Quasisimilarity and properties of the commutant of C_{11} contractions

HARI BERCOVICI and LÁSZLÓ KÉRCHY

Dedicated to Professor Béla Szőkefalvi-Nagy on his 70th birthday

An operator T acting on the complex Hilbert space \mathfrak{H} is said to have property (Q) if $T|\ker X$ and $(T^*|\ker X^*)^*$ are quasisimilar for every X in the commutant $\{T\}'$ of T. This property was introduced by UCHIYAMA [11] in connection with a conjecture of Sz.-NAGY and FOIAS [8].

We say that T has property (P) if $\ker X^* = \{0\}$ for every operator X in $\{T\}'$ such that $\ker X = \{0\}$.

In this note we prove that a weak C_{11} contraction has property (Q) whenever it has property (P). None of the assumptions of this result can be omitted. Indeed, there are weak C_{11} contractions (even unitary operators) that do not have property (P) and we will show that there are C_{11} contractions having property (P) but not property (Q). Since (P) is a quasisimilarity invariant in C_{11} (cf. [4]) and, as we shall see, for unitary operators (P) and (Q) are equivalent, we obtain in particular that the property of being a weak contraction and property (Q) are not quasisimilarity invariants in C_{11} .

These examples show that the results of [2] concerning weak C_0 contractions and [1] concerning C_0 contractions with property (Q) cannot be extended to the class of C_{11} contractions.

It is easy to see that our Theorem 2.7 extends (via [4]) the result of Wu [12] concerning completely nonunitary C_{11} contractions with finite defect indices.

We note that every C_{11} contraction with property (P) is the direct sum of a singular unitary operator and an operator on a separable space. (Cf. [4, Corollary 5].)

1. The residual part of a contraction

Let T be a contraction acting on the Hilbert space $\mathfrak H$ and let U_+ acting on $\mathfrak R_+$ be the minimal isometric dilation of T, that is U_+ is an isometry, $T^*=U_+^*|\mathfrak H$ and $\mathfrak R_+=\bigvee_{n\geq 0}U_+^n\mathfrak H$. Let $\mathfrak R_+=\mathfrak M\oplus\mathfrak H$ be the Wold decomposition of $\mathfrak R_+$ with respect to U_+ , with $\mathfrak R=\bigcap_{n\geq 0}U_+^n\mathfrak R_+$.

Definition 1.1. The unitary operator $R_T = U_+ | \Re$ is called the *residual part* of T. (Cf. [9, ch. II. 2].)

It is obvious that $R_{V \oplus T} = V \oplus R_T$ whenever V is a unitary operator.

Sz.-Nagy and Foiaş proved the following (cf. [10, Theorem 1.3]):

Proposition 1.2. If the contractions T and T' are similar, then R_T and $R_{T'}$ are unitary equivalent.

Let us recall that a contraction T acting on \mathfrak{H} is said to be of class C_{11} if $\lim_{n\to\infty} ||T^n h|| = 0$ or $\lim_{n\to\infty} ||T^{*^n} h|| = 0$ implies h = 0. The following result is proved in [9, Proposition II. 3.5].

Proposition 1.3. Any C_{11} contraction T is quasisimilar to R_T .

It follows by [9, Proposition II. 3.4] that in the class C_{11} R_T is a quasisimilarity invariant and even a quasiaffine invariant. Therefore R_T is the unique unitary operator (up to unitary equivalence), quasisimilar to the operator T of class C_{11} .

We do not know whether R_T is in general a quasisimilarity invariant. It is easy to see that R_T is not a quasiaffine invariant; indeed, if S denotes the unilateral shift on H^2 , we have $S \prec S^*$ [7] and $R_S \not\cong R_{S^*}$.

The following result follows from [9, Chapter VII, §1].

Lemma 1.4. If T is a completely nonunitary contraction on \mathfrak{H} and \mathfrak{H}' is an invariant subspace for T, then $R_T \cong R_{T'} \oplus R_{T''}$, where $T' = T | \mathfrak{H}'$ and $T'' = (T^* | \mathfrak{H} \ominus \mathfrak{H}')^*$.

The following two results will help us extend this lemma to arbitrary contractions. The first of them is proved in [5, Lemma 2], while the proof of the second one is essentially the same as that in [5, Lemma 1].

Lemma 1.5. Any absolutely continuous unitary operator is similar to a completely nonunitary contraction.

Lemma 1.6. Let U be a singular unitary operator and let T be a completely nonunitary contraction. Every invariant subspace \mathfrak{M} of $U \oplus T$ has the form $\mathfrak{N} \oplus \mathfrak{P}$, where \mathfrak{N} is invariant for U and \mathfrak{P} is invariant for T.

Theorem 1.7. Let T be any contraction acting on $\mathfrak{H}, \mathfrak{H}'$ an invariant subspace for T. Then we have $R_T \cong R_{T'} \oplus R_{T''}$, where $T' = T | \mathfrak{H}'$ and $T'' = (T^* | \mathfrak{H} \ominus \mathfrak{H}')^*$.

Proof. Let T_1 be another contraction acting on \mathfrak{H}_1 , and $X:\mathfrak{H}\to\mathfrak{H}_1$ an invertible operator such that $T_1X=XT$; set $\mathfrak{H}_1'=X\mathfrak{H}'$. Then T' and T'' are similar to $T_1'=T_1|\mathfrak{H}_1'$ and $T_1''=(T_1^*|\mathfrak{H}_1\ominus\mathfrak{H}_1)^*$, respectively. This shows by Proposition 1.2 that in proving the theorem we may replace T by a similar operator. It follows then from Lemma 1.5 that we may assume $T=U\oplus T_1$, where U is a singular unitary operator and T_1 is completely nonunitary. (Cf. also [9, Theorem I. 3.2].) Now Lemma 1.6 shows that we can further reduce the proof to the cases where T is a singular unitary or completely nonunitary. If T is completely nonunitary the proposition follows by Lemma 1.4. In turn, if T is a singular unitary operator, then every invariant subspace of T reduces T (cf. [6, Proposition 1.11]) and so the statement becomes obvious. The proof is complete.

2. C_{11} contractions with property (P)

The following result was proved in [4].

Proposition 2.1. A contraction T of class C_{11} has property (P) if and only if R_T has property (P).

Now, unitary operators having property (P) are easily characterized in terms of properties of their commutant.

Lemma 2.2. A unitary operator T has property (P) if and only if the commutant $\{T\}'$ is a finite von Neumann algebra.

Proof. Assume first that $\{T\}'$ is not finite. Then there exists a nonunitary isometry U in $\{T\}'$; in particular U is one-to-one but $\ker U^* \neq \{0\}$ so that T does not have property (P).

Conversely, if T does not have property (P), there exists X in $\{T\}'$ such that $\ker X = \{0\}$ and $\ker X^* \neq \{0\}$. If X = UP is the polar decomposition of X, we have $U \in \{T\}'$ (cf. the proof of [9, Proposition II. 3.4]), $\ker U = \ker X = \{0\}$ and $\ker U^* = \ker X^* \neq \{0\}$ so that $\{T\}'$ is not finite. The lemma is proved.

It follows from the results of [3] that unitary operators having property (P) also have the following "cancellation" property: if $T \oplus U$ is unitarily equivalent to $T \oplus V$ for some unitary operators T, U and V, and $T \oplus U$ has property (P), then U and V are unitarily equivalent.

Proposition 2.3. Let T be a C_{11} contraction having property (P). For every X in $\{T\}'$ the operators $R_{T|\ker X}$ and $R_{(T^*|\ker X^*)^*}$ are unitarily equivalent.

Proof. By Theorem 1.7 we have $R_T \cong R_{T \mid \ker X} \oplus R_{(T^* \mid (\ker X)^{\perp})^*} \cong R_{T \mid (\operatorname{ran} X)^{-}} \oplus R_{(T^* \mid (\ker X)^{\perp})^*}$. The operators $(T^* \mid (\ker X)^{\perp})^*$ and $T \mid (\operatorname{ran} X)^{-}$ are of class C_{11} (cf. [5, Lemma 5]) and they are quasisimilar (cf., e.g., [12, Corollary 3.4]), so that $R_{(T^* \mid (\ker X)^{\perp})^*}$ and $R_{T \mid (\operatorname{ran} X)^{-}}$ are unitarily equivalent. The proposition now follows from the cancellation property described above.

An obvious consequence of Proposition 2.3 is the following.

Corollary 2.4. Let the C_{11} contraction T be such that $T|\ker X$ and $T^*|\ker X^*$ are of class C_{11} for every X in $\{T\}'$. Then T has property (Q) if and only if it has property (P).

The hypothesis of the preceding Corollary can be weakened; to do this we need some definitions from [5]. For a C_{11} contraction $\operatorname{lat}_1 T$ denotes the set of those invariant subspaces $\mathfrak M$ for T such that $T|\mathfrak M$ is of class C_{11} . For every invariant subspace $\mathfrak M$ for T there exists a largest subspace in $\operatorname{lat}_1 T$ contained in $\mathfrak M$, this subspace (the C_{11} -part of $\mathfrak M$) is denoted by $\mathfrak M^{(1)}$. For a subspace $\mathfrak M$ in $\operatorname{lat} T^*$ we set $\mathfrak M^{\perp_1} = (\mathfrak M^{\perp})^{(1)}$.

Let us say that the C_{11} contraction T has property (R) if $\ker X \in \operatorname{lat}_1 T$ for every X in $\{T\}'$.

Proposition 2.5. Let T be a C_{11} contraction having property (P). Then T has property (R) if and only if T^* has property (R).

Proof. By [5, Lemma 5] a subspace \mathfrak{M} is in $lat_1 T^*$ if and only if it has the form $(\ker X)^{\perp}$ for some X in $\{T\}'$. It follows that T has property (R) if and only if $\mathfrak{M}^{\perp} \in lat_1 T$ for every \mathfrak{M} in $lat_1 T^*$.

Let us assume that T has property (R) and $\mathfrak{M} \in \operatorname{lat}_1 T$; it follows from [5, Proposition 2] that $(\mathfrak{M}^{\perp_1})^{\perp_1} = \mathfrak{M}$. Now, $\mathfrak{M}^{\perp_1} \in \operatorname{lat}_1 T^*$ and T has property (R) so that $(\mathfrak{M}^{\perp_1})^{\perp} \in \operatorname{lat}_1 T$. Consequently $(\mathfrak{M}^{\perp_1})^{\perp} = (\mathfrak{M}^{\perp_1})^{\perp_1} = \mathfrak{M}$ and therefore $\mathfrak{M}^{\perp_1} = \mathfrak{M}^{\perp}$; that is $\mathfrak{M}^{\perp} \in \operatorname{lat}_1 T^*$. We proved that T^* has property (R).

By [4, Corollary 4] T has property (P) if and only if T^* has property (P). Thus the proof is completed by the same argument applied to T^* instead of T.

Now we can reformulate Corollary 2.4 as follows.

Theorem 2.6. Let T be a C_{11} contraction having property (P). Then T has property (Q) if and only if $T|\ker X$ is of class C_{11} for every X in $\{T\}'$.

Proof. The sufficiency obviously follows from Corollary 2.4 and Proposition 2.5. Conversely, if T has property (Q) and $X \in \{T\}'$, then $T \mid \ker X$ is of class C_1 , and $(T^* \mid \ker X^*)^*$ is of class C_{11} ; it follows that both operators are of class C_{11} since they are quasisimilar. The theorem is proved.

Let us recall that a contraction T is said to be weak if $I-T^*T$ is a trace class operator and $\lambda I-T$ is invertible for some λ with $|\lambda|<1$.

Theorem 2.7. A weak C_{11} contraction has property (P) if and only if it has property (Q).

Proof. It is enough to prove that a weak C_{11} contraction T having property (P) also has property (Q). By virtue of Theorem 2.6 it suffices to show that, if T is a weak C_{11} contraction then $T|\ker X$ is of class C_{11} for every X in $\{T\}$.

It is clear that $I-(T|\ker X)^*(T|\ker X) = P_{\ker X}(I-T^*T)|\ker X$ is a trace class operator. By [9, Theorem VIII. 2.1] T is invertible. Since X commutes with T^{-1} , we have that $T^{-1}(\ker X) \subset \ker X$, and so $T|\ker X$ is also invertible. Therefore $T|\ker X$ is a weak contraction of class C_1 , and so by [9, Theorem VIII. 2.1] it is of class C_{11} . The theorem follows.

Corollary 2.8. A unitary operator has property (P) if and only if it has property (Q).

3. Examples

It is known [9, Ch. VI. 4.2] that there exist C_{11} contractions whose spectrum coincides with the closed unit disk. The following result shows that there are C_{11} contractions having property (P) whose spectrum covers the unit disk.

Proposition 3.1. Let U be an absolutely continuous unitary operator. There exists a C_{11} contraction T such that $\sigma(T) = \{\lambda : |\lambda| \le 1\}$ and R_T is unitarily equivalent to U.

Proof. It suffices to prove the proposition in the case U is the operator of multiplication by e^{it} on $L^2(\sigma)$, where $\sigma \subset [0, 2\pi]$ has positive Lebesgue measure. Choose pairwise disjoint subsets σ_n of σ of positive measure such that $\bigcup_{n\geq 0} \sigma_n = \sigma$ and choose a sequence $\{\varepsilon_n\}_{n\geq 0}$ of positive numbers less than 1. For each n there exists an outer function ϑ_n (uniquely determined up to a constant factor of modulus one) such that $|\vartheta_n(e^{it})|=1$ if $t\notin \sigma_n$ and $|\vartheta_n(e^{it})|=\varepsilon_n$ if $t\in \sigma_n$. It is clear by [4, Corollary 1] that the functional model T corresponding with the characteristic function $\theta(\lambda)=\operatorname{diag}\left(\vartheta_0(\lambda),\vartheta_1(\lambda),\ldots\right)$ satisfies the condition $R_T\cong U$.

If the numbers ε_n satisfy the relation $\lim_{n\to\infty} |\sigma_n| \log \varepsilon_n = -\infty$ (where $|\sigma_n|$ denotes the Lebesgue measure of σ_n) we have $\lim_{n\to\infty} \vartheta_n(\lambda) = 0$ for every λ , $|\lambda| < 1$, and by [9, Theorem VI. 4.1] this implies that $\sigma(T) \supset \{\lambda : |\lambda| < 1\}$. The proposition follows.

It is obvious that the operator T constructed in the preceding proof is not a weak contraction; in particular, a C_{11} contraction with a cyclic vector is not

necessarily a weak contraction. Let us also note that if T is of class C_{11} then T and T^* cannot have eigenvalues of absolute value less than 1. Thus, if T is a C_{11} contraction and $\lambda \in \sigma(T)$, $|\lambda| < 1$, then $\lambda I - T$ is one-to-one and has non-closed, dense range.

In the sequel we will identify a vector f of the Hilbert space \mathfrak{H} with the operator $\mathbb{C} \to \mathfrak{H}$ defined by $\mathbb{C} \ni \lambda \mapsto \lambda f \in \mathfrak{H}$; the adjoint f^* is then defined by $f^*(g) = (g, f)$ for $g \in \mathfrak{H}$.

Lemma 3.2. Let S be an injective contraction acting on \mathfrak{H} such that $S\mathfrak{H} \neq \mathfrak{H}$. There exists a vector $f \in \mathfrak{H}$ such that the operator $(S, f) \colon \mathfrak{H} \oplus \mathbb{C} \to \mathfrak{H}$ defined by $(S, f)(h \oplus \lambda) = Sh + \lambda f$ is an injective contraction.

Proof. It is clear that (S, f) is injective if and only if $f \notin S\mathfrak{H}$. Let us set $f = u - SS^*u$, where $u \notin S\mathfrak{H}$ and $||u||^2 \le 1/2$. Then clearly $f \notin S\mathfrak{H}$ and

$$||u||^2 + ||f||^2 \le ||u||^2 + ||u||^2 \le 1.$$

We only have to prove that (S, f) is a contraction. Indeed, let $h \oplus \lambda \in \mathfrak{H} \oplus \mathbb{C}$; we have (using the notation $D = (I - S^*S)^{1/2}$)

$$||Sh + \lambda f||^{2} \le ||Sh||^{2} + 2|\lambda||(Sh, f)| + |\lambda|^{2}||f||^{2} =$$

$$= ||Sh||^{2} + 2|\lambda||((I - SS^{*})Sh, u)| + |\lambda|^{2}||f||^{2} = ||Sh||^{2} + 2|\lambda||(SDDh, u)| + |\lambda|^{2}||f||^{2} \le$$

$$\le ||Sh||^{2} + 2|\lambda|||u|||Dh|| + |\lambda|^{2}||f||^{2}.$$

Using the inequality $2ab \le a^2 + b^2$ in the middle term we get

$$||Sh + \lambda f||^2 \le ||Sh||^2 + ||Dh||^2 + |\lambda|^2 ||u||^2 + |\lambda|^2 ||f||^2 =$$

$$= ||h||^2 + |\lambda|^2 (||u||^2 + ||f||^2) \le ||h||^2 + |\lambda|^2$$

by (3.1). The lemma follows.

Theorem 3.3. There exist C_{11} contractions having property (P) but not property (Q).

Proof. Let T' and T'' be two noninvertible C_{11} contractions acting on \mathfrak{H}' and \mathfrak{H}'' , respectively. By Lemma 3.2 we can choose vectors $f \in \mathfrak{H}'$ and $g \in \mathfrak{H}''$ such that (T', f) and (T'''^*, g) are injective contractions. It is then easy to see that the operator T defined on $\mathfrak{H}' \oplus \mathbb{C} \oplus \mathfrak{H}''$ by the matrix

$$\begin{bmatrix} T' & f & 0 \\ 0 & 0 & g^* \\ 0 & 0 & T'' \end{bmatrix}$$

is a C_{11} contraction. Let us note that the invariant subspace $\mathfrak{H}' \oplus \mathbb{C}$ for T is not in $\operatorname{lat}_1 T$, while its orthocomplement \mathfrak{H}'' obviously belongs to $\operatorname{lat}_1 T^*$; by the proof of Proposition 2.5 and by Theorem 2.6 we infer that T does not have property (Q).

By Theorem 1.7 we have $R_T \cong R_{T'} \oplus R_0 \oplus R_{T''} \cong R_{T'} \oplus R_{T''}$, so that T has property (P) whenever T' and T'' have property (P) (cf. Proposition 2.1 and [4, Lemma 5]). The theorem follows by Proposition 3.1.

Remark 3.4. Proposition 3.1 shows in fact that the operator T in the preceding proof can be chosen so that R_T is unitarily equivalent to a given absolutely continuous unitary operator with property (P). In particular R_T could be chosen so that all its invariant subspaces are reducing (a reductive operator). This shows that the property "lat₁ T = lat T", generalizing reductivity, is not a quasisimilarity invariant in the class of C_{11} contractions or even in the class of C_{11} contractions having property (P).

Remark 3.5. Let us choose T'=T'' in the proof of Theorem 3.3; in this case we can produce an operator X in $\{T\}'$ for which $T|\ker X$ and $(T^*|\ker X^*)^*$ are not quasisimilar. Such an operator is defined by the matrix

$$\begin{bmatrix}
 0 & 0 & I \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{bmatrix},$$

where I denotes the identity operator on $\mathfrak{H}' = \mathfrak{H}''$.

Remark 3.6. Finally we note that we have got by Theorems 3.3, 2.6 and by the proof of Proposition 2.5 that the C_{11} -orthogonal complement \mathfrak{L}^{\perp_1} of a subspace $\mathfrak{L}\in \operatorname{lat}_1 T$, where T is a C_{11} contraction with property (P), does not generally coincide with the orthogonal complement \mathfrak{L}^{\perp} of \mathfrak{L} .

References

- [1] H. Bercovici, C₀-Fredholm operators. II, Acta Sci. Math., 42 (1980), 3-42.
- [2] H. Bercovici and D. Voiculescu, Tensor operations on characteristic functions of Contractions, Acta Sci. Math., 39 (1977), 205—231.
- [3] R. V. Kadison and I. M. Singer, Three test problems in operator theory, Pacific J. Math., 7 (1957), 1101—1106.
- [4] L. Kérchy, On the commutant of C_{11} contractions, Acta Sci. Math., 43 (1981), 15—26.
- [5] L. Kérchy, On invariant subspace lattices of C₁₁ contractions, Acta Sci. Math., 43 (1981), 281—293.
- [6] H. RADJAVI and P. ROSENTHAL, Invariant Subspaces, Springer-Verlag (New York, 1973).

- [7] B. Sz.-Nagy and C. Foias, Vecteurs cycliques et quasiaffinités, Studia Math., 31 (1968), 35-42.
- [8] B. Sz.-Nagy and C. Foias, On injections, intertwining operators of class C₀, Acta Sci. Math., 40 (1978), 163—167.
- [9] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North Holland—Akadémiai Kiadó (Amsterdam—Budapest, 1970).
- [10] B. Sz.-NAGY and C. Foias, On the structure of intertwining operators, Acta Sci. Math., 35 (1973), 225—254.
- [11] M. UCHIYAMA, Quasisimilarity of restricted C₀ contractions, Acta Sci. Math., 41 (1979), 429—433.
- [12] P. Y. Wu, On a conjecture of Sz.-Nagy and Foiaş, Acta Sci. Math., 42 (1980), 331-338.

(H. B.) THE UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS 3220 ANGELL HALL ANN ARBOR, MICHIGAN 48109, U.S.A. (L. K.) BOLYAI INSTITUTE UNIVERSITY SZEGED ARADI VÉRTANÚK TERE I 6720 SZEGED, HUNGARY