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Analytic generators for one-parameter cosine families

IOANA CIORANESCU and LASZLO ZSIDO*®

Dedicated to B. Székefalvi-Nagy on the occasion of his seventieth birthday

One parameter cosine families of linear operators have been recently used in
several papers on operator algebras ([6],[7), [13]). Some technical results of these
papers suggested us to develop here a general theory of the analitic generator of
one-parameter cosine families similarly to that presented in [3] for one-parameter
groups. It is proved, that a one-parameter cosine family of 0 exponential type is
uniquely determined by its analytic generator and explicit formulas are given.

We remark that the theory developed here can be used to give intrinsic
characterizations for the analytic generators of one-parameter groups of auto-
morphisms of operator algebras; this is due to the fact that while the analytic
generator of such a goup frequently has ““bad” spectral properties [4], the analytic
generator of its “cosine part” has always a “thin> spectrum.

1. Analytic extensions of cosine families

Let us first specify the frame in which cosine families are to be considered.
We call a dual pair of Banach spaces any pair (X, #) of complex Banach spaces,
together with a bilinear functional

XXF3 (x, 9) > {x, 9)€C,
such that

@) lxl = sup [{x, @)| forany x€X;

el =1

(i) el = sup [{x, )| forany ¢eZ;

lxil =1

(iii) the convex hull of any relatively o(X, & )-compact subset of X is relatively
(X, #)-compact;
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(iv) the convex hull of any relatively o(%, X)-compact subset of & is relatively
(¥, X)-compact.

If (X,#) is a dual pair of Banach spaces, then (£, X) endowed with the
same bilinear pairing, is also a dual pair of Banach spaces. We note that if X is
a complex Banach space and X* its dual, then the pairs (X, X*) and (X*, X),
endowed with the natural pairing between X and X*, are dual pairs of Banach
spaces. We recall that if (X, #) is a dual pair of Banach spaces, then the uniform
boundedness principle holds in X with respect to o(X, %) (8], Th. 2.8.6); in
particular, the analyticity of X-valued mappings of complex variable does not
depend on the topology considered on X ([8], Th. 3.10.1). On the other hand
quite general X-valued mappings, defined on a locally compact space endowed
with a Radon measure, are o(X, #)-integrable ([2); Prop. 1.2; [3], Prop. 1.4.).

If (X, #) is a dual pair of Banach spaces and T is a o(X, & )-densely defined
linear operator in X, then one can define the adjoint 7% of T in & by

(@, ¥) €graph (T%) « (x, ) =(T(x), o) forall x€Dr.

TZ is always o(%, X)-closed. If moreover T is o(X, #)-closed, then T% will
be o(#, X)-densely defined and (T%)*=T holds ([11], IV. 7.1). Denote by Zx(X)
the Banach algebra of all ¢(#, X)-continuous linear operators on X. For T€ #:(X)

we have
T#(p) = @oT, @c&F and TZcBx(F).

If (X, %) is a dual pair of Banach spaces and T is a o(X, & )-closed linear
operator in X; then the resolvent set of T is
o(T) = {A€C; 2—T s injectiveand (A—T)*€Zs(X)},

and the spectrum of T is o(T)=CN\g(T). The standard power series argument
shows that o(T) is openin C, thus o(T") is closed. If T is also o(X, & )-densely
defined, then o(T)=0o(T¥). We note that if F=X* or X=%%*, then, by the
closed graph theorem, the Banach—Smulian theorem on the weak continuity of
linear functionals, and the Alaoglu theorem, we have

o(T) = {A€C; A—T is bijecuve}.

Let (X, %) be a dual pair of Banach spaces; a one-parameter cosine family
C in #.(X) is a mapping C : R—%;(X) such that

Co=1Iy, where Iy is the identity map of X;
C,4+C,_,=2CC, for all s,teR.
It follows directly from this definition that
C,=C_,, t¢R and CC,= CC, s, tER.
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C is called o(X, &)-continuous if for each x€X the mapping R31-C/(x)eX
is o(X;, &)-continuous. In this case one can define the dual cosine family C¥% in
BAF) by CZ=(C,)%, tcR, and C¥ is o(#, X)-continuous. We note that
a quite complete infinitesimal generator theory for strongly continuous one-para-
meter cosine families is done in [12]. :

Let C be a o(X, %)-continuous one-parameter cosine-family in Zz(X).
For z€C, denote by D,={{¢C; Im{-Imz=0, |Im{|=|Im z|}. Suppose that for
some x€X, the mapping R>r—~C,(x)éX has a o(X, #)-continuous extension
on D_ which is analytic on its interior; such an extension will be called o(X, #)-
regular. By the symmetry principle ([1], Ch. V, 1.6) it follows that this extension
is uniquely determined. Thus we can define a linear operator C, in X by

(x, y)€graph C,R3t-C,(x)€X has a o(X, ¥)-regular extension
on D, whose value at z is y.

C, is called the analytic extension of C at z.

Lemma 1.1. Let (X, %) be a dual pair of Banach spaces and C a o(X, F)-

continuous one-parameter cosine family in Bz(X). Then
C,=C_,, z€C,
C..,+C,_.=2C,C,c 2C,C,, scR, zeC.

Proof. Let z¢C. For each x€9. the mapping D_,3(~C_(x)€X is
o(X; F)regular and extends R>t—~C_(x)=C(x)€X, hence x€9, , C_,(x)=
=C,x). Thus C,cC_, and changing z with —z, one gets also the converse
inclusion.

Let further s€R and z€C. For each x€9; =9, =9, __ the mappings

Dza C - Cs+§(x)+ Cs_;(X)EX, DZBC g 2CSC;(X)€X
are o(X, # )-regular extensions of
R3¢~ Cii () + G- (0)=2C, C, (%) = 2C, C,(x)€X;

thus _
Cs(x)egcz’ Cs+z(x)+cs—z(x) = 2Cscz(x) = 2Cz Cs(x)'

Therefore C,, ,+C,_,=2C,C,c2C,C,.

According to Lemma 1.1 and to the symmetry principle, for each z€C, it holds

(x, y)€graph C,oR>t-C(x)€X hasa (X, F)-regular extension on the strip
{¢eC; Im{|=|Im z|} whose valueinz is y.

In particular, if z€ C; Imz#0 and xE@Cz, then by [8], Th. 3.10.1, we have that
R>t—+C(x)€X is norm-continuous.

7
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Lemma 1.2. Let (X, %) be a dual pair of Banach spaces and C a o(X, F)-
- continuous one-parameter cosine family in %B,(X). Then we have:

(i) for each z€C and x€9_
IC. = sup ICN- 25 "IGH;

|ReZ}j=1 ke€Z
Im{=Im:z |k| =|Rez|

(ii) for each >0 and x€9._ =9

1 o 1 1
Alrfw-é—lnmilfpsa IC.(ll = Iim —In |G = z;l;llTl+w71“ NGl = In (L+2[ GID.
{Imz|=e

Proof. (i) Let «€R and x€9. , and denote for convenience

c = |S|upl " Cs+ai (x)"' ’

We prove by induction, that for n=1,
1C+au =c > ICI for [ff=n.
S

Indeed, the above statement holds obviously for n=1. Assuming that it holds
for some n=1 and that n<|t|=n+1, we successively get by Lemma 1.1

CH-ai(x) = C|l|+sign (t)zi(x) = 2Cn C|1|—n+sign(t)zi(x)_Cn—(|t|-n)-sign(r):i(x) =
= 2C, Csign(t)(|r|—n)+ai(x)_C—sign(t)(n—(|t]—n))+ai(x)a
IC+uGN =20Cll-c+e- 2 G = C-lké' 1 Cell -

kj=n—1
(i) Again by induction, it is easy to verify that
1Cl = (L+2|C)F for k=1.

Now one can easily complete the proof.
We note that, if f: R—C is a Lebesgue-measurable function thh

+eo

[ 1r@ettde <+

— oo

1 .
where w>l11£n Tln IC.ll, then there exists

oo
= [ f)C.dicBs(X)
uniquely defined by

+o0 + oo
([ rocd)e,ey= [ Ff0)(Cx), @)d, xeX, peF
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([2), Prop. 1.2;[3], Prop. 1.4). For each scR; we have:

— oo + oo 1
CiCi=CCr= [ f(0CCrd= [ fO)5(Corrt Codt =
+ oo — oo

f SO ¢y

Thus, if f is additionally even, then
. +e0
C,C,=C,C, = f f(t—s)C,dt, sER.

Lemma 1.3. Let (X, &) be a dual pair of Banach spaces and C a a(X F)-
continuous one-parameter cosine family in .@ #(X). Let us denote

(D) = 8 > 0, €R.

l/ge—atz’

Then .
Cr,X)c N Pe,, 80,
z€C

. + oo
CrC.cCCr= | I/%e"’('—z)’c,dtéﬂg()(), 6=>0, z¢C,

o (X, ﬁ)—aﬁl}_lm Cr(x) =x, x€X

Proof. Let §=0. Since

+”]/5

f ;e—"(“z)’[e‘”'" dt <+, z€C, @ =0,
+ oo 5 -
[ ) 5ertercdeas®, zec

exists. It is easy to see that the mapping

C3z — f I/ —8-2)* C, dtc Bz (X)

is analytical and extends

the integral

+ oo
R>s ~C,C;= C,C,; = f Vgeﬂ’('—s)’q dteB z(X).

—o0

7%
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It follows that . )
C ,Xc Oc D,

c,ac,'cc,cfé— |/ 2 e=3-21 C, dtc Bz (X), z€C.

Now let x€X be arbitrary; for each ¢€% and &, >0 the following hblds:

+eo .
KCr)—x 0) = [ @e“"”@(x)—x, pydi| =

A5
l/ e—""KC (x)—x, )| dt+ I/ —e " |(C,(x)—x, @)|dt =
f lt|=fz n

|t| <g

észC@)L¢WFfV =3 (|Gl +1) de | xl} | ]l
ft]z=e
Hence
L KCp,(¥)—x, @)| = inf sup [(C:()—x, )] = 0.
t|<eg

We can now give

Proposition 1.4. Let (X, %) be a dual pair of Banach spaces, C a (X, F)-
continuous one-parameter cosine family in #g(X) and z€C. Then C, is o(X; F)-
densely defined and o(X, F)-preclosed. Moreover, we have

Ca(X ,F) Wa(x » F) = (C )

Proof. By Lemma 1.3 itis clear that C. and C? are o(X, %), resp. o(¥, X)-
densely defined. For each xE@CZ and @€y the functions {—~(C/(x); ¢) and
{—~(x; CZ(p)) defined on the strip {{€C; Im{|=|Imz|}, are regular extensions
of the function -
R = (C,(), 9) = (x, C7 (@),

hence {C.(x), p)=(x,CZ(p)). It follows C,c(CZ)*. In particular, C, is o(X, F)-
preclosed.
To end the proof, we have only to prove that the domain of (C?)* is contained

in the domain of C_| ") @D:(x’ #) Let x bein the domain of (C%)X. By Lemma 1.3,
c

¢
for each =0 we have CinCCfC?;, thus

C (COY = (T DY) c (¢ Py =(chH* c,,.
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Again by Lemma 1.3, it follows that
Cy,(x)€ ;Qc De, 6>0,
oX, #) _,;.l.iinm Cr,(®)=x,
oX, F)— lim C.C;,(x) = o(X, #)— lim (COYCy, (%) =
= o(X, )~ lim_Cr, (€70 = (CORE).

Consequently x is in the domain of C,| ﬂ@ flands

feC

In the sequel we shall denote C?*#) and C_f_"('g’X) simply by C,, respectively
C?. We call C;=C_; the analytic generator of the cosine family C.

2. Spectral properties of the analytic generator of cosine families

Let (X, #) be a dual pair of Banach spaces and C a o(X; #)-continuous
one-parameter cosine family in %;(X). We recall that by Lemma 1.2 (ii)

.1 — 1
Jim i c) = Jm 2InlIGl <+
On the other hand, if X3 {0}, then

fm Ln|C = 0.
t+-+oo [
Indeed; we have for each t¢R

1 = ||Goll = 12C,C,— Cofll = 2 C 24| Cofll = 3 max {|C/|I% || Carll}
so that

1 .1
= ,llmlenl hm max{ In [IC||, ln IICZ,”} =.‘11+m°°—t—1n Gl

We say that C is of 0 exponential type if
T 1
Im —In|iCJ=0
t++oo [
that is, if X {0},
& Linlcy =0
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Let pc C\(— =, 0]. We denote

arg u=0 where pu=|ule® |0|<n; Inpu=In {u|+ib.
Then CYz—pu*=¢*'"#c C is an entire function. The next lemma is the main technical
result of this paragraph.

Lemma 2.1. Let (X, %) be a dual pair of Banach spaces, C .a o(X, ¥)-
continuous one-parameter cosine family of 0 exponential type in Bz(X), & C\(— <o, 0]
and A=(u%+1)/2u. Then the function g,: R—~C, defined by

U .#it_u—it _ [T ‘#it_uit ) |
E_1 smint  i@—=1) shm U ##L

- = —_— ] =1
sin int shnt ¥ on

depends only on 7, the integral
+ oo

Cp= [ 2.()Cd1eR5(X)

exists and C, (A+C_)c(A+C_)C, ; Ix.

Proof. Since the roots of the equation A=(w2+1)/2w are p and pu~! and

i
-1

~1
W'—p" = ui—l (e —p"), t€R,

g; depends only on 1.
Choosing some o with O<w<n—|arg u|, we have
de= 1
[ 1a@le?di <+ and o > Tim —hnjC| =0
By our remarks after Lemma 1.2 it follows that C, €#:(X) is well defined and
C,,C,=C,C, . Let x¢C_; be arbitrary. Since the mapping ‘
{(eC; Im{| =1}3( - C,, C;(x)€X
is o(X, #)-regular and extends
R3s ~ G, C(x) = GG, (0)EX

we have C, (x)€9;_ and C_C, (x)=C,C_(x). Consequently (A+C_)C, (x)=
=C, (A+C ).
Finallygwe show that C, C_{(x)=x—1C, (x), that is C, (A+C_)(x)=x.
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Let us first assume g1 and fix some. 0<e<1. Since by Lemma 1.2. (ii)

— 1
im_—In U IC (0] =0,

{tm{j=1

using Lemma 1.1 and the Cauchy integral theorem, we get

] +oo U ”it _ﬂ—it
€€ = [ 5oy o Gri0dr+
+oo it it
TR e | _
+_-[ 2(u2—1) sinini G dt =

_ }w ﬂ .#i(x+ic)f#—i(t+ie)
J 2= sinin(itio)

Co—-ey(®) dr+

N 7“’" M ' ”i(t—ie)_u—i(t—ie)
o 2(pE-1) sin in (t — ic)

Cii-oi(x) dt.

Defining the curves I'. and I', by

r_(®=t——gi, I'_(H=1+(—e)i, R,
‘we obtain '
#iz-l_ﬂ-—iz+1

U
r_f 2(2—1)  sin(inz—n)

Co,Coi(®) = C.(x)dz+

u #iz+1_#—iz—1
+,[ 2GE—1)  sin(nz+n)

C,(x)dz =

—iz41__ iz~1 —iz—1 iz +1
7 pE g

- Lo LA
_r-_[2(#2—1) sin inz C:(x)dz+rf2(”2*1) sin inz G dz.

Further, the residue theorem gives
ﬂ_iz+1—[tiz—l u—l’z+1_uiz—1

f=~E - B ,
r'_[ 2(p*—1) sin inz C:(9)dz = x+r;/ 2(2—1) Sininz Cz(x)dz

so that, using again the Cauchy integral theorem, we conclude

#—iz+1_“iz—1+#—iz—l_#l'2+1

- B -
C,,C_i(x)= x+r“[ 3= pr— C.(x)dz =
- o p Y@ —p) -
= x+r[2(”2_1) - P C,(x)dz =

o l‘l .“l’z_p’-iz e
=x lrl.”z_l i G () dz = x— 3Gy, (x).

For pu=1 the proof is completely similar.
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Theorem 2.2. Let (X, #) be adual pair of Banach spaces and. G- a o(X, F)-
continuous one-parameter cosine family of 0 exponential type in Bz(X). Then
o(C)Cll; + ). Moreover, for each A€ C\(—<=; —1} the roots of the equation
A=t +1)2u belong to C\(—,0) and

+w i‘_ _“ . . DIETEL N
_ S i(;—n'#shﬁx Gds if 11
@A+Cc)r*=|"7. . "
S o7 Gt if 1=1.

Proof. Let A€ C\(— <, —1] be arbitrary. If one of the roots of the equation
A=(u*+1)/2u, say p,, belonged to (—<;0]; then, taking in account that the
other root is p;!, we would have :

1= ttpt - _ [l + || 2 =_1.
2 2

Now let p€C\(—-<,0] be arbitrary, with A=(u+1)/2u, define g;:R»C as
in Lemma 2.1. Then by this lemma C,(A+C_)c(A+C_)C,, Ix holds
and this implies that C, (A+C_)c(A+C_)C,. On the other hand, since
(A+C_)C, |12, =C,(A+C_)clx, and P _, is. o’(X,_ﬁ/_) “déense in X, one
gets easily that (A+C_)C, =Ix. Consequently A+C_; is invertible and
(A+C_)1=C, €B(X).

A ﬁrst consequence of Theorem 2.2 is the following unicity result:

Corolla ry 2.3. Let (X, %) be a dual pair of Banach spaces and C and D
two o(X; F)-continuous one-parameter cosine families of 0 exponential type in

B(X). If C_,cD_;, then C=D.
Proof. By Theorem 2.2 we have for each s¢ R— {0}

-1 Foo ' s
e eirs_e its

e23+1 -
( 2¢ +C"]' "_£ @—D  sm
that is, '
e®=1 e+l ——\"" 't sints :
26 ( 7 C"] = J S G sER
Similarly,

-1 (e¥+1 —\'  *sints
o (T +P) = ma D SR
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A

(] = el 1 | «
Since C_; CD_l implies ( 2; +C_i) =( 2:: +D_; for every s€R,

the above considerations yield

+ oo . “+ oo .
sin #s sin ts
——C,dt = ———D, dt, s€R.
_;/: shmt ™ 2 shmt ~'7 ¢

Using the inequality |sin ¢—sin B|=|a—Bl, , BER, and the Lebesgue dominated
convergence theorem, it is easy to see that one can differentiate with respect to s
under the sign of integration and we get

f COsS IS

In other words, for each x€X and @€%, the integrable continuous even functions

+ oo

! Y 4 .
C dt = _!; COS IS mp,dt.

. t t ’
Rt~ ——(C(x), ¢} and R3f———x(D,(x), )

have equal Fourier cosine transformS' so they coincide. >'Con'sequently ‘C,=D,; teR.

By Corollary 2.3, c., ; determmes C umquely A second consequence. of
Theorem 2.2 is an invariance result:

Corollary 2.4. Let (X, %) be a dual pair of ‘Banach spaces, C" a o(X, %)-
continuous one-parameter “cosine family of 0 exponential type in 85X) and 'Y
a o X, F ) -closed linear subspace of X. If there exlsts some }.OE C\(— <, —1]

with (10+C_,)‘1YCY then C\YCY, teR.

Proof. If A€C and |A—Ag<[[(2+C_p~*~%, then (A+C_)~! exists and
(A+C )1 = ki (A—2H(Ro+ C) 1625 (X),
=0

where the series converges in the operator norm. Thus; for such A, we have

(/1+C_,)"1YCY Let yeY be arbitrary and @€# such that (z, ) O zEY
By the first part of the proof, the analytic functlon '

C\(= =, — 1134 = (A+T) (7, 0)

vanishes on some neighbourhood. of 4;, hence it ‘'vanishes identically. . Using
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Theorem 2.2 similarly as in the proof of Corollary 2.3, we get successively

®= sints
J RGO oddr=0, seR,

+e {
cos ts
_-£ sh it

(C.(»), @) =0, I€R.
By the Hahn—Banach theorem we conclude that C,YCY, r€R.

Corollary 2.5. Let (X, #) be a dual pair of Banach spaces, C a o(X, F)-
continuous one-parameter cosine family of 0 exponenttal type in .@,(X) and Y and

Z two o(X; F)-closed linear subspaces of X. If (C_,)“lYCZ (C_,)—lYCZ
then Y=Z.

(C,(»), @)dt =0, scR,

Proof. Let x€9_,. By Lemma 1.1 2C.C_(x)=Cypi(x)+C,_i(x), sER,
so that the mapping

{C€C; Im{| = 1}3{ - Cpyi(x)+ Cpoi(%)EX,
which is 6(X, #)-regular, extends
R3s - 2C,C_;(x)€X.

Thus C_(x)€2_,,2C_,C_,(x)=x+C_,(x), that is Iy+C_,C2(C_)*c2(C_)~
But (C_)? is (X, F)-closed, hence L+C_,,c2(C_)? and (I4x+C_,)'=
=2"1(C_)-2 From the last equality, we get
Ux+Coe) Y =272(C_) Y c 27(C)TZ Y,
Ux+C_p)1Z =2"Y(C_)2Zc2 Y (C_)'YC Z.
Since C_,; is the analytic generator of the cosine family
R3>t~Cy€ %4 (X),

by Corollary 2.4 it follows that C,YCY, C,ZCZ, tc¢R. In particular, by Lemma 1.3
we have
e NY®H =Y, 9 N2"*P =2z,
i

Using now the invariance of Y under the action of C and the Hahn—Banach
theorem, we deduce successively that C_(»)€Y and y=(C_,)"1C_/(»)e(C_)YCZ
holds for each y€%._NY. Thus

Y= Dc_NY*P Z.

One obtains similarly also the inclusion ZcCY.



Analytic generators for one-parameter cosine families 107

3. Connections with one-parameter groups of operators

Let (X, %) be a dual pair of Banach spaces. We recall that the analytic
extension U, of a o(X, F)-continuous one-parameter group

U:R>t - U, c Bz (X)
at z€C is defined by '

(x, y)€ graph U, «R3>t—~U,xcX has a o(X, #)-regular extension
on the strip D, whose value at z is p

and U, is a o(X, F)-closed and o(X, #)-densely defined linear operator in X
(£3], Section 2). U_,; is called the analytic generator of U and prov1ded that U
is of 0 exponentzal type, that is,

llm T ||ln Ul =0,

it uniquely determines U ([3], Section 4).

Proposition 3.1. Let (X, %) be a dual pair of Banach spaces and U a
o(X, F)-continuous one-parameter group in By (X). Then the formula

1
=75 U+U-y
defines a 6(X, ¥ )-continuous one-parameter cosine family in B5(X) and
T _ (U U.+0_y%, scC.
- Proof. Itis easy to verify that C is a (X, #) one-parameter cosine family
in Z4(X).
From the definition of the analytic extensions of U, respectively C, it follows

immediately that (1/2)(U,+U_,;)cC,. Thus, it remains to prove only the inclusion

.5 TFT)*.

Let x€9_be arbitrary and f;= l/ 0 g-ort , 0=0, t€R; then, by Lemma 1.3, we have

C;,Ca(x) = |/ e=3U-C (x) dt =

[ V_ (- z)zU (x)dr+ f V— —6(t+z)lU(x)dt]
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Since

C3{ ~ f f e "'U(x)dtex

is an entire extension of
R>s - U,U,,(x)eX

t= IS
= [ |5 Udreas,

1 .
C,,C.(x) = —2-(U,+U_z),6(x), 6=0.

where

it follows that

Finally, since
o(X, .”f)— lim Upp(x) = x, a(X P?')— lim C,,C.(x) = C,(x),

we conclude that x belongs to the domam of 1/2) (@, +U_z)"(’ X

12 TFT_) P @=C.(»).

In particular, if U is of O exponential type, then by -Corollary 2.3,
U_,+U, uniquely determines the ‘“cosine part” t—~U,+U_, of V. The ‘“cosine
part” of U has the advantage that the spectrum of its analytic generator is always
included in [I, + ), while the spectrum of U_; is quite frequently=C (see [4]);
this motivates the interest of cosine fannhes in handhng one-parameter groups of
operators. - :

Concerning applications, we restrict ourselves to a proof of the following result
(see [9] and [5], Th. 4.1): '

and that

Theorem 3.2. Let H be a complex Hilbert space and C - a weakly continuous
one-parameter cosine family of O exponential type of self-adjoint linear operators on H.
Then there exists an injective, positive, self-adjoint operator B.in H .such that

C = %(B"'-{-B—"‘) = cos (¢ In B), fER;

Proof. By Theorem 2.2, o(C_,)c[l,+ ) and
— teo 1.
(C_)™ = f ———= Gdt;
—= et'te
thus C_, is self-adjoint and C_,=Iy. It follows that B=C_,+((C_)*—Iy)"*?
is an m_]ectlve positive, self-adjoint linear operator in H and

B = Ci—((C-)'- In)memﬂ)

(see, for example [10], Section 128)
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Now, the formula U,=B¥, tcR defines a strongly continuous one-parameter
group of unitaries on H and U_;=B ([3], Th. 6.1). By Proposition 3.1 the cosine
families C and R>t—+(1/2)(U,+U_,) have equal analytic generators, so by Cor-
ollary 2.3 ' :

1
C = -7(U,+U_,), teR.
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