On contractive ϱ-dilations

E. DURSZT

Dedicated to Professor B. Sz.-Nagy on the occasion of his seventieth birthday

Let T be a (bounded linear) operator on a Hilbert space \mathfrak{J} and ϱ a positive number. We say that W is a ϱ-dilation of T if W is an operator on a Hilbert space $\mathfrak{\Omega} \supset \mathfrak{S}$ and

$$
\begin{equation*}
T^{n} h=\varrho P W^{n} h \quad(h \in \mathfrak{S}, n=1,2, \ldots) \tag{1}
\end{equation*}
$$

where P denotes the orthogonal projection of Ω onto \mathfrak{G}. $\mathscr{C}_{\boldsymbol{e}}$ denotes the class of those operators which have unitary ϱ-dilations.

The study of unitary ϱ-dilations and \mathscr{C}_{e} classes was initiated by B. Sz.-NAGY and C. Foiss [4] and continued by a number of authors. (See [3] also for further references and [2], [5], [6] for some recent results.)

Studying operators of \mathscr{C}_{a} classes, sometimes (non-unitary) contractive ϱ-dilations can be succesfully used [1]. So the dilation space and the ϱ-dilation themselves remain "near enough" to the initial space and operator, respectively. In this note we show that, for any $T \in \mathscr{C}_{\Omega}$, there exists a contractive ϱ-dilation with certain additional properties. Moreover, any other contractive (especially unitary) ϱ-dilation of T is a 1 -dilation of a contractive ϱ-dilation of T with such properties.

Theorem. Let $T \in \mathscr{C}_{\mathrm{e}}$ and let W be any contraction satisfying (1). Introduce the notations

$$
\mathfrak{\Re}_{+}=\bigvee_{n=0}^{\infty} W^{n} \mathfrak{G}, \quad \mathfrak{L}=\mathfrak{G} \vee\left(W \mid \mathfrak{\Re}_{+}^{\prime}\right)^{*} \mathfrak{G}
$$

and define the contraction C on $\mathfrak{\perp}$ by $C=Q(W \mid \mathfrak{I})$, where Q denotes the orthogonal projection of $\mathfrak{\Omega}_{+}$onto \mathfrak{E}. Then W is a 1 -dilation of $C ; C$ is a ϱ-dilation of T; and

$$
\begin{gather*}
C^{2} h=C T h \quad(h \in \mathfrak{S}), \tag{2}\\
\mathfrak{L}=\mathfrak{S} \vee C \mathfrak{F}, \tag{*}
\end{gather*}
$$

(2*) $C^{* 2} h=C^{*} T^{*} h \quad(h \in \mathfrak{H})$,
(3)

$$
\mathfrak{L}=\mathfrak{S} \vee C^{*} \mathfrak{G} .
$$

[^0]Proof. We introduce the notation

$$
\begin{equation*}
V=W \mid \boldsymbol{\Omega}_{+} \quad\left(V: \boldsymbol{\Omega}_{+} \rightarrow \boldsymbol{\Omega}\right) \tag{4}
\end{equation*}
$$

For $h, g \in \mathfrak{S}$ and $n=0,1,2, \ldots$ (4) and (1) imply that

$$
\left(V^{*}\left(V^{*}-T^{*}\right) h, W^{n} g\right)=\left(h, W^{n+2} g\right)-\left(T^{*} h, W^{n+1} g\right)=0
$$

This fact, (4) and the definition of $\boldsymbol{\Omega}_{+}$show that $\boldsymbol{\Omega}_{+} \perp\left(V^{* 2}-V^{*} T^{*}\right) h \in \boldsymbol{\Omega}_{+}$and consequently

$$
\begin{equation*}
V^{* 2} h=V^{*} T^{*} h \quad(h \in \mathfrak{H}) \tag{5}
\end{equation*}
$$

So (4) and the definition of \mathfrak{L} show that \mathcal{L} is an invariant subspace of V^{*}.
Now we are going to prove by induction that W is a 1 -dilation of C, i.e.

$$
\begin{equation*}
C^{n} h=Q W^{n} h \quad(h \in \mathscr{L}, n=1,2, \ldots) \tag{6}
\end{equation*}
$$

For $n=1$, (6) is clear from the definition of C. If (6) is true for some positive integer n, then for $h, g \in \mathcal{L}$ we have

$$
\begin{aligned}
& \left(Q W^{n+1} h, g\right)=\left(V W^{n} h, g\right)=\left(W^{n} h, V^{*} g\right)=\left(Q W^{n} h, V^{*} g\right)= \\
& \quad=\left(C^{n} h, V^{*} g\right)=\left(W C^{n} h, g\right)=\left(Q W C^{n} h, g\right)=\left(C^{n+1} h, g\right)
\end{aligned}
$$

and this proves (6).
For $h \in \mathcal{H}$ and $n=1,2, \ldots$ we have $P C^{n} h=P Q W^{n} h=P W^{n} h=(1 / \varrho) T^{n} h$, thus C is a ϱ-dilation of T.

If $h, g \in \mathcal{Q}$, then by (6) and (4)

$$
\left(C^{*} h, g\right)=(h, C g)=(h, W g)=(h, V g)=\left(V^{*} h, g\right) .
$$

Since \mathfrak{L} is invariant for V^{*}, we have

$$
\begin{equation*}
C^{*}=V^{*} \mid \underline{L} \tag{7}
\end{equation*}
$$

This fact, (4) and the definition of \mathcal{E} show that (3^{*}) is true. Moreover, (5) and (7) imply (2^{*}).

For $h, g \in 5$ and $n=0$ or 1 we have

$$
\left(C^{2} h-C T h, C^{* n} g\right)=\left(C^{n+2} h-C^{n+1} T h, g\right)=(1 / \varrho)\left(T^{n+2} h-T^{n+2} h, g\right)=0
$$

and so by (3^{*}), $C^{2} h-C T h \perp \mathcal{L}(h \in \mathfrak{H})$, consequently (2) is true.
In order to prove (3), suppose that $g \in \mathscr{E}, g \perp \mathfrak{5}$ and $g \perp C \mathfrak{G}$. In this case, by (2), $g \perp C^{n} \mathfrak{S}$ for $n=0,1, \ldots$. Now for every $h \in \mathfrak{H}$ we have

$$
\left(g, W^{n} h\right)=\left(g, Q W^{n} h\right)=\left(g, C^{n} h\right)=0
$$

consequently, by the definition of $\Omega_{+}, \Omega_{+} \perp g \in \Omega_{+}$. This implies $g=0$. So the proof is complete.

The following two remarks show that the dilation space \mathbb{L} is "not too large".

Remark 1. $\mathfrak{L}=\mathfrak{5}$ if and only if $\varrho=1$ or $T^{2}=0$.
Proof. If $\mathfrak{L}=\mathfrak{G}$, then $C g=(1 / \varrho) T g(g \in \mathfrak{H})$ and so we have for every $h \in \mathfrak{G}$

$$
(1 / \varrho) T^{2} h=P C^{2} h=P C(1 / \varrho) T h=P\left(1 / \varrho^{2}\right) T^{2} h=\left(1 / \varrho^{2}\right) T^{2} h
$$

This implies that $\varrho=1$ or $T^{2}=0$.
In order to prove the converse implication, suppose first that $\varrho=1$. In this case for $f, g \in 5$ we have

$$
(C h-T h, g)=0, \quad\left(C h-T h, C^{*} g\right)=\left(C^{2} h-C T h, g\right)=0
$$

Thus, by (3*) and (3), $\mathfrak{L} \perp C h-T h \in \mathscr{E}$, consequently $C \mid \mathfrak{H}=T$; and so by (3), $\mathfrak{L}=\mathfrak{H}$.
Suppose now that $T^{2}=0$. In this case for $h, g \in \mathfrak{G}$ we have
$\left((C-(1 / \varrho) T) h, C^{*} g\right)=\left(C^{2} h, g\right)-(1 / \varrho)(C T h, g)=(1 / \varrho)\left(T^{2} h, g\right)-\left(1 / \varrho^{2}\right)\left(T^{2} h, g\right)=0$.
This means that $(C-(1 / \varrho) T) h \perp C^{*} \mathfrak{G}$. Since $(C-(1 / \varrho) T) h \perp \mathfrak{H}$ is also true, so by $\left(3^{*}\right),(C-(1 / \varrho) T) h \perp \mathcal{L}$, consequently $C h=(1 / \varrho) T h$ and now (3) implies $\mathfrak{L}=\mathfrak{5}$.

Remark 2. For every $h \in \mathfrak{H}, T h=0$ implies $C h=0$ and $T^{*} h=0$ implies $C^{*} h=0$.

Proof. If $T h=0$ then for every $g \in \mathfrak{W}$

$$
0=(T h, g)=\varrho(P C h, g)=\varrho(C h, g)
$$

and using (2)

$$
0=\left(T h, C^{*} g\right)=(C T h, g)=\left(C^{2} h, g\right)=\left(C h, C^{*} g\right)
$$

These mean that $C h \perp \mathfrak{G}$ and $C h \perp C^{*} \mathfrak{G}$, so by (3^{*}), Ch \mathcal{Q} and consequently $C h=0$.

The second implication can be proved in the same way, by using T^{*} in place of T and C^{*} in place of C.

References

[1] E. Durszr, Factorization of operators in $\mathscr{C}_{\boldsymbol{e}}$ classes, Acta Sci. Math., 37 (1975), 195-199.
[2] E. Durszt, Eigenvectors of unitary ρ-dilations, Acta Sci. Math., 39 (1977), 347-350.
[3] A. Rácz, Dilatări unitare strìmbe, Stud. Cerc. Mat., 26 (1974), 545-621.
[4] B. Sz.-Nagy-C. Foras, On certain classes of power-bounded operators in Hilbert space, Acta Sci. Math., 27 (1966), 17-25.
[5] K. Окиво-T. Ando, Constants related to operators of class \mathscr{C}_{e}, Manuscripta Math., 16 (1975), 385-394.
[6] K. Okubo-T. Ando, Operator radii of commuting products, Proc. Amer. Math. Soc., 56 (1976), 203-210.

[^0]: Received June 30, 1982.

