Quasisimilarity and properties of the commutant of C_{11} contractions

HARI BERCOVICI and LÁSZLÓ KÉRCHY
Dedicated to Professor Béla Szökefalvi-Nagy on his 70th birthday

An operator T acting on the complex Hilbert space \mathfrak{G} is said to have property (Q) if $T \mid \operatorname{ker} X$ and $\left(T^{*} \mid \operatorname{ker} X^{*}\right)^{*}$ are quasisimilar for every X in the commutant $\{T\}^{\prime}$ of T. This property was introduced by Uchryama [11] in connection with a conjecture of Sz.-Nagy and Foias [8].

We say that T has property (P) if $\operatorname{ker} X^{*}=\{0\}$ for every operator X in $\{T\}$ such that $\operatorname{ker} X=\{0\}$.

In this note we prove that a weak C_{11} contraction has property (Q) whenever it has property (P). None of the assumptions of this result can be omitted. Indeed; there are weak C_{11} contractions (even unitary operators) that do not have property (P) and we will show that there are C_{11} contractions having property (P) but not property (Q). Since (P) is a quasisimilarity invariant in C_{11} (cf. [4]) and, as we shall see, for unitary operators (P) and (Q) are equivalent, we obtain in particular that the property of being a weak contraction and property (Q) are not quasisimilarity invariants in C_{11}.

These examples show that the results of [2] concerning weak C_{0} contractions and [1] concerning C_{0} contractions with property (Q) cannot be extended to the class of C_{11} contractions.

It is easy to see that our Theorem 2.7 extends (via [4]) the result of Wu [12] concerning completely nonunitary C_{11} contractions with finite defect indices.

We note that every C_{11} contraction with property (P) is the direct sum of a singular unitary operator and an operator on a separable space. (Cf. [4, Corollary 5].)

[^0]
1. The residual part of a contraction

Let T be a contraction acting on the Hilbert space \mathfrak{H} and let U_{+}acting on Ω_{+}be the minimal isometric dilation of T, that is U_{+}is an isometry, $T^{*}=U_{+}^{*} \mid \mathfrak{G}$ and $\Omega_{+}=\bigvee_{n \geqq 0} U_{+}^{n} \mathfrak{H}$. Let $\Omega_{+}=\mathfrak{M} \oplus \mathfrak{R}$ be the Wold decomposition of Ω_{+}with respect to U_{+}, with $\Re=\bigcap_{u \geqq 0} U_{+}^{n} \Omega_{+}$.

Definition 1.1. The unitary operator $R_{T}=U_{+} \mid \Re$ is called the residual part of T. (Cf. [9, ch. II. 2].)

It is obvious that $R_{V \oplus T}=V \oplus R_{r}$ whenever V is a unitary operator.
Sz.-Nagy and Foiaş proved the following (cf. [10, Theorem 1.3]):
Proposition 1.2. If the contractions T and T^{\prime} are similar, then R_{T} and $R_{T^{\prime}}$ are unitary equivalent.

Let us recall that a contraction T acting on \mathfrak{S} is said to be of class C_{11} if $\lim _{n \rightarrow \infty}\left\|T^{n} h\right\|=0$ or $\lim _{n \rightarrow \infty}\left\|T^{*^{n}} h\right\|=0$ implies $h=0$. The following result is proved in [9, Proposition II. 3.5].

Proposition 1.3. Any C_{11} contraction T is quasisimilar to R_{T}.
It follows by [9, Proposition II. 3.4] that in the class $C_{11} R_{T}$ is a quasisimilarity invariant and even a quasiaffine invariant. Therefore R_{T} is the unique unitary operator (up to unitary equivalence), quasisimilar to the operator T of class C_{11}.

We do not know whether R_{T} is in general a quasisimilarity invariant. It is easy to see that R_{T} is not a quasiaffine invariant; indeed, if S denotes the unilateral shift on H^{2}, we have $S<S^{*}[7]$ and $R_{S} \neq R_{S^{*}}$.

The following result follows from [9, Chapter VII, §1].
Lemma 1.4. If T is a completely nonunitary contraction on \mathfrak{G} and \mathfrak{Y}^{\prime} is an invariant subspace for T, then $R_{T} \cong R_{T^{\prime}} \oplus R_{T^{\prime}} ;$ where $T^{\prime}=T \mid \mathfrak{S}^{\prime}$ and $T^{\prime \prime}=\left(T^{*} \mid \mathfrak{G} \ominus \mathfrak{S}^{\prime}\right)^{*}$.

The following two results will help us extend this lemma to arbitrary contractions. The first of them is proved in [5, Lemma 2], while the proof of the second one is essentially the same as that in [5; Lemma 1].

Lemma 1.5. Any absolutely continuous unitary operator is similar to a completely nonunitary contraction.

Lemma 1.6. Let U be a singular unitary operator and let T be a completely nonunitary contraction. Every invariant subspace $\mathfrak{P l}$ of $U \oplus T$ has the form $\mathfrak{N} \oplus \mathfrak{P}$, where \mathfrak{N} is invariant for U and \mathfrak{P} is invariant for T.

Theorem 1.7. Let T be any contraction acting on $\mathfrak{H}, \mathfrak{S}^{\prime}$ an invariant subspace for T. Then we have $R_{T} \cong R_{T^{\prime}} \oplus R_{T^{\prime \prime}}$, where $T^{\prime}=T \mid \mathfrak{H}^{\prime}$ and $T^{\prime \prime}=\left(T^{*} \mid \mathfrak{H} \ominus \mathfrak{S}^{\prime}\right)^{*}$.

Proof. Let T_{1} be another contraction acting on \mathfrak{G}_{1}, and $X: \mathfrak{S} \rightarrow \mathfrak{H}_{1}$ an invertible operator such that $T_{1} X=X T$; set $\mathfrak{G}_{1}^{\prime}=X \mathfrak{G}^{\prime}$. Then T^{\prime} and $T^{\prime \prime}$ are similar to $T_{1}^{\prime}=T_{1} \mid \mathfrak{G}_{1}^{\prime}$ and $T_{1}^{\prime \prime}=\left(T_{1}^{*} \mid \mathfrak{S}_{1} \ominus \mathfrak{G}_{1}^{\prime}\right)^{*}$, respectively. This shows by Proposition 1.2 that in proving the theorem we may replace T by a similar operator. It follows then from Lemma 1.5 that we may assume $T=U \oplus T_{1}$, where U is a singular unitary operator and T_{1} is completely nonunitary. (Cf. also [9; Theorem 1. 3.2].) Now Lemma 1.6 shows that we can further reduce the proof to the cases where T is a singular unitary or completely nonunitary. If T is completely nonunitary the proposition follows by Lemma 1.4. In turn, if T is a singular unitary operator, then every invariant subspace of T reduces T (cf. [6, Proposition 1.11]) and so the statement becomes obvious. The proof is complete.

2. C_{11} contractions with property (P)

The following result was proved in [4].
Proposition 2.1. A contraction T of class C_{11} has property (P) if and only if R_{T} has property (P).

Now, unitary operators having property (P) are easily characterized in terms of properties of their commutant.

Lemma 2.2. A unitary operator T has property (P) if and only if the commutant $\{T\}^{\prime}$ is a finite von Neumann algebra.

Proof. Assume first that $\{T\}^{\dot{\prime}}$ is not finite. Then there exists a nonunitary isometry U in $\{T\}^{\prime}$; in particular U is one-to-one but ker $U^{*} \neq\{0\}$ so that T does not have property (P).

Conversely, if T does not have property (P), there exists X in $\{T\}^{\prime}$ such that $\operatorname{ker} X=\{0\}$ and $\operatorname{ker} X^{*} \neq\{0\}$. If $X=U P$ is the polar decomposition of X, we have $U \in\{T\}^{\prime}$ (cf. the proof of [9, Proposition II. 3.4]), ker $U=\operatorname{ker} X=\{0\}$ and $\operatorname{ker} U^{*}=\operatorname{ker} X^{*} \neq\{0\}$ so that $\{T\}^{\prime}$ is not finite. The lemma is proved.

It follows from the results of [3] that unitary operators having property (P) also have the following "cancellation" property: if $T \oplus U$ is unitarily equivalent to $T \oplus V$ for some unitary operators T, U and V, and $T \oplus U$ has property (P), then U and V are unitarily equivalent.

Proposition 2.3. Let T be a C_{11} contraction having property (P). For every X in $\{T\}^{\prime}$ the operators $R_{T \mid \mathbf{k e r} X}$ and $R_{(T * \mid \mathbf{k e r} X *) *}$ are unitarily equivalent.

Proof. By Theorem 1.7 we have $R_{T} \cong R_{T \mid k e r X} \oplus R_{(T * \mid(\text { ker } X) \perp)^{*}} \cong R_{T \mid(\operatorname{ran} X)^{-}-\oplus}$ $\oplus R_{\left(T * \mid k e r X^{*}\right)^{*}}$. The operators $\left(T^{*} \mid(\operatorname{ker} X)^{\perp}\right)^{*}$ and $T \mid(\operatorname{ran} X)^{-}$are of class C_{11} (cf. [5, Lemma 5]) and they are quasisimilar (cf., e.g., [12, Corollary 3.4]), so that $R_{\left(T^{*} \mid(\operatorname{ker} X) \perp\right)^{*}}$ and $R_{T \mid(\operatorname{ran} X)^{-}}$are unitarily equivalent. The proposition now follows from the cancellation property described above:

An obvious consequence of Proposition 2.3 is the following.
Corollary 2.4. Let the C_{11} contraction T be such that $T \mid \operatorname{ker} X$ and $T^{*} \mid \operatorname{ker} X^{*}$ are of class C_{11} for every X in $\{T\}^{\prime}$. Then T has property (Q) if and only if it has property (P).

The hypothesis of the preceding Corollary can be weakened; to do this we need some definitions from [5]. For a C_{11} contraction lat ${ }_{1} T$ denotes the set of those invariant subspaces \mathfrak{M} for T such that $T \mid \mathfrak{M}$ is of class C_{11}. For every invariant subspace \mathfrak{M} for T there exists a largest subspace in lat ${ }_{1} T$ contained in \mathfrak{M}, this subspace (the C_{11}-part of \mathfrak{M}) is denoted by $\mathfrak{M}^{(1)}$. For a subspace \mathfrak{M} in lat T^{*} we set $\mathfrak{M}^{\perp_{1}}=\left(\mathfrak{M}^{\perp}\right)^{(1)}$.

Let us say that the C_{11} contraction T has property (R) if $\operatorname{ker} X \in \operatorname{lat}_{1} T$ for every X in $\{T\}$.

Proposition 2.5. Let T be a C_{11} contraction having property (P). Then T has property (R) if and only if T^{*} has property (R).

Proof. By [5, Lemma 5] a subspace \mathfrak{M} is in lat T^{*} if and only if it has the form (ker $X)^{\perp}$ for some X in $\{T\}^{\prime}$. It follows that T has property (R) if and only if $\mathfrak{M}^{\perp} \in \operatorname{lat}_{1} T$ for every \mathfrak{M} in lat $T_{1} T^{*}$.

Let us assume that T has property (R) and $\mathfrak{M} \in$ lat $_{1} T$; it follows from [5, Proposition 2] that $\left(\mathfrak{M}^{\perp_{1}}\right)^{\perp_{1}}=\mathfrak{M}$. Now, $\mathfrak{M}^{\perp_{1}} \in \operatorname{lat}_{1} T^{*}$ and T has property (R) so that $\left(\mathfrak{M}^{\perp_{1}}\right)^{\perp} \in \operatorname{lat}_{1} T$. Consequently $\left(\mathfrak{M}^{\perp_{1}}\right)^{\perp}=\left(\mathfrak{M}^{\perp_{1}}\right)^{\perp_{1}}=\mathfrak{M}$ and therefore $\mathfrak{M}^{\perp_{1}}=\mathfrak{M}^{\perp}$; that is $\mathfrak{M}^{\perp} \in \operatorname{lat}_{1} T^{*}$. We proved that T^{*} has property (R).

By [4, Corollary 4] T has property (P) if and only if T^{*} has property (P). Thus the proof is completed by the same argument applied to T^{*} instead of T.

Now we can reformulate Corollary 2.4 as follows.
Theorem 2.6. Let T be a C_{11} contraction having property (P). Then T has property (Q) if and only if $T \mid \operatorname{ker} X$ is of class C_{11} for every X in $\{T\}$.

Proof. The sufficiency obviously follows from Corollary 2.4 and Proposition 2.5. Conversely, if T has property (Q) and $X \in\{T\}^{\prime}$, then $T \mid \operatorname{ker} X$ is of class C_{1}. and $\left(T^{*} \mid \operatorname{ker} X^{*}\right)^{*}$ is of class $C_{.1}$; it follows that both operators are of class C_{11} since they are quasisimilar. The theorem is proved.

Let us recall that a contraction T is said to be weak if $I-T^{*} T$ is a trace class operator and $\lambda I-T$ is invertible for some λ with $|\lambda|<1$.

Theorem 2.7. A weak C_{11} contraction has property (P) if and only if it has property (Q).

Proof. It is enough to prove that a weak C_{11} contraction T having property (P) also has property (Q). By virtue of Theorem 2.6 it suffices to show that, if T is a weak C_{11} contraction then $T \mid \operatorname{ker} X$ is of class C_{11} for every X in $\{T\}^{\prime}$.

It is clear that $I-(T \mid \operatorname{ker} X)^{*}(T \mid \operatorname{ker} X)=P_{\text {ker } X}\left(I-T^{*} T\right) \mid \operatorname{ker} X$ is a trace class operator. By [9, Theorem VIII. 2.1] T is invertible. Since X commutes with T^{-1}, we have that $T^{-1}(\operatorname{ker} X) \subset \operatorname{ker} X$, and so $T \mid \operatorname{ker} X$ is also invertible. Therefore $T \mid \operatorname{ker} X$ is a weak contraction of class $C_{1 .}$, and so by [9, Theorem VIII. 2.1] it is of class C_{11}. The theorem follows.

Corollary 2.8. A unitary operator has property (P) if and only if it has property (Q).

3. Examples

It is known [9, Ch. VI. 4.2] that there exist C_{11} contractions whose spectrum coincides with the closed unit disk. The following result shows that there are C_{11} contractions having property (P) whose spectrum covers the unit disk.

Proposition 3.1. Let U be an absolutely continuous unitary operator. There exists a C_{11} contraction T such that $\sigma(T)=\{\lambda:|\lambda| \leqq 1\}$ and R_{T} is unitarily equivalent to U.

Proof. It suffices to prove the proposition in the case U is the operator of multiplication by $e^{i t}$ on $L^{2}(\sigma)$, where $\sigma \subset[0,2 \pi]$ has positive Lebesgue measure. Choose pairwise disjoint subsets σ_{n} of σ of positive measure such that $\bigcup_{n \geqq 0} \sigma_{n}=\sigma$ and choose a sequence $\left\{\varepsilon_{n}\right\}_{n \geqq 0}$ of positive numbers less than 1 . For each n there exists an outer function ϑ_{n} (uniquely determined up to a constant factor of modulus one) such that $\left|\vartheta_{n}\left(e^{i t}\right)\right|=1$ if $t \ddagger \sigma_{n}$ and $\left|\vartheta_{n}\left(e^{i t}\right)\right|=\varepsilon_{n}$ if $t \in \sigma_{n}$. It is clear by [4, Corollary 1] that the functional model T corresponding with the characteristic function $\theta(\lambda)=\operatorname{diag}\left(\vartheta_{0}(\lambda), \vartheta_{1}(\lambda), \ldots\right)$ satisfies the condition $R_{T} \cong U$.

If the numbers ε_{n} satisfy the relation $\lim _{n \rightarrow \infty}\left|\sigma_{n}\right| \log \varepsilon_{n}=-\infty$ (where $\left|\sigma_{n}\right|$ denotes the Lebesgue measure of σ_{n}) we have $\lim _{n \rightarrow \infty} \vartheta_{n}(\lambda)=0$ for every $\lambda,|\lambda|<1$, and by [9, Theorem VI. 4.1] this implies that $\sigma(T) \supset\{\lambda:|\lambda|<1\}$. The proposition follows.

It is obvious that the operator T constructed in the preceding proof is not a weak contraction; in particular, a C_{11} contraction with a cyclic vector is not
necessarily a weak contraction. Let us also note that if T is of class C_{11} then T and T^{*} cannot have eigenvalues of absolute value less than 1 . Thus, if T is a C_{11} contraction and $\lambda \in \sigma(T),|\lambda|<1$, then $\lambda I-T$ is one-to-one and has nonclosed, dense range.

In the sequel we will identify a vector f of the Hilbert space 5 with the operator $\mathbf{C} \rightarrow \mathfrak{F}$ defined by $\mathbf{C} \ni \lambda_{\mapsto} \rightarrow \lambda f \in \mathfrak{F}$; the adjoint f^{*} is then defined by $f^{*}(g)=(g, f)$ for $g \in \mathfrak{G}$.

Lemma 3.2. Let S be an injective contraction acting on $\mathfrak{5}$ such that $S \mathfrak{F} \neq \mathfrak{5}$. There exists a vector $f \in \mathfrak{G}$ such that the operator $(S, f): \mathfrak{S} \oplus \mathbf{C} \rightarrow \mathfrak{G}$ defined by $(S, f)(h \oplus \lambda)=S h+\lambda f$ is an injective contraction.

Proof. It is clear that (S, f) is injective if and only if $f \nsubseteq S \mathfrak{S}$. Let us set $f=u-S S^{*} u$, where $u \notin S \mathfrak{G}$ and $\|u\|^{2} \leqq 1 / 2$. Then clearly $f \notin S \mathfrak{G}$ and

$$
\begin{equation*}
\|u\|^{2}+\|f\|^{2} \leqq\|u\|^{2}+\|u\|^{2} \leqq 1 \tag{3.1}
\end{equation*}
$$

We only have to prove that (S, f) is a contraction. Indeed, let $h \oplus \lambda \in \mathfrak{G} \oplus \mathbf{C}$; we have (using the notation $D=\left(I-S^{*} S\right)^{1 / 2}$)

$$
\begin{gathered}
\|S h+\lambda f\|^{2} \leqq\|S h\|^{2}+2|\lambda||(S h, f)|+|\lambda|^{2}\|f\|^{2}= \\
=\|S h\|^{2}+2|\lambda|\left|\left(\left(I-S S^{*}\right) S h, u\right)\right|+|\lambda|^{2}\|f\|^{2}=\|S h\|^{2}+2|\lambda||(S D D h, u)|+|\lambda|^{2}\|f\|^{2} \leqq \\
\leqq\|S h\|^{2}+2|\lambda|\|u\|\|D h\|+|\lambda|^{2}\|f\|^{2} .
\end{gathered}
$$

Using the inequality $2 a b \leqq a^{2}+b^{2}$ in the middle term we get

$$
\begin{gathered}
\|S h+\lambda f\|^{2} \leqq\|S h\|^{2}+\|D h\|^{2}+|\lambda|^{2}\|u\|^{2}+|\lambda|^{2}\|f\|^{2}= \\
=\|h\|^{2}+|\lambda|^{2}\left(\|u\|^{2}+\|f\|^{2}\right) \leqq\|h\|^{2}+|\lambda|^{2}
\end{gathered}
$$

by (3.1). The lemma follows.
Theorem 3.3. There exist C_{11} contractions having property (P) but not property (Q).

Proof. Let T^{\prime} and $T^{\prime \prime}$ be two noninvertible C_{11} contractions acting on \mathfrak{H}^{\prime} and $\mathfrak{G}^{\prime \prime}$, respectively. By Lemma 3.2 we can choose vectors $f \in \mathfrak{H}^{\prime}$ and $g \in \mathfrak{G}^{\prime \prime}$ such that $\left(T^{\prime}, f\right)$ and $\left(T^{\prime *}, g\right)$ are injective contractions. It is then easy to see that the operator T defined on $\mathfrak{G}^{\prime} \oplus \mathbf{C} \oplus \mathfrak{G}^{\prime \prime}$ by the matrix

$$
\left[\begin{array}{lll}
T^{\prime} & f & 0 \\
0 & 0 & g^{*} \\
0 & 0 & T^{\prime \prime}
\end{array}\right]
$$

is a C_{11} contraction. Let us note that the invariant subspace $\mathfrak{G}^{\prime} \oplus \mathbf{C}$ for T is not in lat ${ }_{1} T$, while its orthocomplement $\mathfrak{G}^{\prime \prime}$ obviously belongs to lat T^{*}; by the proof of Proposition 2.5 and by Theorem 2.6 we infer that T does not have property (Q).

By Theorem 1.7 we have $R_{T} \cong R_{T^{\prime}} \oplus R_{0} \oplus R_{T^{\prime \prime}} \cong R_{T^{\prime}} \oplus R_{T^{\prime \prime}}$, so that T has property (P) whenever T^{\prime} and $T^{\prime \prime}$ have property (P) (cf. Proposition 2.1 and [4, Lemma 5]). The theorem follows by Proposition 3.1.

Remark 3.4. Proposition 3.1 shows in fact that the operator \boldsymbol{T} in the preceding proof can be chosen so that R_{T} is unitarily equivalent to a given absolutely continuous unitary operator with property (P). In particular R_{T} could be chosen so that all its invariant subspaces are reducing (a reductive operator). This shows that the property " $\mathrm{lat}_{1} T=$ lat T ", generalizing reductivity, is' not a quasisimilarity invariant in the class of C_{11} contractions or even in the class of C_{11} contractions having property (P).

Remark 3.5. Let us choose $T^{\prime}=T^{\prime \prime}$ in the proof of Theorem 3.3; in this case we can produce an operator X in $\{T\}^{\prime}$ for which $T \mid \operatorname{ker} X$ and $\left(T^{*} \mid \operatorname{ker} X^{*}\right)^{*}$ are not quasisimilar. Such an operator is defined by the matrix

$$
\left[\begin{array}{lll}
0 & 0 & I \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

where I denotes the identity operator on $\mathfrak{G}^{\prime}=\mathfrak{G}^{\prime \prime}$.
Remark 3.6. Finally we note that we have got by Theorems 3.3, 2.6 and by the proof of Proposition 2.5 that the C_{11}-orthogonal complement $\mathcal{L}^{\perp_{1}}$ of a subspace $\mathscr{E} \in \operatorname{lat}_{1} T$, where T is a C_{11} contraction with property (P), does not generally coincide with the orthogonal complement \mathfrak{L}^{\perp} of \mathfrak{L}.

References

[1] H. Bercovici, C_{0}-Fredholm operators. II, Acta Sci. Math., 42 (1980), 3-42.
[2] H. Bercovici and D. Voiculescu, Tensor operations on characteristic functions of C_{0} contractions, Acta Sci. Math., 39 (1977), 205-231.
[3] R. V. Kadison and I. M. Singer, Three test problems in operator theory, Pacific J. Math., 7 (1957), 1101-1106.
[4] L. Kérchy, On the commutant of C_{11} contractions, Acta Sci. Math., 43 (1981), 15-26.
[5] L. Kérchy, On invariant subspace lattices of C_{11} contractions, Acta Sci. Math., 43 (1981), 281-293.
[6] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag (New York, 1973).
[7] B. Sz.-Nagy and C. Foiaş, Vecteurs cycliques et quasiaffinités, Studia Math., 31 (1968), 35-42.
[8] B. Sz.-Nagy and C. Foiaş, On injections, intertwining operators of class Co, Acta Sci. Math., 40 (1978), 163-167.
[9] B. Sz.-Nagy and C. FoIas, Harmonic Analysis of Operators on Hilbert Space, North Hol-land-Akadémiai Kiadó (Amsterdam-Budapest, 1970).
[10] B. Sz.-NaGy and C. Foias, On the structure of intertwining operators, Acta Sci. Math., 35 (1973), 225-254.
[11] M. Uchiyama, Quasisimilarity of restricted C_{0} contractions, Acta Sci. Math., 41 (1979), 429-433.
[12] P. Y. Wu, On a conjecture of Sz.-Nagy and Foiaş, Acta Sci. Math., 42 (1980), 331—338.

(H. B.)

THE UNIVERSITY OF MICHIGAN
DEPARTMENT OF MATHEMATICS
3220 ANGELL HALL
ANN ARBOR, MICHIGAN 48109, U.S.A.
(L. K.)

BOLYAI INSTITUTE
UNIVERSITY SZEGED
ARADI VERTANÚK TERE 1
6720 SZEGED, HUNGARY

[^0]: Received December 7, 1981.

