the condition 

f In . du<°°. J 4(u) 

A . M. GARSIA and S. SAWYER [9] proved that if /<EC(0,27r) and 

A Hi) 
( 2 1 ) / \nN{y,f)dy^~, 

then a ( / ) converges uniformly. 
From Corollary 1 it follows that if (21) is satisfied then 

( 2 2 ) K I ^ O ^ - ' 

But if /€C(0,2n) and (22) holds true, then as it was proved in [6], the Fourier 
series of the function / converges uniformly, i.e., the theorem of Garsia—Sawyer 
is the result of Corollary 2 from [6]. 

») ¥/(«)=max {uv- <P(v)}. 
DSO 
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2 . V . O . ASATIANI [1] obtained the analogue of condition ( 2 2 ) for (C, —a)-

summability ( 0 < a < l ) of Fourier series. He proved that if /£C(0, 27r)fl F[u], 
and for 0<oc< 1, 

- v{k) 
k = 1 K 

then a i f ) is uniformly (C, — a)-summable to / . From this result and Corollary 2 
we have 

T h e o r e m 5. Let f£C( 0,2n) and assume that for 0 < a < l , 

M(f) 
f N'(y,f)dy^«>. 

m(/) 

77ie/i <r(/) /'.v uniformly (C, — x)-summable to f 

3. Wiener's criterion on the continuity of functions of bounded variation is 
well known: Let 

(23) m i n { f ( x - 0 ) , fix + 0)} ^ fix) ^ max{ / (x -0) , / ( x + 0)} 

for any x, and let ak and bk be the Fourier coefficients of the function / , 
Qk=Vak+bk. If f£V[0,2K] then for / to be continuous, each of the following 
conditions is necessary and sufficient: 

(24) ¿ * 2 e i = o(n), 
k= 1 

(25) ikgk = o{n). 
k=l 

S . M . LOZINSKI [14] showed that instead of conditions ( 2 4 ) or ( 2 5 ) one may take 

(26) 2 8k = o(ln "). 

( 2 7 ) 

B . I. GOLUBOV [10] applied these results to the classes Vp when 1 < / > < 2 , and 
showed that for the classes Vp with p^2 a similar theorem does not hold. Z. A. 
CHANTURIA [7] (see also [8]) proved a theorem containing all of the previous results: 
If / satisfies condition (23), and its modulus of variation satisfies the condition 

(28) 2 "a— • 
n = l n 
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then for the function / to be continuous, each of conditions (24)—(27) is necessary 
and sufficient. 

From the theorems ofWiener and Banach—Lozinski it follows thatif f€W(0,27i) 
satisfies condition (23) and its Banach indicatrix is summable then each of conditions 
(24)—(27) is necessary and sufficient for the continuity of the function / . We shall 
now prove a theorem which is much stronger and is in certain sense best possible. 

T h e o r e m 6 . If f£W(0,2n) satisfies condition (23) and its Banach indicatrix 
satisfies the condition 

М(Л 
(29) / N^(y,f)dy^~>, 

m(/) 

then each of conditions (24)—(27) is necessary and sufficient for the continuity of f . 

Proof . It suffices to prove that (29) implies (28). By virtue of Corollary 2, 
(29) yields 

(30) 2 —372-<oc-/» = 1 n 

Since the general term of the last series decreases monotonically, we have 

n^ Ы ' 
or и(и,/)^си1 , : . Therefore 

I> ~ с ~ 
„ 3 / 2 

The latter inequality and the convergence of series (30) imply the convergence 
of (28), which was to be proved. 

We shall now show that Theorem 6 is, in a certain sense, best possible, namely, if 
we take an integral class wider than (29) then Theorem 6 does not hold; more exactly, 
the following statement is true. 

The orem 7. Let Q be a convex upwards increasing function. If 

(31) M ^ = o, u~ oo yu 

then there exists a function /o£C(0,2n) for which 

M(f) 

m(/) 
but (24) and (27) do not hold. 
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Proof . By virtue of (31) we may choose an increasing sequence of even natural 
numbers 1 such that n k + 1 /n k Sq> 1 and 

(32) 2 < 
*=i 

CO J 
Let c* = 2 77=; then 

c j (»»-»t- i ) = f Z - - A - ] 2 ( n n - n * - i ) ^ - ¿ - (n*-« t - i ) = 1 - - V 1 1 = 1 > \i=k yrii ) nk nk q 
i.e., 

(33) ' 2 4 ( r i k - r i k - 1 ) = ~ -

Take now n 0=0 and choose the sequence {£„}"=1 with Bn — ck, when 
n / t - j l ^ n ^ n j l . It is clear that Bn\0, and in virtue of (33), 

(34) 2Bl ="• 
n=l 

Following the scheme of [8] we construct the function / 0 as follows: 

Bk when x^I2k+1, fc = l , 2, ..., 

/ « w = o when 2TTJ U [O, YJ, 

linear for all other x from [0, 27r], 

where Ik is a specially chosen sequence of segments such that Ik lies to the right 
of 

The fact that if (34) is fulfilled then /„ does not satisfy conditions (24) and 
(27), but 

M(f) 
f Q(N(y,f0))dy <», 

m(/) 

is proved in [8]. In fact, using (32) we have 

M(/) „ ck 
f Q(N(y,f0))dy= 2 f Q{N(y,f0))dy=. 

m (/) k = 1 ck + 

Theorem 7 is proved. 
It should be noted, finally, that some of the results of the present paper were 

published without proof in [2]. 
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