On contractive ρ -dilations

E. DURSZT

Dedicated to Professor B. Sz.-Nagy on the occasion of his seventieth birthday

Let T be a (bounded linear) operator on a Hilbert space \mathfrak{H} and ϱ a positive number. We say that W is a ϱ -dilation of T if W is an operator on a Hilbert space $\mathfrak{K} \supset \mathfrak{H}$ and

(1)
$$T^{n}h = \varrho PW^{n}h \quad (h \in \mathfrak{H}, n = 1, 2, ...)$$

where P denotes the orthogonal projection of \Re onto \Im . \mathscr{C}_{ϱ} denotes the class of those operators which have *unitary* ϱ -dilations.

The study of unitary ϱ -dilations and \mathscr{C}_{ϱ} classes was initiated by B. Sz.-NAGY and C. Foias [4] and continued by a number of authors. (See [3] also for further references and [2], [5], [6] for some recent results.)

Studying operators of \mathscr{C}_{ϱ} classes, sometimes (non-unitary) contractive ϱ -dilations can be successfully used [1]. So the dilation space and the ϱ -dilation themselves remain "near enough" to the initial space and operator, respectively. In this note we show that, for any $T \in \mathscr{C}_{\varrho}$, there exists a contractive ϱ -dilation with certain additional properties. Moreover, any other contractive (especially unitary) ϱ -dilation of T is a 1-dilation of a contractive ϱ -dilation of T with such properties.

Theorem. Let $T \in \mathcal{C}_{\varrho}$ and let W be any contraction satisfying (1). Introduce the notations

$$\mathfrak{K}_{+} = \bigvee_{n=0}^{\infty} W^{n} \mathfrak{H}, \quad \mathfrak{L} = \mathfrak{H} \vee (W | \mathfrak{K}_{+}^{'})^{*} \mathfrak{H}$$

and define the contraction C on \mathfrak{L} by $C = Q(W|\mathfrak{L})$, where Q denotes the orthogonal projection of \mathfrak{K}_+ onto \mathfrak{L} . Then W is a 1-dilation of C; C is a ϱ -dilation of T; and

(2)
$$C^2h = CTh \quad (h \in \mathfrak{H}), \qquad (2^*) \quad C^{*2}h = C^*T^*h \quad (h \in \mathfrak{H}),$$

(3)
$$\mathfrak{L} = \mathfrak{H} \vee C\mathfrak{H}, \qquad (3^*) \qquad \mathfrak{L} = \mathfrak{H} \vee C^*\mathfrak{H}.$$

Received June 30, 1982.

162 E. Durszt

Proof. We introduce the notation

$$(4) V = W | \Re_+ \quad (V: \ \Re_+ \to \Re).$$

For $h, g \in \mathfrak{H}$ and n=0, 1, 2, ... (4) and (1) imply that

$$(V^*(V^*-T^*)h, W^ng) = (h, W^{n+2}g) - (T^*h, W^{n+1}g) = 0.$$

This fact, (4) and the definition of \Re_+ show that $\Re_+ \perp (V^{*2} - V^*T^*)h \in \Re_+$ and consequently

(5)
$$V^{*2}h = V^*T^*h \quad (h \in \mathfrak{H}).$$

So (4) and the definition of \mathfrak{L} show that \mathfrak{L} is an invariant subspace of V^* .

Now we are going to prove by induction that W is a 1-dilation of C, i.e.

(6)
$$C^n h = QW^n h \quad (h \in \mathfrak{Q}, \ n = 1, 2, ...).$$

For n=1, (6) is clear from the definition of C. If (6) is true for some positive integer n, then for $h, g \in \Omega$ we have

$$(QW^{n+1}h, g) = (VW^nh, g) = (W^nh, V^*g) = (QW^nh, V^*g) =$$

= $(C^nh, V^*g) = (WC^nh, g) = (QWC^nh, g) = (C^{n+1}h, g)$

and this proves (6).

For $h \in \mathfrak{H}$ and n=1, 2, ... we have $PC^nh = PQW^nh = PW^nh = (1/\varrho)T^nh$, thus C is a ϱ -dilation of T.

If $h, g \in \Omega$, then by (6) and (4)

$$(C^*h, g) = (h, Cg) = (h, Wg) = (h, Vg) = (V^*h, g).$$

Since \mathfrak{L} is invariant for V^* , we have

$$C^* = V^* | \mathfrak{Q}.$$

This fact, (4) and the definition of \mathfrak{L} show that (3*) is true. Moreover, (5) and (7) imply (2*).

For $h, g \in \mathfrak{H}$ and n=0 or 1 we have

$$(C^2h - CTh, C^{*n}g) = (C^{n+2}h - C^{n+1}Th, g) = (1/\varrho)(T^{n+2}h - T^{n+2}h, g) = 0,$$

and so by (3*), $C^2h-CTh\pm\mathfrak{L}$ ($h\in\mathfrak{H}$), consequently (2) is true.

In order to prove (3), suppose that $g \in \mathfrak{L}$, $g \perp \mathfrak{H}$ and $g \perp C\mathfrak{H}$. In this case, by (2), $g \perp C^n \mathfrak{H}$ for $n = 0, 1, \ldots$ Now for every $h \in \mathfrak{H}$ we have

$$(g, W^n h) = (g, QW^n h) = (g, C^n h) = 0,$$

consequently, by the definition of \Re_+ , $\Re_+ \perp g \in \Re_+$. This implies g=0. So the proof is complete.

The following two remarks show that the dilation space $\mathfrak L$ is "not too large".

Remark 1. $\mathfrak{L}=\mathfrak{H}$ if and only if $\varrho=1$ or $T^2=0$.

Proof. If $\mathfrak{Q} = \mathfrak{H}$, then $Cg = (1/\varrho)Tg$ $(g \in \mathfrak{H})$ and so we have for every $h \in \mathfrak{H}$ $(1/\varrho)T^2h = PC^2h = PC(1/\varrho)Th = P(1/\varrho^2)T^2h = (1/\varrho^2)T^2h$.

This implies that $\rho=1$ or $T^2=0$.

In order to prove the converse implication, suppose first that $\varrho=1$. In this case for $f, g \in \mathfrak{H}$ we have

$$(Ch-Th, g) = 0, (Ch-Th, C*g) = (C^2h-CTh, g) = 0.$$

Thus, by (3*) and (3), $\mathfrak{L}\perp Ch-Th\in\mathfrak{L}$, consequently $C\mid\mathfrak{H}=T$, and so by (3), $\mathfrak{L}=\mathfrak{H}$. Suppose now that $T^2=0$. In this case for $h,g\in\mathfrak{H}$ we have

$$((C-(1/\varrho)T)h, C^*g) = (C^2h, g)-(1/\varrho)(CTh, g) = (1/\varrho)(T^2h, g)-(1/\varrho^2)(T^2h, g) = 0.$$

This means that $(C-(1/\varrho)T)h\perp C^*\mathfrak{H}$. Since $(C-(1/\varrho)T)h\perp \mathfrak{H}$ is also true, so by (3^*) , $(C-(1/\varrho)T)h\perp \mathfrak{L}$, consequently $Ch=(1/\varrho)Th$ and now (3) implies $\mathfrak{L}=\mathfrak{H}$.

Remark 2. For every $h \in \mathfrak{H}$, Th=0 implies Ch=0 and $T^*h=0$ implies $C^*h=0$.

Proof. If Th=0 then for every $g \in \mathfrak{H}$

$$0 = (Th, g) = \varrho(PCh, g) = \varrho(Ch, g)$$

and using (2)

$$0 = (Th, C^*g) = (CTh, g) = (C^2h, g) = (Ch, C^*g).$$

These mean that $Ch \perp \mathfrak{H}$ and $Ch \perp C^* \mathfrak{H}$, so by (3*), $Ch \perp \mathfrak{L}$ and consequently Ch=0.

The second implication can be proved in the same way, by using T^* in place of T and C^* in place of C.

References

- [1] E. Durszt, Factorization of operators in \mathscr{C}_o classes, Acta Sci. Math., 37 (1975), 195—199.
- [2] E. Durszt, Eigenvectors of unitary *q*-dilations, Acta Sci. Math., 39 (1977), 347—350.
- [3] A. Rácz, Dilatări unitare strîmbe, Stud. Cerc. Mat., 26 (1974), 545-621.
- [4] B. Sz.-Nagy—C. Foias, On certain classes of power-bounded operators in Hilbert space, Acta Sci. Math., 27 (1966), 17—25.
- [5] K. OKUBO—T. ANDO, Constants related to operators of class *C_e*, Manuscripta Math., 16 (1975), 385—394.
- [6] K. Okubo—T. Ando, Operator radii of commuting products, *Proc. Amer. Math. Soc.*, 56 (1976), 203—210.

BOLYAI INSTITUTE ARADI VÉRTANÚK TERE 1 6720 SZEGED, HUNGARY