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On how long interval is the empirical characteristic 
function uniformly consistent? 

SÁNDOR CSÖRGŐ and VILMOS TOTIK 

In honour of Professor Béla Szökefalvi-Nagy on his seventieth birthday 

Introduction, results, and discussion 

Let X1;X2, ... be a sequence of independent identically distributed ¿-dimen-
sional random vectors, d S1, defined on a probability space (£2, si, P), with 
common distribution function F(x), Rd, and characteristic function 

C( / )= f e>«'*> dF(x), / = (/!,..., 06R", 
R« 

where < •, • > stands for the inner product of Rd. The nth empirical characteristic 
function of the sequence is 

CM = -J- ie«'-xJ> = f €'<••*> dF„(x), t = (/T, ..., OCR", n j=i ¿d 

where Fn(x), x£Rd, denotes the empirical distribution function of .... X„. 
By any advanced form of the strong law of large numbers, lim C„(t)=C(t) almost n-* CO 
surely at each fixed Rd, but more than this is still trivial. Indeed, the ¿-variate 
Glivenko—Cantelli theorem for F„ and the ¿-variate continuity theorem of Lévy 
readily imply that 
(1) lim sup |C„(0-C(0 | = 0 

n—<*> \t\mT 

almost surely for any fixed positive oo, that is, in statistical terminology, C„ 
is a strongly uniformly consistent estimator for C on any fixed bounded subset 
of R". 
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On the other hand, C„(0 is a ¿-variate almost periodic function for each n, 
at each Q where it is defined, and hence if 

An = sup|C„(/)-C(i)| 
f € R d 

converges to zero at only one single co£Q, then by Satz X X V I of BOCHNER [1] the 
limiting function C(t) must be almost periodic. But then, by a simple extension 
of the corresponding univariate result (Corollary 1 of Theorem 3 .2 .3 of LUKACS [5]; 
here we use the Eindeutigkeitssatz (Satz X X X V I I ) of BOCHNER [1] instead of the 
corresponding univariate uniqueness theorem of Bohr), C(t) must belong to a purely 
discrete F, i.e., it is of the form 

C(t) = Z gt^O-V, qkS 0, 2<lt=U 
k k 

with a finite or infinite sequence of vectors Xk. That A„ does converge to zero almost 
surely in such a case was pointed out by FEUERVERGER and MUREIKA [4] for uni-
variate characteristic functions, i.e., for discrete real random variables, and later 
b y CSÖRGŐ [3] f o r d ^ l . 

So if we wish to say more than (1) in the general case, then we are lead to 
considering the quantities 

A„{T,) = sup [C„(/)-C(/)| 
l'|3-r„ 

for some sequence {T,,} of positive numbers converging to infinity. This has been 
first done by FEUERVERGER and MUREIKA [4] in the univariate case, who showed 
that if d = 1 and the singular part of C vanishes at infinity, then lim An (T„) = 0 

almost surely whenever R„=o((/7/log «)1/2). This result was improved by CSÖRGŐ 

[2, 3] (d = l and d^l, respectively) who showed that lim An(T„)=0 almost surely OO 
for any characteristic function whenever T„=o((n/log log w)1/(2d)). The latter 
result is in fact an easy consequence of Kiefer's well-known rf-variate extension of 
the Chung—Smirnov univariate law of the iterated logarithm for F„. This familiar 
rate has made us think for a longer time that it was perhaps best possible, although 
its dependence on the dimension appeared strange. It is in fact very far from being 
best possible, and the final solution presented below is rather surprising. 

T h e o r e m 1. For any d-variate characteristic function C, if lim (log Tn)/n = 0 It-* CO 
then lim A„(T„)=0 almost surely. 

It-* OO 

T h e o r e m 2. If lim |C(/ l 5 . . . , tk, i d ) |=0 for some k, l^k^d, and if 

lim (log T„)/n> 0, then there exists a positive e such that n— OO 

JmT P{MT„) § £ } > 0 . 

\ 
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We see that the rate T„=exp (o(n)) is not only best possible in general for 
almost sure convergence, but if we take any faster sequence T„ then even stochastic 
convergence cannot be retained for any characteristic function vanishing at infinity 
along at least one path. 

The proof of Theorem 2 implies that if log Tn^ynk, k=1,2, ..., for a sub-
sequence {«*} of the natural numbers and some y>0, then for any subsequence 
{mk} of {«*} the sequence 

sup |C r a f c (0-C(0 | 
I'l *Tmk 

does not converge to zero in probability. Since the topology of stochastic convergence 
is metrisable, and since for every T > 0 

P { s u p | C , „ K 0 ) - C ( I ) | > £ T ( R ) } > 0 
| t | s r 

with some ek(T)> 0 (the opposite could only occur in the case when C(t)= 
=exp (i(t, X)) with some vector X, i.e., when the distribution is degenerate at X, 
but this case is excluded under the hypothesis of Theorem 2), the following some-
what sharper form of Theorem 2 is also true: If lim |C(/1? ..., tk, ..., / d ) |=0 for 

some k, l^k^d, and if log Tn^ynk, k= 1 ,2, . . . , for a subsequence {wfc} of 
positive integers and some y > 0 , then there is a positive e such that 

P{ sup | C „ f c ( 0 - C ( 0 | S e } s £ 
If I ^ T 

is satisfied for all k. "k 

The proof in the positive direction is quite straightforward. Essentially it 
imitates that of the easier half of the continuity theorem in conjunction with the 
exponential inequality of Bernstein. Exactly the same approach was taken in [2, 3] 
for handling the much harder problem of weak convergence, or strong approxima-
tion of the process n1/2(C„(-)—C(-)). It was not realised then that this approach 
is also suitable for the easier problem of uniform consistency on long intervals. 
On the other hand, the proof of Theorem 2 shows that the behaviour of A„(T„) 
is intimately connected with an old number-theoretic problem. Indeed, our starting 
point will be Dirichlet's classic result in diophantine approximation. 

Having Theorems 1 and 2 above, further questions can be posed which may be 
irrelevant from the statistical point of view but are interesting as purely probabilistic 
problems. Set Lk= Em |C(i l5 ..., tk,..., k=\,..., d. Can Tn be faster than 
exp (o(n)) if L—min (£•!,..., £ d ) > 0 but the distribution is not purely discrete? 
In the positive direction we do not have anything more than Theorem 1. In the 
negative direction the hardest subcase seems to be the one when L= 1. Otherwise 
a slight modification of the proof of Theorem 2 below also gives the following result: 
/ / 0 < L < 1 and lim (log T„)/n >log (In/arc cos L), then lim P{A n{Tn)^£}>0 n-+ oo Tt->oo 

with some positive e. 
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Proofs 

Theorem 1. Let £>0 be artbitrarily small, and choose K=K(s, F) 
so large that 

J d F (x) S 

Ms* 8 " 

Writing D„{t)=B„(t)-B{t), we have 

sup |Z 
l'|sr„ 

with the truncated integrals 

J„(rn)=g sup ID,(r)|+ sup 1 ^ , ( 0 - ^ ( 0 1 + sup | f i ( 0 - C ( 0 | 
| < | s r „ |<| ST„ | ( | S T „ 

B(t) = f dF(x), 
|*|sK 

Bn(t) = f dF„(x) = | ± el<t'x>Wji ^ *), 
W¿K " i=i 

where /(A) denotes the indicator of the event A. The second term is 

1 
— sup 
n l'lsr„ 

1 -A 
2 EWX(\XJ\ > K) - 2X(\XJ\ > K), n 

and these bounds converge almost surely to J dF(x) which is also a bound for the 
H=>K 

third term. 
Let us cover the cube [-T„,Tn)d by Nn=(l($Kd3'2Tn)/s] + ]y disjoint small 

cubes AX, ..., AN , the edges of each of which are of length e/(4A"i/a/2), and let 
t 1 , . . . , t N be the centres of these cubes. Then 

" n 

sup |A,(0l = max |A,(A)I+ max sup \Dn(t)~Dtt(tk)\ s max \Dn(tk)\ + ^~, 

for 

^ - 2 \(s-t, XjM\Xj\ S K)+ f \(s-t, x)\ dF(x) s2dK\s-t\, s, idR". 
n J=i I*Isa: 

(In fact, the finer almost sure upper bound 

4 . / 
• (s-t,x) sin-1— - dF{x) 

can be given here, but this is irrelevant in the present context, yielding the same 
result). Summing up, 

(2) 
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almost surely for large enough n, the threshold depending on a>. Now 

s mt>- - tMTIJH - IB 
with some constant M = M ( e , F,d), where the random variables 

Rj{t) = (cos </, XJ))X{\XJ\ K)- f cos (t, x)dF(x), j = 1, ..., n, 
IxtSK 

are independent, |/?y(0l=2, ERj(t)-0, and 

v2 (/) = ER) (t) = f cos2 (t, x) dF(x) - ( f cos (t, x) dF(x)f S 1. 
1*1 SK 1*1 SK 

The random functions Ij(t), j = 1, ..., n, are defined with the cosine function 
replaced by the sine, and hence these are also independent and identically distributed 
with | / / i ) l = 2 , £ 7 , ( 0 = 0 and £/?(/) = 1- Therefore the Bernstein inequality 
([6], Chapter X, §1, Lemma 1) gives 

i l l " e l f2e 32, 
in I j f i 4J 1ilJw 

if e S 2v2(t), 

2e 64»2«, if e^2v2(t). 

Since v2(i)= 1 and the probability- in question is not greater than 
2 exp (—£2n/64), and the same holds for the other one with the J/s. Thus 

p„ ^ 4MT?,e 64 . 

Let ¿<e2/(64c/). Then for large enough n, T„^exp(Sn), and hence 2 / ' « < c o -
n = l 

The Borel—Cantelli lemma and (2) give the desired result. 

T h e o r e m 2. Since 
sup IC, ,^ , . . . , td)-C{h,...,td)\ s 

I C , <d) l a r „ 

S sup |C,,(0, ..., 0, lk, 0, ..., 0) —C(0, ..., 0, tk, 0, ..., 0)|, 
-TnStkST„ 

where C„(0, ..., 0, tk, 0, ..., 0) is the empirical characteristic function of the ktb 

components of Xx,...,Xn and C(0, ..., 0, tk, 0 , . . . , 0) is the common charac-
teristic function of these components, it is clearly enough to prove the theorem in the 
univariate case. We assume therefore that d = 1, i.e., that X— {X1, X2, ...} are 
independent real random variables with common characteristic function C(t), 
-CO<Z<<X,, with lim ]C(0 |=0. 

10 
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Let 

Sn(t) = Sn(f, X) = 2 ei,x'-

Then C„(t)=n~1S„(t), and the theorem will easily follow from the following propo-
sition of independent interest, in which there is no assumption whatsoever on the 
common characteristic function, or distribution, of the independent variables 

P r o p o s i t i o n . If JV= {H*}~=1 denotes an arbitrary nondecreasing sequence of 
natural numbers and if 

p.C/f) = sup inf Dm P\ sup i ^ t M . a m } 

then pa(jV)>0 for every a > l . 

Indeed, taking for granted the validity of this Proposition, Theorem 2 can be 
proved as follows. By assumption there is a y > § such that T n ^ e y " k for some 
subsequence {nk} of the positive integers. On applying the Proposition with 
a = e y > l , we obtain an M > 0 and a ¿ > 0 such that 

\s»M Pi s u p J * * « ! s A f U a 
iKSISei"« J 

for every K >0. Choosing K so large that \C(t)\<M/2 be satisfied for t^K 
and then putting s—M/2, we obtain 

Jim P{ sup \C„k(t) - C(/)| > e} ^ Em P{ sup |C„fc(0| fe Ai\ S 5, 
l|(|aTnfc J I K s t s e y n k } 

which is the desired result. 

In order to prove the Proposition, define 

PW = inf {a: > 0}. 

What we have to show is that P i ^ ) — 1. First we establish the following properties 
of 1 

(i) P f o r every JT, 
(ii) if J{= {mt}~=1 is another sequence of positive integers with 

(3) nk-mk = 0( 1), k 
then P(JT)=P(Jf) . 

(iii) if 2Jr={2n k }^ 1 then (0(2 
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The proof of (i) is based on Dirichlet's theorem (see e.g. §2 of [7]) stating that if 
yi , ...,y„ are arbitrary real numbers, K > 0 and a > l , then there is an integer 
t£[K, Kctn] such that with appropriate integers Vi, ..., v„ the inequalities 

\tyj-vyl<7> j = U-,n, 

are satisfied simultaneously. Applying this with a=5 and yj=x ¡/2tz, j=l, ..., n, 
we get that for arbitrary real numbers xt, ...,x„ and K > 0 there is an integer 
t,K^tsK5", such that 

lit 
.cos — 2 e"xJ ^ R e i ^ e " ^ } = ¿ R e e ' ^ j - ^ V s J Re e' 5 = n< 

j=i i;=i ) j=i j=i 
Since for every fixed K, we have K5"<6" for all sufficiently large n, it follows that 

i n f I I 5 / > j sup M S C 0 S M = 1 . 
W a s » * »* 5 J 

This means that p6(Jr)=1, and hence (i) is proved. 
Now suppose (3) and let a>~fHJf). If we choose in between, fl{J r)<ct i<a., 

then there exist an 0 and a ¿ > 0 such that 

inf lim P[ sup 
I Kstsx^ K J 

But (3) implies that for all large enough k, a ^ g a j ' and 

\s„M _ I S J O I - k - m J ^ 1 I S J 0 I ^ r J L l 

and so 
mk nk+\nk-mk\ 2 nk 

inf lim P J sup J S s W L ^ U 
lKa(sam fc HI* 3 J -

s inf lim p[ sup M a M\ = D > 0. 
1 1 nk I 

This means that pa{Ji)>0. Since this is true for all we can conclude that 
/?(«//) ̂ ( . /K) . Reversing the role of Jf and Ji, we obtain the opposite inequality, 
and hence (ii) is also proved. 

Turning now to the proof of (iii), we introduce the following subsequences of 
the original X sequence: 

= {-^i» X<], X10, ...}, X^ = {X2, X5, Xs, ...}, 

y^1' = {x2, X3, X5, X6, Xs, Xq, Xh, X12, •••}, 

Y® = {^i, X3, Xi,Xi, X1, X10, Xxi, ...}, 

10* 
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and 

YW = {XI, X2, XT, , XJ, XG, X10, XN, ...}. 

Let For each k, 
S^it; Y™)=Snk(t; X^+S^t; 

whence 

P r . < 2 J f ) = lim lim fimp\ sup l 5*--^ y(3))l ^ M ] 

^ lim lim Rm [ p \ sup J M ^ I L s + 

+ P ( S U P J & C Y J A * " } ) * 

^ lim lim 115 p / sup ^ M U 
\KStSt-k nk J 

+ lim lim Dm p / sup l ^ S J ^ l ^ M1 = 0 + 0 = 0, . 
M J O K — J 

where, at the last step, we used a</?(yF). Thus a.<fi(jV) implies / a ^ / ? ^ ^ ) . 
Therefore I J f ^ f . 

Now let a<jS(2^). Clearly, 

Hence, similarly as above, 

<0 = lim lim lim P\ sup * (1>) l 

" t o * - - * - - w* J 

^ lim lim lim ipi sup J ^ L Z ^ + 

+ P i sup ^ y ( 3 ) ) l SUP i ^ M l ^ M n . 

l i ^ s A 2n* 3 J 2w* 3 JJ 

= 0+0+0 = 0, 
i.e., a<)J(2J/") implies a T h e r e f o r e the opposite inequality (/?(2JT)fS: 
^P{J f ) also follows, and hence we have (iii). 
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Having now the three properties of the proof of our Proposition is 
easy. For a positive integer m, set 

Since for fixed m, 

2m[^]-nk = 0(l), co, 

we obtain by property (ii) that 

and, by an w-fold application of property (iii), that 

Thus, by property (i), 
i 

and since this holds for any integer m s l , the equality P(JV)=1 follows. 
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