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A proof of the spectral theorem for /-positive operators 
J. BOGNÁR 

Dedicated to Béla Sz.-Nagy on the occasion of his 70th birthday 

A Krein space is a Hilbert space with the usual (positive definite) inner product 
( / , g) and a non-degenerate (in general, indefinite) /-inner product [ f , g]=(Jf, g), 
where / is a symmetry: / * = / and / 2 = / . A Krein space with one (or both) 
of the eigenspaces of J having finite dimension is called a Pontrjagin space. 

Let A be a bounded or unbounded linear operator in the Krein space §>. 
If J A is selfadjoint (in the Hilbert space sense), then A is said to be /-selfadjoint. 
If J A is positive, that is, [Af,f] =(J Af, f ) ̂  0 for every / in the domain of A, 
then we say A is /-positive. Further, if there is a non-zero polynomial p such that 
p(A) is /-positive we say A is /-positizable. 

In 1963, M . G . KREIN and H . LANGER [1] proved a spectral theorem for/-self-
adjoint operators with real spectrum in a Pontrjagin space. The proof made use, 
among other things, of the /-positizability of these operators. LANGER [2] gener-
alized the theorem to /-positizable /-selfadjoint operators with real spectrum in 
a Krein space (see also [3]—[5] for statement of the result). Proofs for the bounded 
/-positive case have also been given by M . G . KREIN and Ju. L . SMUL'JAN [6], T. ANDO 
[7], and for further generalizations by B. N. HARVEY [8] and P. JONAS [9]—[10]. 

In our opinion, the spectral theory based on these results has not gained the 
popularity it deserves. The situation can perhaps be improved by reducing the 
machinery required in the proofs. ANDO [7] has already made the decisive step in 
this direction. 

Our proof below was inspired by a paper of C. S. WONG [11] and is hoped to be 
a further step in eliminating unnecessary tools. Restricted to the bounded/-positive 
case, it uses only the basic facts of Hilbert space spectral theory as treated by B. SZ.-
NAGY [12] and the elements of Krein space theory [13]. In particular, neither an 
auxiliary space nor complex variables are needed. 

Received October 14, 1982. 



76 J. Bognár 

Theorem (Krein, Langer). Let A be a bounded J-positive operator on the 
Krein space Then to every real number AT^O there is one and only one J-self-
adjoint projection Ex on § such that the function ),^EX has the following properties: 

1. If ). = n, then EfE^E^E^E). 
2. 7 / A < ^ < 0 , then [Exf,/] ^[E,, f , f ] ; if then [ E x f f ] ^ [ E J , f ] 

for every /€§. 
3. / / —Mil, then Ex=0; if A>|MII, i/ien £¿=7. 
4. If A 0 , i/ie« the strong limit E;_+0 exists and Ex+0—Ex. 
5. If T is a bounded linear operator on § such that TA = AT, then TEX=EXT 

for every A. 
6. The spectrum (r(A\Ex9)) is contained in the interval ( — A ] , while 
|(/—£";)§) is contained in [A, 
Moreover, 

Mil 
/ vdEv 

- I M I I - 0 

is a strongly convergent improper integral with singular point 0, and 
Mil 

S:=A- f vdEv 
- I U I I - O 

is a bounded J-positive operator such that S 2 ~ 0 , S E x = E x S — 0 if A<0, whereas 
S ( I - E x ) = ( I - E > ) S = 0 i f A > 0 . 

Proof . The positive operator B:=JA satisfies 
(1) A = JB. 
The operator 
(2) C := B1/2JB11'-
is selfadjoint and 
(3) CB112 = B1,2A. 

Since ||C|| = Mil, the spectral decomposition of C can be written in the form 
IMII 

(4) C = f vdFv, 
- I M I I - 0 

where {F;}"= _ ̂  is the right-continuous spectral family of C. We set 
(5) CX:=C\FX$ for A < 0, 
(6) CX:=C\(I-FX)9> for A > 0 
and 
(7) Ex := JBL/2CX

1 FXB112 for i < 0 , 
(8) I—Ex := 7fi1/2 C j 1 ( / - F J B1/2 for A > 0. 
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Clearly, Ex is a bounded operator on § for every real number A^O. Further, 
if / < 0 then CX

1FX is selfadjoint and therefore E* =JEXJ, which is equivalent 
to Ex being/-selfadjoint. If / > 0 , the/-selfadjointness of I—Ex and hence the 
same property of E, follow similarly. Thus 

(9) E* = JEXJ for every A ^ 0, 

a relation needed later on. 
Let Then from (7), (2), and the relation 

(10) CCX
1FX = Fx {X < 0) 

(see (5)) we obtain Similarly, if 0 < / == ¿i then (8), (2), and the relation 

(11) C C i - 1 ( / - F ^ = I-Fx (A>0) 
(see (6)) yield ( I - E x ) ( I - E t l ) = I - E f i , that is, EXE„=EX. Finally, in the case 
A<0</i from (7), (8), (2) and (11) we get Ex(I-E,) = 0 and therefore ExEt=Ex 

again. The relation E)tEx=Ex follows by taking adjoints and applying (9). Thus 
Property 1 is valid. Choosing 2=/i we see that Ex is a projection. 

Let us prove Property 2. If 0, then by (7), (5), and (4) 

[EJ, f ] — [Exf, f ] = (C^F.B^f, B1/2f) — {Cx
 1FX Bll2f, B ^ f ) = 

• = / - d ( F v B ^ - f , B ^ f ) ^ 0 
x v 

for every /€£>. On the other hand, if 0<A</i then by (8), (6), and (4) 

IE J , f ] — [Exf, f ] = [(I-Ex)f, /]-[(/-£,)/ / ] = 

= (Cx
 1(I—FX) B1/2f, B1,2f) — (C,71 (/— F„) Bll2f, Bll2f) = 

= j - d ( F v B ^ f , B ^ - f ) ^ 0, 
( v 

as required. 
Property 3 is a simple consequence of (7), (8) and (4). 
To prove Property 4, first let 0. Then 

WEJ-EJW2 = || JB1'2(C-1 F „ - C x
 1 F>)Bll2f\\2 3= 

||2?|| J d(FvBll2f, B1/2f) 3= \\B\\ -^WiF^-FJB^fW2, ^ v ^ 

and the last member tends to 0 as n~~X + 0. Therefore EX+0=EX if A<0. A similar 
reasoning applies in the case A>0. 

Next assume that T is a bounded linear operator which commutes with A, 
i.e., TA=AT. To prove TEX=EXT consider the case A<0 first. 
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By (7), (5), and (4) 

Ex = JB1'2 f — dFv • B1,z (A < 0). 
- M U - O 

Choose a sequence of polynomials {/>„}" which is bounded on [—\\A\\, ||/4||] and 
satisfies the relation 

fl/v if - I M H s v s A , 

JS*«<v> = i o if ¿ < V S | 4 

Then JB1,2pn(C)B1/2^Ex strongly. Hence it is sufficient to prove that T commutes 
with JB1/2CmB1/2 for m = 0 ,1 ,2 , . . . . But 

jB^CB1'2 = Am+1 (m = 0, 1, 2, ...), 

as one can verify by induction with the help of (1) and (3). This completes the proof 
of Property 5 for A<0. 

If A>0, we start from the relation 
IIAII 

1-EX = JB1'2 f ldFv • B1'2 (A > 0) 

obtainable from (8), (6), and (4), and conclude as above that T commutes with 
I-Ex-

Just as in Hilbert space, from the consequence AEX=EXA of Property 5 it 
follows that the subspaces Exi) and (I—Ex)§> are invariant under A. 

As to Property 6, we first note that the relations (1), (7)—(8), (2) and (10)—(11) 
imply 
(12) AEX = JB1/2FXB112 (A jt 0), 
(13) A (I-Ex) = JB1''2 ( / - F;) B1'2 (A ^ 0). 

Since o-(J ,
1r2)c{0}uo-(r2J'1) for any pair Tx, T2 of bounded linear operators 

(see [14], Problem 61), from (12) and (2) we obtain a(AEx)cz {0}u a(CFx). Therefore 
o(A\Ex§)<^{0}uo{C\Fx$>) and, in view of (4), 

aiA\Ei.S) c {0}u (— A]. 
We have to prove that if A<0 then 0 does not belong to o(A\Ex$))-

Let A<0 and assume that AExf„-+ 0 ( « — f o r some sequence { / „ } " c § . 
Then also Bx'2AExfn-~0 or, by (12) and (2), CFxB1/2fn-*0. Since, according to 
(4) and the assumption A<0, the value 0 is regular for C\FX§>, it follows that 
FxBl/2fn^0. Applying the operator JBy2Cjx and using (7) we obtain EJn-~0 

Thus 0 belongs to neither the continuous nor the point spectrum of A\EX5). 
But A\EX&, being a selfadjoint operator on the "negative Hilbert space" Ex9) 
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(cf. Properties 2—3 as well as [13], Theorems II. 3.10 and V. 3.5), has no residual 
spectrum. This proves one half of Property 6. The proof of the other half is similar. 

Assume that (A real, A^O, E'k a /-selfadjoint projection on §) is also 
a function with the properties 1—6. Let A</i<0. Obviously 

E', = EiE^E'dl-E^). 
By Property 5, E'k and E^ commute with A and with each other. In particular, 
E'- il—Ey) is a /-selfadjoint projection which commutes with A. 

Similarly to the case of a selfadjoint projection, if E is a /-selfadjoint projection 
and AE=EA then 

<x(A) = а(А\ЕЪ)клу(А\{1-Е)Ь) 3 о(А\ЕЪ). 
Indeed, the ^-invariant subspaces E§> and (I—E)§> are orthogonal with respect 
to the/-inner product; therefore [13], Theorem V. 3.5, implies that they are orthogonal 
also in a Hilbert space with norm equivalent to the original one. 

Applying this fact to the Krein spaces (cf. [13], Theorem V. 3.4) E';§>, (1—Ец)§>, 
and using Property 6 we obtain 

а{А\Е'к{1-Е,)Ь) с a(A\E'xb)^o(A\(I-Et)b) с ( - - , A]n[/i, = 0. 
But the spectrum of a selfadjoint operator on the "negative Hilbert space" 
E ' x { I -E^b^E ' k b can be empty only if the space is zero. Thus Ек(1-Ец)=0, 
(14) Ei = ВД. 

(14) remains valid if 0<A<ju, the only difference in the proof being that 
E ' l i l—E^&ci l—EJb now are ordinary Hilbert spaces. Letting ju^A + 0, from 
(14) and Property 4 we conclude that E'X=E'XEX. Similarly, Ex=ExE'k. Therefore, 
in view of Property 5, E'k=Ek. 

The existence of the strong integral 
— e 

f vclEv, 
-II /111-0 

where e=»0, follows by reading the next relations from the right to the left (see 
(7), (5), and (4)): 

— e '— £ 

f v dEv = JB1/2Cz] f v dFv • B1'2 = JB1/2Cz\C_,F_cB112 = JB1'2F_eB1'2. 
— II -411 — 0 - I M I 1 - 0 

Similarly, from (8), (6), (4), and (1) 
II/III I M I I I M I I 

f vdEv=- f v d (I—Ev) = -JBll2C~x f vd(I-Fv) • B1'2 = 
С £ С 

IMI I 

= JB^Cr1 f V dF.-B1'2 = JB112 C^1 Ce(I— Fe) B112 = 
e 

= JB1/2(I— Fe)B112 = A — JBll2FeB1/2. 
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Thus 
ii/<11 

(15) f v dEv = A — JB1'2 (F0 - F. 0) B1/2 

- I I / 4 1 1 - 0 

as a strong improper integral. 
The operator S:=JB1/2(F0— F_0)£1/2 appearing in (15) is obviously bounded 

and /-positive. Further S2=0, since according to (2) and (4) 

B»2Jßi'2(F0-F_ o) = C(F0 — F_0) = O. 

By the same reason, SEx=ExS=0 if />.<0, and S(1-E,)=(I-EX)S = 0 if 

The proof is complete. 
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