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A combinatorial proof of a theorem of P. Levy 
on the local time 
E. CSÁKI and P. RÉVÉSZ 

Dedicated to Professor B. Szokefalvi-Nagy on the occasion of his 70th birthday 

1. Introduction 

Let {W(t); /SO} be a Wiener process and introduce the notations 
M(t) = sup W(s), Y(t) = M{t)-W{t) 

oms^t 
and for any Borel set A let 

H(A, t) = A{s: W(s)£A} 

be the occupation time of W where X is the Lebesgue measure. It is well-known 
that H(A, t) (for any fixed t) is a random measure absolutely continuous with 
respect to X with probability 1. The Radon—Nikodym derivative of H is called 
the local time of W and it will be denoted by t] i.e. t](x, t) is defined by 

H{A,t)= fr,(.x,t)dx. 
A 

Finally let ^(0, t) = >/(/)• 
A celebrated result of P. Lévy reads as follows (see for example KNIGHT [7], 

Theorem 5.3.7). 

Theo rem A. We have 

{F(0, M(t);' = 0} == {\W(t)\, r}(t); t ^ 0} 

i.e. the finite dimensional distributions of the vector valued process {(Y(t), M(t)); t £ 0} 
are equal to the corresponding distributions of {(^(Z)!, r]{t j)\ t SO}. 

A natural question arises: what is the analogue of Theorem A in the case of 
random walk. In order to formulate our problem precisely introduce the following 
notations. 
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Let X1,X2,... be a sequence of i.i.d.r.v.'s with P(AT1 = 1)=P(A'1 = — 1) = 1/2 
and let 

S(0)=0, S(n) = X1+Xt+...+Xu (n = 1, 2, ...), 
m(ri) = max S(k), y(n) = m(ri) — S(n), 1 ̂ k^n 
¿(0, n) = f(n) =JT{k: k^n, S(k) = 0} 

where JV{- } is the cardinality of the set in brackets. Now our question is: does 
Theorem A remain true if we replace W(t), Y(t), M(t), t](t) by S(n); y(ri), m(n), 
£(«) respectively (and n runs over the integers). The answer of this question is 
negative. This fact can be seen from the following well-known 

Theorem B. 

P{£(2n) =k} = ^ - k ( 2 n ~ k ) (k = 0, 1, 2, ..., h) 

(¿ = 0 , 1 , 2 , . . . » . 

and 
n 

P M n ) = k} = 1 

In spite of this disappointing fact we prove that Theorem A is "nearly true" 
for random walks. In fact we have 

Theorem 1. Let X1,XS,... be a sequence of i.i.d.r.v.'s with P(A^ = I) = 
= P ( X j = — l ) = l / 2 defined on a probability space {i2, S, P}. Then one can define 
a sequence Z l 5 Z2 , ... of i.i.d.r.v.'s on the same probability space {i2, S, P} such that 
P(Z 1 =1)=P(Z 1 = - l ) = l / 2 and 

n-v*-d((y{n) , m{n% (|5(«)|, an)) ) - 0 a.s. 
for any e>0 where 
S(0) = r(0) = 0, S(n) = X1+X2+...+X„, T(ri)=Z1+Z2+..:+Zn (n = 1,2, . . . ) , 

£(n) = jV{k\ k^n, S(k) = 0}, m(n) = max T(k), y(») = m(n)-T(n) 

and d is the Euclidean distance of the vectors i.e. 

d((fli, a2), (blt b2)) = + 
The proof of this Theorem is very elementary and will be presented in Section 2. 

In Section 3 we show that Theorem A can be obtained as a simple consequence of 
Theorem 1. 

In Section 4 we show that replacing the number of roots of the random walk 
S(n) of Theorem 1 by the number of crossing points of that walk we can obtain 
a much better rate than that of Theorem 1. In Section 5 as an application of Theorem 
A (or that of Theorem 1) we prove a Strassen-type law of iterated logarithm for 
local time. 
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2. Proof of Theorem 1 

Using the notations of Theorem 1 we also introduce the following notations : 

= min {/: / > 0, St = 0}, 

Q2 = min {i: i > glt Si = 0}, 

q, + 1 = min {¿: / > gt, Si = 0}, ..., 

if l ^ j S j h - 1 , 
-Xei+1Xj+2 if 

- ^ , + 1 ^ + i + i if <?/-(/-1) S ; si e ,+!-( / +1), 
Zj=\ 

The following lemma is immediately clear by the above definitions. 

Lemma 1. 

1°. Z l 5 Z 2 , ... is a sequence of i.i.d.r.v.'s with P(Zl = + l) = P(Z t = - l)=J/2. 

2°. T(k)-T{Ql-l) = 2 = j=e,-d-1) 
k 

= — + i 2 Xj+i + i 
— 0 if ¡ ? , - ( / - l ) S / c S ft + 1 - / - 3 , 
= 0 if k = g, + 1-l-2, 
= 1 if k=Ql+1-(l +1). 

3°. i (e l + i ) = = 7Xi?1+11 ( '+ ! ) ) = = i a ( e / + i - f ( e i + i ) ) 
0 = 0, 1, 2,.. .). 

4°. For any Ő/+1 — w e have 

Qt+i-QÍQi + i) = n-ÉOO = 0/ + 2-íte/+2) + l, 
hence 

and 

i.e. 

and 

Z(n) = Z(Q,+J) = == m(n-€(n)) 

£00 = f (ö /+2)- l = w ( e í + 2 - ^ ( e , + 2 ) ) - l 

| í (n ) - / f t (« - í (» ) ) | S I (n = 1,2,••••)• 

So i|S(fc +1)|-1 if l S f c ^ - 2 , 
n } l0=|5(fc)|-l if k = Ql-1 

; lo = |S(fc + / - 1 ) 1 - 1 if k — Qi~l. 
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The following strong laws are known: 

Lemma 2. 

(21) (2n log tog n)112 = 1 ^ 
( c f . KESTEN [6]). 

(2.2) lim sup —— - — ^ 21'2 a.s. 
«-» ( , n x1'2 

( « „ l o g - ) 

(cf. CSÖRGŐD-RÉVÉSZ [4], Theorem 3 .1 .1) where an=((2+e)n loglog n)1'2, esO. 

,• | 5 ( « + / ) | - | ^ ( » ) | ' (2.3) lim sup max — - — ,,„ = 1 a.s. o=sl36„ / , , n V'2 

(cf. CSÖRGŐ—RÉVÉSZ [4], Theorem 3.1.1 and Remark 3.1.1) where bn=n1/2 loglog n. 
Consequently 

(2 4) lim sun - £ ( " ) ) s 21/2 a. j. 
- JLup (2n loglog n)1/4 (log n)1/2 

Further we have 
(2.5) lim inf 4 (n~2 loglog n) g„ = 1 a.s. 

n—oo 

(c f . MIJNHEER [9], p . 5 3 a n d RÉNYI [10] p . 236) . 

Remark . Theorem 3.1.1 of Csörgő—Révész [4] states that 
lim sup sup — = 21'2 a.s. 

0SsS»„ < n x1'2 

(űJOgt) 
what easily implies (2.2). Applying Theorem A, CSÁKI—CSÖRGŐ—FÖLDES—RÉVÉSZ [1] 
also proved that 

m(n) — th(n-a„) 
h ^ i u p - r — = 1 a s-rlogid 

(2.4) of Lemma 2 and 4° of Lemma 1 together imply 

. \£(n)—m(n)\ /-• Lemma 3. lim sup .. , , — t t j t = \2 a.s. 
(2« loglog n)1/4 (tog ra)1/2 
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For any positive integer k let I=l(k) be defined by Qi-i—(l— — Then 
by (2.5) of Lemma 2 we have 

L e m m a 4. lim = 0 a.s. n loglog n 

5° of Lemma 1, (2.3) of Lemma 2 and Lemma 4 together imply 

L e m m a 5. hmsup n l / 4 ¿ o g n ) ( l o g l o ^ ) ) 1 / 2 S ft 

Lemmas 3 and 5 together prove Theorem 1. 

3. Proof of Theorem A 

The proof of Theorem A is based on Theorem 1 and the following invariance 
principle 

T h e o r e m C (RÉVÉSZ [11]). Let {W(t); t^0} be a Wiener process defined on 
a probability space {Í2, S, P}. Then on the same probability space £2 one can define 
a sequence Xx,X2,... of i.i.d.r.v.'s with P(X1 =+ 1)=F(X1 =-l)=i/2 such that 

lim n~1/4-£|(j;(n) —>/(n)| = 0 a.s. 
n~* CO 

and 
lim n - ^ - ' I S i n ) - ^ » ! ) ! = 0 a.s. 

oo 
for any £>0. 

In order to prove Theorem A it is enough to prove 

L e m m a 6. 

A = {r(tj, 7 ( 0 , ..., 7 ( 0 , M(4), M(Q, ..., M(/„)} = 

= {№)I, \wm .... \w(t„)I, n(tl), ti(tj,..,, 1,(0} = B 

provided that 0 < t^ i 2 <. . . < /„ s 1. 

Applying the well-known formula . {W{t)-, t^O} (for any c > 0 ) 
I f c J 

one gets 

L e m m a 7. For any T>0 we have 

, gíY&T) Y(t2T) Y(tnT) M&T) M(t2T) M(tnT)\ A — | yl/2 ' yl/2 ' yl/2 ' yl/2 ' yl/2 ' y 1/2 J 
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and 
n3[\W{ttT)\ \W{.hT)\ \W(tnT) | rj(t1T) n{t2T). n(tnT)y 

l f f ' f f " " f f ' f f ' f f " "' f f ' . J 

By Theorem C we have 

Lemma 8. One can define a random walk 5(1), 5(2),... on the probability 
space of W such that 

W i n n = W W u t (/ = 1,2, , . . ,») 
f f iT 

and 
n^fiX = MIß. + 0 ( T - ^ ) (/ = 1, 2, ..., „). f f f f 

Applying Theorem 1 we have 

Lemma .9. Given the random walk of Lemma 8 one can define another random 
walk T(l), T(2), ... such that 

. m n = M t £ ) _ + o i T _ m + s ) ( i = 1 2 ; 

f r iIT 
and 

= + ( / = 1 , 2 , ...,„). 
f r f f 

Applying again Theorem C we get 

Lemma 10. Given the random walk T{\),T{2), ... of Lemma 9 one can define 
a Wiener process { W(t)\ t >0} such that 

HUT) = Y{t£) +o(r-1/4+0 (/ = 1)2j ...,„) 
f f f f 

and 
m j t j ) = m i T ) + l i + c ) = 

ir it 
where 

M(t)= sup W(s) and Y{t) = M(i)—W(t). 
OSSSf 

Lemmas 8 and 10 together imply 

Lemma 11. 

• i s f o p i 15(^)1 |5(f . r ) | UhTy ^ c(/2T) gt„T) 
f f ' ' ÍT ' f f ' iT ' f f ' f f 

= b(T)^>B as T — °o 
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and 
HhT) y{t2T) y{tnT) m(t\T) m(/.,T) m{t„T)\ _ 

f r ' f f ' iT ' j/r ' f f 

= a(T)^-A as 

By Lemma 9 the limit distributions of a(T) and ¿(7) cannot be different. 
Hence we have Lemma 6, and hence Theorem A. 

4. Roots and crossings 

Theorem 1 says that the vector (jS(/;)|, £(«)) can be approximated by the 
vector (y(n), m(n)) in order TJ1/4+£ while Theorem C says that the vector (t](n),W(n)) 
can be approximated by the vector (£(/;), S(n)) in the same order H1/4+£. It is 
natural to ask whether this order is the best possible or not. Unfortunately we do not 
know the answer of this question. However we can show that considering the number 
of crossings 9(n) instead of the number of roots c{n) better rates can be 
achieved in Theorems 1 and C.. 

Let 
(4.1) 6(n)=Jr{k:k^n,S(k-l)S(k+i)<0} 

be the number of crossings. Then we have 

T h e o r e m 2. Let X1, X2, ... be a sequence of i.i.d.r.v.'s with P(Xl = 1) = 
= P(A\ = — l ) = l / 2 defined on a probability space {i2, S, P}. Then one can define 
a sequence Z l 5 Z 2 , . . . of i.i.d.r.v.'s on the same probability space {Q, S, P} such that 
P ( Z 1 = l ) = P(Z l = — 1)= 1/2 and 

(4.2) . \m(n) — 20(n)\ si 1, 

(4.3) |.v(«)-|S(«)| | 
for «=1,2, ..., where 

s(0) = r(0) = o,. S (h) = T(n) = z1+zi+:..+z„ 

(n = 1,2, . . . ) , 

m(n) = max T(k), y(n) = m{n) — T{n). Osic^ti 
P r o o f . Let 

x1 = m i n { / : / > 0 , S ( / - 1 ) S ( / + 1) < 0}, 

t2 = min {¡': / > Tj, S(i -1 )S(i +1) < 0}, 

t, + 1 = min{/: i > t,, S(/ —1)S(/ + 1) < 0), 
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and 
—-^í-^O+i if l S j S t ! , 

if T i + l ^ j ' S T , , 

+
 + 1 if T, + l S j S T , + 1 

This transformation was given in CSAKI and VINCZE [3]. The following lemma 
is clearly true. 

L e m m a 12. 

1°. Z l 5 Z 2 , . . . is a sequence of i.i.d.r.v.'s with P(ZX = + l ) = P ( Z j = - 1 ) = 1/2. 

2° T{k) — 7"(t,) = J Z, = ( - l J = 
j=t,+i j=t,+i 

= 1 / / k = r l + 1 - l , 
= 2 / / fc = r , + 1 . 

5°. { , 

3°. 20(T,)=2/ = r(r l)=m(T (), / = 1 ,2; . . . . 
4°. For T( = w<T|+1 u'£? have @(n) — /, 2 / ^w(w)=2 /+1 , consequently 

J 2 / + 1 —|S(fc + l)| / / T, + l ^ f c ^ T l + 1 - l , 
. 2 / + 2 - | S ( k ) | / / fc = r ( + 1 , 

therefore 
y(k) = m(k) — T(k) |S(fc + l)| |S(fe)| + l 

and 

y(k) = m(k)-T(k) £ \S(k+1)|-1 £ |S(fc)| —2. 

This proves Theorem 2. 
C o r o l l a r y . On a rich enough probability space {i2, S, P} one can define 

a Wiener process {W(t)\ t ^0} and a sequence X1,X2,... of i.i.d.r.v.'s with 
P(ZX = +l )=P(A' 1 = - l ) = l / 2 such that 

(4.4) | |5(n)| - |W(«)|| = 0(log n) a.s. 
and 
(4.5) |20(n) — »7C">| = 0(log n) a.s. 

where S(ri)=Xx + X2 + ...+X„, 0(n) is defined by (4.1) and i]( •) is the local time 
at zero of W(-). 
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Proof . Let us start with the random walk X±,X2, ... . Then construct a 
random walk Z l 5 Z 2 , . . . according to Theorem 2. Then by the theorem of KOMLÓS, 
MAJOR and TUSNÁDY [8] one can construct a Wiener process W-^t) such that 

(4.6) sup |J(fc)—^(k)! = 0(log n) a.s. 
ksn 

where T(k)=Z1+...+Zk. Put Ml(t)= max W^s). Then according to Lévy's 
theorem (Theorem A), 1^(01=Af1(/) — W^t) is the absolute value of a Wiener 
process whose local time r\{t)=M1(t). Now 

\r,(n)-2d(n)\ == |M1(n)-w(n)| + |/«(n)-20(n)|, 

where m(n)= max T(k). (4.5) follows from (4.2) and (4.6). Furthermore 

| | s ( n ) | - № l | ^ H ^ i - ^ ^ l + i / f i W - M . w i + i r i n ) - ^ ^ ) ! , 

where y(n)—m(n) — T(n). (4.4) follows from (4.3) and (4.6). 

5. A Strassen-type law of iterated logarithm 

Let {W(t); t SO} be a Wiener process and let 

wT(x) = W(x) = b^WixT) (0=2*^1) 
where 

bT = (2T log log T)1/2 (T > e). 

Further let y c C ( 0 , 1 ) be the set of absolutely continuous functions (with respect 
to the Lebesgue measure) for which 

i 
/(0) = 0 and / {f'{x)fdx ^ 1. 

o 
The celebrated Strassen's (functional) law of iterated logarithm says: 

Theorem D. [13] The net {fVT(x); O á x á l } is relatively compact in C(0,1) 
with probability 1 and the set of its limit points is Sf. 

It is an interesting question to characterize the limit points of t](x, T) as T— 
DONSKER and VARADHAN [5] solved this problem. Here we intend to present a result 
characterizing the limit points of the net 

yT(x) = y(x) = br1t](0,xT) (O^x^l). 

Since yT(x) (OSx^ l ) for any fixed T is a non-decreasing function, its limit points 
must be also non-decreasing. Introduce the following 
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D e f i n i t i o n . Let be the set of non-decreasing elements of S f . 

Then we formulate our 

T h e o r e m 3. The net {»(.v); O^.vS 1} is relatively compact in C(0, 1) 
with probability 1 and the set of its limit points is Jl. 

Proof . This result is a trivial consequence of Theorems A and D. 

It looks more interesting to characterize jointly the limit points of the vectors 
{ivr(X)> J r W ; 0 = x = 1} (T— Intuitively it is clear enough that yT(x) must be 
constant in an interval where wT(x)¿¿0. Hence in order to characterize the set of 
possible limit points it is natural to introduce the following 

D e f i n i t i o n . Let J f be the set of those two-dimensional vector valued func-
tions h(x) = ( f ( x ) , g(x)) ( O ^ x ^ l ) for which 

(i) / and g are absolutely continuous in (0, 1) with respect to the Lebesgue-
measure, 

(ii) /(0) = g(0) = 0, 
(iii) g is non-decreasing, 
(iv) f(x)g%x) = 0 ( 0 < x < l ) , 

(v) j(f'(x)+g'(x)fdx^\. 
0 

Now we have 

T h e o r e m 4. The net {it'r(.\-j, yr(x)', O^.v^ 1} (T— is relatively compact 
in C( 0,1)XC(0, 1) with probability 1 and the set of its limit points is J f . 

This Theorem is agáin a simple consequence of Theorems A and D. Theorem 4 
clearly implies the following interesting 

Consequence . The net {wT(l), yT(l)}={b-1W(T), b ' 1 ^ ^ ) } is relatively 
compact in the plane R2 with probability 1 and the set of its limit points is the triangle 

T= {(x,yy. -1 

which, in turn, also implies 

limsup b^irii0, T) + \W(T)\) = 1 a.s. 

Remark . Theorem 1 shows that our Theorems 3 and 4 as well as the above 
Consequence remain true if we investigate the properties of the random walk 
5(1), 5(2), ... of the introduction instead of a Wiener process. The invariance 
principles of CSÁKI—RÉVÉSZ [2] and RÉVÉSZ [12] shows that these results can be 
extended for more general random walks. 
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