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Analytic generators for one-parameter cosine families 
IOANA CIORÁNESCÜ and LÁSZLÓ ZSIDÓ*' 

Dedicated to B. Szőkefalvi-Nagy on the occasion of his seventieth birthday 

One parameter cosine families of linear operators have been recently used in 
several papers on operator algebras ([6], [7], [13]). Some technical results of these 
papers suggested us to develop here a general theory of the analitic generator of 
one-parameter cosine families similarly to that presented in [3] for one-parameter 
groups. It is proved, that a one-parameter cosine family of 0 exponential type is 
uniquely determined by its analytic generator and explicit formulas are given. 

We remark that the theory developed here can be used to give intrinsic 
characterizations for the analytic generators of one-parameter groups of auto-
morphisms of operator algebras; this is due to the fact that while the analytic 
generator of such a goup frequently has "bad" spectral properties [4], the analytic 
generator of its "cosine part" has always a "thin" spectrum. 

1. Analytic extensions of cosine families 

Let us first specify the frame in which cosine families are to be considered. 
We cáll a dual pair of Banach spaces any pair (X, SF) of complex Banach spaces, 

together with a bilinear functional 

Xx^3 (x, q>) - <x, <p)€C, 
such that 

(i) M = sup q>)\ for any xgX; 
II «>11 s i 

(ii) Ml = sup \(x, (p)I for any J*'; 
IIXII SI 

(iii) the convex hull of any relatively <x(X, #")-compact subset of X is relatively 
<T(X, J^-compact; 
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(iv) the convex hull of any relatively c(SF, X)-compact subset of SF is relatively 
G(JF, X)-compact. 

If (X, J5") is a dual pair of Banach spaces, then (SF, X) endowed with the 
same bilinear pairing, is also a dual pair of Banach spaces. We note that if X is 
a complex Banach space and X* its dual, then the pairs (X, X*) and (X*, X), 
endowed with the natural pairing between X and X*, are dual pairs of Banach 
spaces. We recall that if (X, !F) is a dual pair of Banach spaces, then the uniform 
boundedness principle holds in X with respect to a(X,iF) ([8], Th. 2.8.6); in 
particular, the analyticity of X-valued mappings of complex variable does not 
depend on the topology considered on X ([8], Th. 3.10.1). On the other hand 
quite general X-valued mappings, defined on a locally compact space endowed 
with a Radon measure, are <r(X, ^-integrable ([2], Prop. 1.2; [3], Prop. 1.4.). 

If (X, J5") is a dual pair of Banach spaces and T is a cr(X, Jr)-densely defined 
linear operator in X, then one can define the adjoint T^ of T in !F by 

(<p, t/0 € graph = (T(x),<p) for all x£2>T. 

T y is always X)-closed. If moreover T is a(X, #>closed, then T y will 
be o(3F, X)-densely defined and ( T * ) X = T holds ([11], IV. 7.1). Denote by £^(X) 
the Banach algebra of all a(2F, X)-continuous linear operators on X. For 
we have 

Ty(q>) = q> oT, (p€$r and 

If (X, 2F) is a dual pair of Banach spaces and T is a a(X, #>closed linear 
operator in X, then the resolvent set of T is 

Q(T) = {A<= C; l-T is injective and (X — r ) - 1 £ ( X ) } , 

and the spectrum of T is a ( T ) = C\g(T). The standard power series argument 
shows that Q(T) is open in C, thus a(T) is closed. If T is also c(X, ^ -dense ly 
defined, then a ( T ) = a ( T W e note that if &r = X* or X ^ * , then, by the 
closed graph theorem, the Banach—Smulian theorem on the weak continuity of 
linear functionals, and the Alaoglu theorem, we have 

Q(T) = {A6C; X-T is bijective}. 

Let (X, ¿F) be a dual pair of Banach spaces; a one-parameter cosine family 
C in %(X) is a mapping C : R - ^ ( X ) such that 

C 0 = / x , where 7X is the identity map of X; 

Cs+t+Cs-,—2CsC, for all j , i6R. 

It follows directly from this definition that 

C, = C_,, R and C,CS=CSC„ s, t£R. 
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C is called a(X, ^-continuous if for each x£X the mapping R3/—C ((x)€X 
is a(X, ¿^-continuous. In this case one can define the dual cosine family C^ in 
38X{2P) by Cf={Ctf, i€R, and C^ is , X)-continuous. We note that 
a quite complete infinitesimal generator theory for strongly continuous one-para-
meter cosine families is done in [12]. 

Let C be a o(X, ^ -cont inuous one-parameter cosine-family in 
For z6C, denote by Dz={CeC; ImC-Imz^O, |Im |Im z|}. Suppose that for 
some x£X, the mapping R3i->-Ct(x)£X has a cr(X, ^-cont inuous extension 
on Dz which is analytic on its interior; such an extension will be called <r(X, 2F)-
regular. By the symmetry principle ([1], Ch. V, 1.6) it follows that this extension 
is uniquely determined. Thus we can define a linear operator C, in X by 

(x, j>) g graph CZ-<=>R 3 t-+Ct(x)£X has a c(X, ^ - r egu la r extension 
on D, whose value at z is y. 

Cz is called the analytic extension of C at z. 

L e m m a 1.1. Let (X, 3F) be a dual pair of Banach spaces and C a CT(X, SF)-
continuous one-parameter cosine family in Then 

CZ = C_Z, z€C, 

Cs+z + Cs-z = 2CSCZ cr 2CZCS, s€R, z^C. 

P roof . Let z€C. For each the mapping C_{(;c)£X is 
cr(X, ^ - r egu la r and extends C_ f(x)=C t(x)€X, hence xe3>D__, C_z(x)= 
=Cz(x). Thus C , c C _ z and changing z with —z, one gets also the converse 
inclusion. 

Let further and z£ C. For each x ( i = Q>c — 3)c the mappings 

C i + t (*) + C,_{(je)€X, D ^ Z -2C s C ; (x )EX 

are CT(X, Jr)-regular extensions of 
R - Cs+t(x) + Cs.,(x) = 2CsCt(x) = 2CtCs(x)£X; 

thus 
C s + 2(x)+C s_ z(x) = 2 CsCz(x) = 2C,Cs(x). 

Therefore Cs+z+Cs_z=2CsCzc2CzCs. 

According to Lemma 1.1 and to the symmetry principle, for each z£C, it holds 

(x, y) € graph Cz<=>R3i-^Ct(^)€X has a cr(X, Jr)-regular extension on the strip 
{CeC; |Im = |Im z|} whose value in z is y. 

In particular, if z£C, I m z ^ O and , then by [8], Th. 3.10.1, we have that 
R3i-^C,(x)6X is norm-continuous. 

7 
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Lemma 1.2. Let (X, ¿F) be a dual pair of Banach spaces and C a er(X, 
continuous one-parameter cosine family in Then we have: 

(i) for each z£ C and x€ 3)c_ 

I IQWIl s sup ||C{(x)||. 2 \\Ck\\l 
| R e C | s l t g Z 

(ii) for each e>0 and x£Q)c c. = @cct 

lim i l n sup | |C,(x)| |^ EE i-ln||C,| | = Gm -^ln ||CJ ^ In (1 + 2UQU). 
S — + CC 0 | R e z | s 5 f — + ~ T Z 3 i — + <» K. 

\lmz\mc 
Proof , (i) Let a£R and x£3)c , and denote for convenience 

c = sup ||C5+ai(x)||. 
| s | S l 

We prove by induction, that for n g l , 

\\Ct+ai(x)\\ ^ C 2 IICJ for \ t \ S n . 
k g Z 

Indeed, the above statement holds obviously for n = 1. Assuming that it holds 
for some /z£l and that //-= + we successively get by Lemma 1.1 

Q+«(•*) = +sign(i)Xi{x) = 2C„ C|,| _n+sign(()aii(j:) — C„_(|,| -„j-signcoiiW = 

= 2C„Csign(I)(|(| _„)+ili(x) — C_s!gn (,)(„-(|, | _„))+3I,•(:*;), 

IIct+«,(*)|| 2IICJ • c + c• 2 \ \ c k \ \ = c - 2 WQll• 
\k\Sn-l |fc|Sn 

(ii) Again by induction, it is easy to verify that 

| |CJ^(1+2 | |C 1 | | ) 1 for k i s l . 

Now one can easily complete the proof. 
We note that, if / : R — C is a Lebesgue-measurable function with 

f \f(t)\ea^dt < + 

where co> fiin —ln||C,||, then there exists 
t 

+ oo 
C f = j fO)c,dte^(x) 

uniquely defined by 

<( f MC,dt)(x),(p)= f f(t)(C,(x), cp)dt, x e x , (ptsr 
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([2], Prop. 1.2; [3], Prop. 1.4). For each J^R, we have: 

Cf Cs = CsCf= f f(t) CsC, td = f f i t ) \ (Cs+t + Cs_,) dt = 
2 

= / /(f-s)Y(~f+s) c.dt. 
— OO 

Thus, if / is additionally even, then 

CfCs = CsCf= J f(t—s)C, dt, s€R. 

Lemma 1.3. Let (X, J5") be a dual pair of Banach spaces and C a a(X, SF)-
continuous one-parameter cosine family in 33^(X). Let us denote 

nr 
/ , ( ' ) = = }ne~S'2' 

Then 
C / t ® c n ® c f , <5-0, z6C 

Cf6C. c CZCU = f 1P^e-«<-*r-Ctdt£!%sF(X), <5>0, zeC, 
— OO ' 

a(X,$r)- lim CfAx) = x, x£X. 
4-00 

Proof . Let ¿>0 . Since 

f dt-c + oo, z iC, co > 0, 

the integral 

/ ^e-se-^Qdt^iX), zeC 

exists. It is easy to see that the mapping 

>-00 ' 

is analytical and extends 

R } s — CfCs = CsCf = f 1 e - W - ^ 1 C, dte@<? (X). 
— 00 • ^ 
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It follows that 
C

f i
( X ) с П , 

Г€С 

CuCzczCzCfi = f 1 / - R ^ ' Q D / ^ I X ) , 26 C. 
— oo ' 

Now let jc€X be arbitrary; for each (p^SF and ¿ , £ > 0 the following holds: 

\(Cft(x)-x,<p){ = f l^e-f'-(C,(x)-x, <p)dt\ s 
— oo * 

= fVJe-*!№(x)-x,<p)\dt+ f]iIe-'"\(Ct(pc)-x,<p)\di^ 

=§ sup |<C,(*)-*, ф>| + / 1 Д " е - й , ( 1 | С , | | + 1)ЛИ*И1к11-

Hence 

Пт \(С/л(х)-х, <p)\ ^ inf sup |<C,(*)-*, cp)| = 0. 

We can now give 
P r o p o s i t i o n 1.4. Let (X, ¡W) be a dual pair of Banach spaces, С a a(X, J7)-

continuous one-parameter cosine family in &p(X) and z£ C. Then Cz is <т(Х; 
densely defined and <x(X, ¡F)-preclosed. Moreover, we have 

= C , | n З с " - ^ = (Cf)X . 
"Чес ' ! 

P r o o f . By Lemma 1.3 it is clear that Cz and C f are <j(X, J^), resp. o(SF, X)-
densely defined. For each x£@c and the functions (C^(x), cp) and 

;,Cf(cp)) defined on the strip {££C; |Im = |Im z\}, are regular extensions 
of the function 

R} t - (Ct(x), cp) = <x, C f (<?)>, 

hence (C2(x), q>)=(x, C f (<?)). It follows C z c ( C f ) x . In particular, Cz is a(X, .¥)-
preclosed. 

To end the proof, we have only to prove that the domain of ( C f ) x is contained 
in the domain of C z | p | QsD Let x be in the domain of (Cf ) x . By Lemma 1.3, 

cec c 

for each ¿ > 0 we have C f C f c C f C f ^ , thus 

CSi ( C f f = ( C f D f f с (Cf6 C f f = ( C f f C/s. 
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Again by Lemma 1.3, it follows that 

C€C 

a(X, J O - lim C,_Cf({x) = <r(X, lim {C?)*Cu(x) = 

= <r(X,JP)- lim Cfi(C?)X(x) = (Cf)*(x). 
O— + oo 

<t(X i^) Consequently x is in the domain of Cz\f\S>c ' . 
cec 5 

In the sequel we shall denote C f x , s r ) and c<?a(sr ,x> simply by Cz, respectively 
C f . We call C ~ C _ ( the analytic generator of the cosine family C. 

2. Spectral properties of the analytic generator of cosine families 

Let (X, IF) be a dual pair of Banach spaces and C a CT(X, ^ -cont inuous 
one-parameter cosine family in ^(X). We recall that by Lemma 1.2 (ii) 

lim l l n | | C , | | = Em -r-ln HQH < + . f—+ ~ t + « K 

On the other hand, if X^{0}, then 

Hm -ilnllC.il SO. t-*-+<*> t 

Indeed; we have for each /£R 

1 = ||C„|| = | | 2 C , C ( - C J ^ 2||C,||2+||C2i|| s 3 max {||C,||2, ||C2(||} 
so that 

0 — lim - i - l n l s i Em m a x j i In ||C,||, | | C j ) =• lim -i ln | |C, | | . 

t-»+oo Zl f"» +» I t It J «-» + oo t 

We say that C is of 0 exponential type if 
Em i l n | | C ( | | S O 

«-*+««> t 
that is, if X^{0}, 

m i l n ||C,|| = 0. t Co I 
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Let / i € C \ ( - ° ° , 0 ] . We denote 

arg n=8 where n=\n\eie, |0|<7r; In / i=ln \n\+iO. 

Then C3z-»/ i z =e z l n "€C is an entire function. The next lemma is the main technical 
result of this paragraph. 

Lemma 2.1. Let (X, be a dual pair of Banach spaces, C a <r(X, 3 - y 
continuous one-parameter cosine family of 0 exponential type in ^ ( X ) , C \ ( — <=o, 0] 
and X — (n2+l)/2 ¡1. Then the function R —C, defined by 

H li'—n'" n 

sin int sh 7It 

depends only on X, the integral 

p2-\' siniut i(M
2-1) ' shrri # Z 1 ^ 1 ' 

it t if n = 1 

c 9 , = f gl{t)Ctdt&,№ 
— oo 

exists and CgX?.+C.i)c:(X+C^i)Cg^ /x. 

Proo f . Since the roots of the equation A=(w2+l)/2w are /i and and 

fl 1 /i 1 

gA depends only on A. 
Choosing some co with 0<a)<7r — |arg we have 

f I g j i W I < + and to > Ilm —ln||C,|| = 0. 
f— -f oo £ 

— OO 

By our remarks after Lemma 1.2 it follows that Ca is well defined and 
CgjOs—CsCgA. Let x^C-i be arbitrary. Since the mapping 

is <7(X, ^ - r egu la r and extends 

R3S - CBxCs(x) = CsCgJx)(=X 

we have Cgfx)£3c and C _ ,Cg£x)=CgC _ ¡(x). Consequently (X+C_i)CgJx)= 

Finallygwe show that CgC_¡(x)=x-XCg,(x), that is C 9 A ( A + C _ I ) ( X ) = X . 
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Let us first assume f i ^ l and fix some. 0 < e < 1. Since by Lemma 1.2. (ii) 

K j l n sup ||Cc(*)|| SO, 
llmilsSl 

using Lemma 1.1 and the Cauchy integral theorem, we get 
+ « IT _ IT - n n" —fl " 

2(/i2—1) sin int СвхС-1(х)= f —JL—.VL.Jp-ct_i(x)dt+ , w J 2(u2— n sin int t ' 

+ f ->/• 2 n'1'- — Ct+i(x)dt = 2(n2—l) sin mi 

= _ l 2(д2 —1) sin in(f + ie) C , - ( | - I , i W ' i i + 

У /г ^ ( Л А 1 

2(/i2—1) sin in(t-ie) C'+(1-)iWrf'-
Defining the curves Г_ and Г + by 

r _ ( i ) = i - ( l - £ ) i , r _ ( i ) = 1+(1-B)i, i€R, 
we obtain 

/
и u'z~1 u~'z+i 

r 2(^2 —1) sin(inz —7t) 

/
II ll'z + 1 II —ir—1 
, 14 • • ** ч СГ(JC)dz = 

_ 2(a2 — l l s in (urz + 7rl 1 4 7 
2(n2— 1) sin(i7tz+7c) 

= J 2 0 ^ 1 ) sin ITTZ C:(x)dz + rf 2(^rT) I I ^ T " C«(*> 
Further, the residue theorem gives 

2(|i2—1) sin I7TZ ^ 2(/i2—1) SINI7TZ V 7 

so that, using again the Cauchy integral theorem, we conclude 

Cg C - I ( x ) = X+ f y C = 9A 2(/i2 —1) s i n i n *v y 
' + 

r 2(/i2—1) siniTiz i + 

= x-A f " Cz{x)dz = x-kCgAx). 
r

J u — 1 s i n IJIZ * + 

For n = 1 the proof is completely similar. 
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Theorem 2.2. Let (X, OF) be adualpair of Bcmach spaces and G a <r(X, i^)-
continuous one-parameter cosine family of 0 exponential type in Then 
<7(C()c[l, +oo). Moreover, for each A e C \ ( — — 1 ] the roots of the equation 
A = V + l ) / 2 / i belong to C \ ( - ° ° , 0 ) and 

( A + C . , ) - ^ 

f L^—Cidt if t1*1 
' 0* 2 - 1) Sh 711 

f -j—ctdt if X = 1. J sh 71/ J 

Proof . Let — 1] be arbitrary. If one of the roots of the equation 
say jil5 belonged to (— 0], then, taking in account that the 

other root is ju^1, we would have 

, _ v-i+nr1 _ _ j £ i l ± N l l - s _ 1 
2 2 ~ " 

Now let / i € C \ ( - ° ° , 0 ] be arbitrary, with A=(/za+l)/2/i, define gx: R - C as 
in Lemma 2.1. Then by this lemma C f l ; i(A+C_ l)c:(A+C_ i)C f i=/x holds, 
and this implies that C (A+.C_i)c:(A+C_,)Ci4. On the other hand, since 
( X + C 7 I ) C G J @ C = C 9 A ( A + C _ , ) C : / x , and ( is <r(X, ^>den'se in X, one 
gets easily that (A+C_ f)C f fA=/x. Consequently A+C_ ; is invertible and 
(A+cTT) - 1 = c g x t ^ ( X ) . 

A first consequence of Theorem 2.2 is the following unicity result; 

Coro l l a ry 2.3. Let (X, J^) be a dual pair of Banach spaces and C and D 
two o(X, ^-continuous one-parameter cosine families of 0 exponential type in 

If~cZi<zD7l, then C=D. 

Proof . By Theorem 2.2 we have for each J£R— {0} 

/ e 2 s + l r " e" 
2e? + - ' ) = 1 W ^ ) ' shTrf C ' d t ' 

that is, 

Similarly, 
2e> { 2e> + 'J _l shut 

e2s—1 / e25+1 — - r 1 sin is 
2e® 1 2e® 

„ -\ /• sin is ^ , „ 
/ — CO. 
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(e^+l — T 1 i^'+l r 1 . 

Since C . j C D . j implies I ^ + C - i J ^ +Z)-,J for every j€R, 

the above considerations yield 

4- OO + OO . 

/• sin /5 _ , r Sin is _ , 
^ sh7ti sh7T/ — oo —oo 

Using the inequality |sin a—sin J?|, a, /?€Rj and the Lebesgue dominated 
convergence theorem, it is easy to see that one can differentiate with respect to s 
under the sign of integration and we get 

f costs C.dt = f cos t s—r—D.dt . J sh7it ' J sh Kt ' — oo — oo 

In other words, for each x£X and the integrable continuous even functions 

R z > t - + - ^ { C t { x ) , < p ) and R 3t-~-l-(Dt(x),<p) 

have equal Fourier cosine transforms, so they coincide. Consequently C,=Dt; f£R. 

By Corollary 2.3, C_( determines C uniquely.. A second consequence of 
Theorem 2.2 is an in variance result: 

Co ro l l a ry 2.4. Let (X, 2F) be a dual pair of Banach spaces, C a <r(X, 2?)-
continuous one-parameter cosine family of 0 exponential type in 38^(X) and Y 
a ff(X, ¿F)-closed linear subspace of X. If there exists some A 0 £ C \ ( — — 1] 
with (A 0 +C~) - 1 YcY then C.YcY, /<=R. 

Proof . If A€C and lA-^MKAo+c")" 1 ! !" 1 , then (A+C~) _ 1 exists and 

(A+C~) - 1 = ¿ ( A - A 0 ) k ( ( A 0 + C ~ ) - t - 1 ^ ( X ) , > 
* = 0 

where the series converges in the operator norm. Thus, for such A, we have 
( A + C _ ; ) _ 1 Y C Y . Let yeY be arbitrary and such that (z, <p)=0; z£Y. 
By the first part of the proof, the analytic function 

C \ ( - o ° , - l ] 3 A - <(A + C~)- iO0, <P> 

vanishes on some neighbourhood, of A0, hence it vanishes identically. Using 



1.04 
I. CiorSnescu and L. Zsidd 

Theorem 2.2 similarly as in the proof of Corollary 2.3. we get successively 

^{C,{y),cp)dt = 0, s6R, 
— oo 

t 
f costs-^(ct(y),(p)dt = 0, s(ER, 

— oo 

(C,(y), <P.) = 0, i€R. 

By the Hahn—Banach theorem we conclude that C ,YcY, 7£R. 

C o r o l l a r y 2.5. Let (X, 2F) be a dual pair of Banach spaces, C a <r(X, 
continuous one-parameter cosine family of 0 exponential type in and Y and 
Z two o(X,&)-closed linear subspaces of X. If ( C ~ ) _ 1 Y c Z , (C_,)_ 1 Y c Z , 
then Y = Z . 

P r o o f . Let x<i®c ^. By Lemma 1.1 2CSC_¿x)=C s + i(x)4-C s_¡(x) , .v^R, 
so that the mapping 

{C€C; |IMC| ^ 1}3C - C ^ I W + C ^ . - W I X , 

which is (T(X, ^ - r egu la r , extends 

Thus C_t(x)£Sc t,2C_iC_l(x)=x+C_2i(x), that is / x + C _ 2 i c 2 ( C _ , ) 2 c 2 ( C ~ ) 2 . 
But (C~)2 is <r(X, J^-closed, hence 7 x + C l ^ c 2 ( C ~ ) 2 and ( / x + C T ^ ) - ^ 
= 2 - 1 ( C _ i ) - 2 . From the last equality, we get 

( / x + c Z d ~ l y * = 2 - 1 ( C ~ ) - 2 Y c 2 - 1 ( C ~ ) - 1 Z c Y, 

( h + C ^ d ^ Z = 2 - * ( C ~ ) - 2 Z c 2 - i ( C ~ ) " 1 Y c Z. 

Since C_2 i is the analytic generator of the cosine family 

by Corollary 2.4 it follows that C,YcY, C,ZcZ, f£R. In particular, by Lemma 1.3 
we have 

= Y, © c . ( nz < , ( X - ? ) = Z. 

Using now the invariance of Y under the action of C and the Hahn—Banach 
theorem, we deduce successively that C_,-0>)€Y and y=(C_¡)~1C_i(y)€(C_,)_1YcZ 
holds for each y£@c_{HY. Thus 

Y = ® c_ fD c: Z. 

One obtains similarly also the inclusion Z c Y . 
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3. Connections with one-parameter groups of operators 

Let (X, !F) be a dual pair of Banach spaces. We recall that the analytic 
extension U, of a CT(X, !F)-continuous one-parameter group 

U:RЭt 
at z£ C is defined by 

(x, graph has a <T(X, ^ - r e g u l a r extension 
on the strip Dz whose value at z is y 

and Uz is a a(X, ^ - c l o s e d and a(X, ^ -dense ly defined linear operator in X 
([3], Section 2). £/_; is called the analytic generator of U and provided that U 
is of 0 exponential type, that is, 

lira i , | | lnt / ( | | 0, 

it uniquely determines U ([3], Section 4). 

P r o p o s i t i o n 3.1. Let (X, J^) be a dual pair of Banach spaces and U a 
<T(X, &)-continuous one-parameter group in Then the formula 

defines a <r(X, ¿F)-continuous one-parameter cosine family in and 

Proo f . It is easy to verify that C is a a(X, ¿F) one-parameter cosine family 
in ^ r (X) . 

From the definition of the analytic extensions of U, respectively C, it follows 
immediately that ( l / 2 ) ( i / , + i / _ 2 ) c C . . Thus, it remains to prove only the inclusion 

Let be arbitrary and ¿ > 0 , /£R; then, by Lemma 1.3, we have 

CfiCz(x) = /" e-*«-*Ct(x) dt = 
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Since 

C 3 C - j" | f ^ e - W - W U M d t & L 

is an entire extension of 
R S i - t f . c ^ w e x 

where 

it follows that 

CfiCz{x) = j(Uz + U.z)ft(x), <5>0. 

Finally, since 

<r(X, lim Uit(x) = x, a(X,^)- lim C/aCz(x) = Cz(x), 

we conclude that x belongs to the domain of (1 /2) (Uz + U _ z f X ) and that 
(1 /2)(Uz+U_zfX'*\x)=Cz(x). 

In particular, if U is of 0 exponential type, then by Corollary 2.3, 
U_i + Ui uniquely determines the "cosine part" t—U,+ U-, of V. The "cosine 
part" of U has the advantage that the spectrum of its analytic generator is always 
included in [1,+°°), while the spectrum of £/_; is quite frequently=C (see [4]); 
this motivates the interest of cosine families in handling one-parameter groups of 
operators. 

Concerning applications, we restrict ourselves to a proof of the following result 
(see [9] and [5], Th. 4.1): 

Theo rem 3,2. Let H be a complex Hilbert space and C a weakly continuous 
one-parameter cosine family of 0 exponential type of self-adjoint linear operators on H. 
Then there exists an injective, positive, self-adjoint operator B in H such that 

C, = j(Bi, + B-") = cos(t\nB), /6 R. 

Proof . By Theorem 2.2, < x ( C ~ ) c [ l , a n d 

(C~)-' = / , 1 ; Ctdty . 
JL + 

thus C~ is self-adjoint and C l > / H . It follows that B = C ~ + ( ( C ~ ) 2 - / H ) 1 / S 

is an injective, positive, self-adjoint linear operator in H and 

= c ~ - ( (C~) 2 - /H)1/2e a ( H ) . -

(see, for example, [10], Section 128). 
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Now, the formula Ut=B", tÇ. R defines a strongly continuous one-parameter 
group of unitaries on H and U-,=B ([3], Th. 6.1). By Proposition 3.1 the cosine 
families C and R3 i—(l/2)(i/ (+i/_,) have equal analytic generators, so by Cor-
ollary 2.3 

Ct = j(Ut + U-t), te R. 
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