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Analytic operator valued functions with prescribed 
local data 

I. GOHBERG and L. RODMAN 

Dedicated to B. Sz.-Nagy on the occasion of his seventieth birthday 

This paper contains the operator generalization of the classical theorems of 
Mittag—Leffler and Weierstrass concerning construction of an analytic function 
with given local data which does not have additional singularities. The obtained 
results generalize earlier results of the authors on the finite dimensional case. 

1. Introduction and main results 

Let Q be a domain in the complex plane C. Consider the class <P of all 
operator valued functions of the form A(X) = 1+K(X), where K(X) is an 
analytic (in £2) operator valued function whose values are compact operators acting 
in a Banach space B, with the additional property that at least one value of A(A) 
is an invertible operator. In particular, for every A(/.)£ <P the spectrum o(A) = 
= {k£Q\A(X) is not invertible} consists of isolated points in £2. For any of these 
points A0£cr(A), in its deleted neighborhood the function A(A)~1 admits the form 

( i . i ) a = 2 a - A 0 V M , , 
j = - s 

where i > l is an integer and the operators M_s, M_s+1, ..., M_x are finite 

dimensional (see [7]). Denote by SP A~1(/.n) the singular part 2 
j= - s 

of the Laurent series (1.1). 
In this paper we shall solve the following problem: construct a function A(X)£ <P 

given its spectrum and the singular parts at each point of spectrum. The solution 
of this problem is given by the next theorem which is the main result. 
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T h e o r e m 1.1. Let /.lt ?.2,... be a sequence (finite or infinite) of different points 
in a domain i2cC with limit points (if any) on the boundary f of Q. For each 

i' = l,2,..., let be given a rational operator function of the form 

M,-(2) = 2 (l — li)~JMij, i = 1, 2, . . . , 
J = I 

where M{J are finite dimensional operators acting in B. Then there exists an analytic 
operator function A(?.)£ <t> such that (t(A) — A2, ...} and S? A~\X^)=Mi(X), 
i —1,2,.... Moreover, A(X) can be chosen so that A(X) — L£Z for every 
where Z is the algebra of all operators acting in B which are limits (in norm) of 

finite dimensional operators. 

Theorem 1.1 is a generalization of Theorem 4.4 from [5], which in turn may be 
regarded as a generalization of the classical Mittag—Leffler theorem. The proof 
of Theorem 1.1 is given in the next section. It uses a theorem on triviality of co-
cycles (see [1, 4]). Note that using this theorem it is not difficult to construct a mero-
morphic function with given singular parts of Laurent series, as in Theorem 1.1. 
However, it requires additional work to ensure that this meromorphic function is 
the inverse of an analytic function, and this is the bulk of the proof of Theorem 1.1. 

In the course of the proof of Theorem 1.1 we obtain also the following far-
reaching generalization of Weierstrass' theorem (which states the existence of a scalar 
analytic function with prescribed zeros and prescribed multiplicities). 

Theorem 1.2. Let /2, ... be a sequence (finite or infinite) of different points 
in a domain Q c C with limit points (if any) on the boundary f of Q. For every 

kJ . 
let be given an operator polynomial of the form Fj(?.)=J+ ^ ).1Pi}, where 

i=0 
Pij are finite dimensional operators, such that a(Pj) = {!,•}. Then there exists an 
analytic (in Q) operator valued function A(X) such that A(X) — I€.I for all 
a(A)= {/l5 /2, ...}, and for every j= 1 ,2 , . . . the quotient A(/.)Pj(?.)~l is analytic 
and invertible at Aj. 

As before, I stands for the algebra of norm limits of finite dimensional 
operators. 

The above mentioned Weierstrass' theorem is obtained by taking B = C and 
Pj{).)=(/.—).j)kj in Theorem 1.2. Theorem 1.2 will be deduced from Theorem 1.1. 
The finite dimensional version of Theorem 1.2 was proved in [5]. 

Observe that in Theorem 1.2 one could replace the condition that Py are finite 
k 

dimensional by the compactness of P¡j. Indeed, a polynomial T(X) = I+ ^ I'Ti 
¿=o 
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with compact Tf and a(T) = {A0} can be factored as follows: 

with finite dimensional Pt and everywhere invertible T0(X) (see Theorems 3.1 and 
3.2 below). This allows us to reduce the problem to the case considered in 
Theorem 1.2. 

2. Auxiliary results 

In this section we shall prove Lemma 2.1 which will be used in the proof of 
Theorem 1.1, and is also of independent interest. As in Theorem 1.1, Q stands for 
a domain in C with boundary T, and I denotes the algebra of all norm limits 
of finite dimensional operators acting in the Banach space B. 

L e m m a 2.1. Let Xly ... be a sequence (finite or infinite) of points in Q 
with limit points (if any) in r. Let Yj0, Y n , ..., YJ kj i , / = 1 , 2 , . . . , be given 
operators from I . Then there exists an analytic operator valued function Y(X) (A€ Q) 
with Y(X) — l(i I for all and such that 

(2.1) Y(Xj) = I+YJ0, j = 1 , 2 , . . . 

and 
(2.2) 7 = YJk, k = l , . . . , k j - \ , ¿ = 1,2, . . . . 

I f , in addition, I+Yj0 is invertible for all j=l,2,..., then the analytic operator 
function y(A) can be chosen with the additional property that Y(X) is invertible 
for all Q. 

We need some preparations for the proof of Lemma 2.1. A set M c C is 
called finitely connected if M is connected and C \ M consists of a finite number 
of connected components. We shall use later the fact that there is a sequence of 

OO 

finitely connected compacts Q[c:Q'2c.. . such that Q = IJ £2-. The proof of this 
¡=i 

fact is not difficult and can be found in [4], Lemma 2.1. 
The following lemma can be viewed as a local analogue of Lemma 2.1. 

L e m m a 2.2. Let Q, and let £20 be a finitely connected compact in Q such 
that 10 lies in the unbounded component of C\Q0. Let X0,Xx,...,Xk be given 
operators from the algebra I . Then for every s > 0 there exists an analytic (in Q) 
operator valued function L(l) such that L(/.)£ I for all and 

(i) UHh) = X, i = 0, ..., k, 
(ii) ||L(A)|| =£ e for 
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Proof . Put M ( / ) = j ? 4 r A ' i ( A - ; . 0 ) i , then M°XX0)=Xh /=0, ..., k, and 
¡=o ' ! 

M(A)£Z for all /.£(2. Let a = max||M(A)||. There exists a scalar polynomial 

<p(X) such that 
(2.3) \<p(?)\ ^ ex'1 for A£Q0, 

r l , / = 0 

Indeed, we seek for <p(A) in the form 

(2.5) <?(/) = i - ! > ( / ) ( ; - ¿ o f . 

Let QgCC be a simply connected compact such that Q0cQ'0 and A0(£ Q'0. By 
Runge's theorem, there exists a polynomial I/*(A) with t/>(A0)=0 and \\p(X) — 
- ( A - A o ) - * ^ ® * - ^ - 1 , where /?=max {|l-A0i't}. With this tj/(X) in 

(2.5), the conditions (2.3) and (2.4) hold true. Now put L(X) = cp(X)M(A) to satisfy 
(i) and (ii). 

P r o o f of Lemma 2.1. We shall seek for Y(X) in the form of an infinite 
product 

(2.6) Y(X) = JJ (l+Lj(X)). 
i 

Choose a non-decreasing sequence Q[<zQ'„cz... of finitely connected compacts 
whose union is Q, and such that XfcQ'j for / = 1, 2, ...,_/—1, but Xj lies in the 
unbounded component of C\Qj. Let <pj(X) be a scalar function analytic in Q 
with the following properties: q>j(Xj) = 1; <pf(Xj)=0 for k = l, ..., k j - l , (pf\Xt)=0 
for k=0. ..., kj — 1 and Put ctj=max\(pj(X)\. By Lemma 2.2 there exist 

A £ flj 
analytic operator functions (even operator polynomials) Mj(X), j = \,2, ..., such that 
Mj(X)£ I for all A£ Q and 

MW(Xj) = Yjk, k = 0, ..., kj-1, ||M,(A)|| =§ ejai1 for XiQ'j, 

where 8, is any sequence of positive numbers for which the product JJ (1 + ek) 
k = 1 

converges. Define Lj(?.)=(pj(X)Mj(X), j=\,2, ...; with this definition of Lj(X) 
the product (2.6) converges uniformly in every Q'}, and consequently Y(X) is 
analytic in Q. Moreover, Lf{Xj) = Yjk for k = 0, ..., k j - l , and Lf{X^ = 0 for 
k=0,...,kj — l and i ^ j . Consequently, equalities (2.1) and (2.2) are satisfied. 

Suppose now that I+YJ0 is invertible for all y' = l ,2 , .... In this case we shall 
look for Y(X) in the form 

(2.7) r(A) = exp (X,(A)) • exp (*2(A)) • exp (X3(l)) ..... 

We shall construct the operator functions Xm(X) by induction on m. 
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Choose a sequence of finitely connected compacts Q[a Q'2a... with (J = 
. ¡=i 

and denote by Eml,...,EmiP the bounded connected components of C\Q'm. 
We shall assume that each Emp, p = 1, ...,pm, contains a point fimp not belonging 
to Q (otherwise consider Q'm U Emp in place of Q'm). We shall assume also that 
/(.•;</» for every i such that /.;£ (this can be arranged because the set of points 

with fcjSm is either empty or finite). 
We construct now X^X). Put Z ; i = In (/+y i 0), where the branch of the loga-

rithm is chosen so that In 1=0; then Xa££. Let Xx(X) be a Z-valued analytic 
function such that 

. X1W) = Xa, i = 1 ,2 , . . . 

(such Xx(X) exists in view of the already, proved part of Lemma 2.1). Let <p10(A) 
be an analytic (in Q) scalar function with only zeros at {/.,, X,, ...}, which are 
simple. In particular the function — ^ ( A ) - 1 is analytic in therefore there 
exists a rational function iK(A) with poles (if any) in pn, ..., such that 

max |<MA)+<p10(A)"1! ^ In (l+£i){max |p10(A)|}-i{max »^(A)«}"1. 
leni Agnj ' uenj ' 

Put Z 1(A)=(1+ IA 1(AM0(A))^)- Then X1Oi)=Xn, i = 1 , 2 , ; . „ and №№11^ 
^ ¿ ! = ln (1-t-Ej) for Here is a sequence of positive numbers 
chosen in advance. 

Suppose I-valued analytic functions Xx(X), ..., Xn(X) are already constructed, 
with the following properties for / = 1, . . . ,«: 

(2.8) Xf(?H) = 0, k = 0, ...J-2, i = 1, 2, ...; 

(2.9) yf,y_1 = [exp(Z1(A))...exp(JO(A))]jti>, 

(2.10) II-SO№11 ^ 5j for 

(For 7 = 1, replace Yi0 in (2.9) by I+Yi0.) By the already proved part of Lemma 
2.1, there exists a I-valued analytic function Xn+1(l) in Q such that ^+i(A,) = 0 
for A:=0, . . . , n - l ; and if k ^ n + l, then X™1(.Ai)=Xiin+1 (/ = 1,2, . . .) , where 
the operators A'lj„ + 16 X are chosen in such a way that 

Yin = [exp (Xl (A)) exp (X2 (/))... (exp (X„ (/)) (exp (£, + x (/.)))] 

for every A( with k ^ n + i . A computation (using (2.8)) shows that one can put 

= [exp (Xx(/.,))... exp (Xn(A,))] • 

•{Yln- Z [exp (A))] i*^.. . [exp(A"„ (/.))] 
A+...+A„=N 

i,S0 
Now put Xn+1(X)=(pn+l(X)2(X) where <pn+j(A) is suitably chosen (as in the con-
struction of .30(A)) scalar analytic function so that (2.8)—(2.10) hold also for j= n +1. 

13 
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The condition (2.10) ensures uniform convergence of the infinite product (2.7) 
in every compact set in Q, provided <5„ are chosen to tend sufficiently fast to zero. 
Equalities (2.8) and (2.9) ensure that 7(A) defined by (2.7) satisfies (2.1) and (2.2). 
Finally, for A£ Q'„ we have 

||exp(^„(A))-1—/|| ^ ||/-exp(Zn(A))|| • ||exp (Z„(A))|| ^ (e*—1)«*., 

and (assuming dn tend sufficiently fast to zero) the infinite product exp (Z„(A))_1 • 
•exp(Ar1I_1(A))_1...exp(A'1(A))_1 converges (necessarily to 7(A) - 1 ) uniformly in 

every compact set in Q. So 7(A) is invertible. 
Lemma 2.1 is proved completely. 
Note that Lemmas 2.1 and 2.2 remain true if the algebra I is replaced by 

the algebra of all compact operators. 

3. Local spectral data of an analytic operator function 

In this section we shall present some facts about local spectral data of an analytic 
function A(/.')£ <P which are relevant to the proof of Theorem 1.1. As for the case 
of matrix functions (see [5]), one can define the local spectral data of A(l)£ <P in 
several forms: one-sided (right and left eigenpairs, local divisors and singular sub-
spaces) and two-sided (the singular part of the Laurent expansion of A(X)~1). The 
results concerning the relationship between the various kinds of spectral data are 
the same as in the finite dimensional case, with essentially the same proofs (see [5] 
for details). So we shall focus on the kinds of spectral data which will be used in 
the proof of Theorem 1.1. 

Let A(A)e<P, and let A(X)~X = j ? (A-A0)JMy be the Laurent series of A(X) 
j=-s 

in a deleted neighbourhood of X0£o(A). The finite dimensional subspace 

0 ... 0 
... 0 

M-1 M_2 ...M-, 

is called the (right) singular subspace of A(X) at A0. (Sometimes in this definition 
oo 

it is convenient to consider A(X)~1= 2 (A—A0)J with s'>s and = . . . 
s' 

J + 1 = 0 ; so the singular subspace becomes a subspace in Bs.) An operator 
k 

polynomial of the form P(A)=/+ ^ A ' i ^ , where P f are finite dimensional opera-
¡ = 0 

tors, is called a (right) local divisor of A(X) at A0, if o(P)= {A0} and the operator 
function A(A)P(A)~l is analytic and invertible at A0. The local divisor of A(X) 
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at A0 is unique up to multiplication from the left by an everywhere invertible 
operator polynomial 5(A) such that S(A) —/ is finite dimensional for all A. 

The next result provides the relationships between singular subspaces and local 
divisors. We need the following definition of a special left inverse (cf. [6]). Let 
Bf be a finite dimensional vector space, and let Z:Bf->-B, T: Bf—Bf be linear 
operators such that for some s the operator 

is left invertible. A left inverse of QS(Z, T) is called special if its kernel is of the 
form {(;q, x^efi* PTj, i = l , j } , where fV1 Z) W23... z> Ws is a non-
increasing sequence of (closed) subspaces in B. If T is invertible, a special left 
inverse always exists. Indeed, since dim Bf<<*=, one works in the proof of existence 
of a special left inverse with subspaces which have a finite dimensional complement, 
and then the proof given in the finite dimensional case (dim B-̂ °=>) applies (see 
Lemma 2.1 in [6]). 

T h e o r e m 3 . 1 . The singular subspace R of an analytic operator function A(l)d <P 
at A0;^0 determines a local divisor i>(A) of A(X) at A0 by the formula 

where Z : R—B is the projector on the last coordinate in R<zBs, T: R—R is 
definedby the formula T(x±, ..., x5) = (A0x1, A0x2+:x:i, ..., ¿o-Ks+xs-i), ..., xs)£R, 
and [V1-.-Vs] is a special left inverse of 

QS(Z, T) = 

Z 
def ZT : Bf - Bs 

Z T s - l 

P(A) = I-ZT-s(y1Xs+V2Xs-i+... + VsX), 

z 
ZT-1 

Conversely, if P(X) is a local divisor of A(X)£<P at A0, then 

P Q - o) 
P'tt o) 

0 

Pßo) 
...0 

...0 

(3.1) Ker 

^ I ) T P ( S " 1 ) ( A o ) 7^32)7 -

is the singular subspace of A(A) at A0. 

13* 
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The proof of Theorem 3.1 is the same as the proof of Theorem 2.4 in [5]. Note 
that T is invertible in view of the condition X0^0. Note also that T maps R 
into R, as easily seen from, the definition of the singular subspace R. The case 
A0=0 can be easily reduced to the case X0^0 by considering A(X+a) in place 
of A(X), for some C\{0}. 

The number s in (3.1), which is the least positive integer such that (A—A0)S>4(>1)-1 

is analytic at A„, is determined by the local divisor i'(A) as follows: 

s = min { j > 0|dimKer>J = dimKer^J+ 1} 

where J^ is the matrix in (3.1) with j in place of s. 
A function A(X)£ <P is a right divisor of a function B{X)£ $ if B(X)=C(X)A(X) 

for some C(A)£#. The description of divisibility in terms of singular subspaces 
and local divisors is given by the following Theorem, the proof of which is analogous 
to the proof of Theorems 1.4 and 2.5 in [5]. 

T h e o r e m 3.2. The following statements are equivalent: 
(i) A(X)£ <P is a right divisor of 2?(A)€<£; 

(ii) G(A)CZO(B), and for any X0£A(A) the local divisor of A (A) is in turn 
a right divisor of a local divisor of B(X) at A0; 

(iii) o(A)cza(B), and the singular subspace of A(X) at any X0£o(A) is contained 
in the singular subspace of B(X) at A0. 

In particular, A(X)d <P and B(X)£ <P are right divisors of each other if and only 
if o(A) = a(B), and A(X) and B(X) have the same local divisors at each ?,0£a(A), 
or equivalently, if the singular subspaces of A(X) and B(X) at each X^a(A) = a{B) 
coincide. 

Let us remark (this remark will not be used in the proof of Theorem 1.1) that 
Theorems 3.1 and 3.2 can be also stated in terms of Jordan chains of a function 
A(X)£<P corresponding to A0. By definition, the vectors y0, ...,yk ~i£B form 

k 1 ° 
a Jordan chain of A(X) corresponding to A0 if -rr^ ( ' )(A0)^_ i=0, k=0, ..., A:0— 1. 

>=o ' ' 

The q Jordan chains ..., j = 1, ...,q, of A(X) corresponding to A0 are 
said to be a canonical set if the eigenvectors y^, ..., y^ are linearly independent 

4 
and the sum maximal possible (cf. [7]). Every Jordan chain yQ, ...,yt -x 

p=i . . • 
of A(X) corresponding to A0 is a linear combination of the canonical set: namely, 

ym= Z^y^* m = 0, ..., fe0-l, for some tXjZC. 
J=1 

As in the finite dimensional case (see Theorem 2.4 in [5]) one can prove that each o f 
the three local characteristics of an analytic function A(X)£$ at A0 — singular 
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subspace, local divisor, canonical set of, Jordan chains — determines the other two. 
In fact, a canonical set of Jordan chains appeared implicitly in Theorem 3.1. Name-
ly, there exists an invertible operator S: R—U such that (in the notation of Theo-
rem 3.1) the operators ZS~X: Cr->-B and STS C - C r have the following struc-
ture, in the standard orthonormal basis in C r : 

where J^» •••> J ^ - i . 7 = 1, is a canonical set of Jordan chains of A (A) 
corresponding to A0; STS'1 ©.. .©/,, where Jt is the Jordan block of size 
kiXkf with eigenvalue 

4. Proof of the main theorem 

The following result, which will be used in the proof of Theorem 1.1, is a partic-
ular case of Theorem 2.1 in [4], see also [1], and may be regarded as a theorem on 
triviality of cocycles. Given a compact set Q0czQ, we denote by GLs(i20) the 
set of all operator valued functions G(k) which are analytic and invertible in some 
neighborhood UG of Q0 (the neighbourhood depending on the function) and such 
that G ( A ) - / £ I for every UG. 

P r o p o s i t i o n 4.1. There exists a sequence of compacts i 2 1 c i 2 2 c . . . c £ 3 , 

(J Qi = Q with the following property: For every sequence of analytic operator functions 
i = l 

(7m(A)£GLs (Qm), m=l, 2, ..., there exists a sequence Z>m(A)6GLs (Qm) such that 

(4.1) Gm(X) = (Dm+1(X))~1Dm(X), A€i2m, m = 1 , 2 , . . . . 

We are ready now to prove Theorem 1.1. 
P r o o f of T h e o r e m 1.1. We shall break the proof into two steps, 
a) Let Rk czBk' be the singular subspace determined by M,(A): 

0 0 

Rk. = Im Ml^-L MUki .. 0 

Ma Mi2 .. Mt 

We shall construct first an analytic operator function A(X) with a(A)= {Al5 ...} 
and corresponding singular subspaces Rk ,Rkt,..., and such that A(X)—I€Z 
for every Q. 

Let Q1C:Q2C: ... be the sequence of compacts as in Proposition 4.1. Observe 
that each Qm contains only a finite number of A;'s; let Sm be the (finite) set of 
indices i such that m = 1 ,2, .... It is not difficult to see that there exists 
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a finite dimensional subspace Bm<zB and,a direct complement B'm to Bm in B 
such that MiJBmaBm and MuB'm=0 for j = l, ..., kt and i£Sm. Using Theorem 
4.1 of [5], for every m = 1,2, ... construct an analytic (in fl) operator function of 
the form AJX)=l+Km(X), where Km(X)Bm<zBm and Km(X)B'm=0 for every 
A£i2, such that a(Am(X))—{Xi\i^.Sm}, and Rkt is the singular subspace of Am(X) 
corresponding to A(, for every /'6Sm. Let Gm(X)=Am+1(X)(Am(?.))~1\ Theorem 3.2 
ensures that Gm(X) is invertible in Qm, m=\, 2, ... . Applying Proposition 4.1, 
find a sequence Dm{X)£GLs (Qm), m — l, 2, ..., with the property (4.1). Then 
Dm(X)Am(X)=Dm+1(X)Am+1(X), X£Qm; so in fact the function A{X)=Dm{X)Am{X) 
(A6i2m) is defined"and analytic in Q. Clearly, A(X)—I£X for every X£Q; more-
over, a(A)={X1, X2, ...} with corresponding singular subspaces Rk , Rkt... . 

b) We construct A(X) in the form A(X)=X(X)A(X), where X(X) is an every-
where invertible analytic (in Q) operator function such that X(X)—IdX for all 
A€ and A(X) is the operator valued function constructed in the part a). 

For a fixed Xh there exists an operator function A^X), analytic in a neigh-
borhood Ui of Xi, with the properties that Ai(X)—I is finite dimensional for 

X£U: and S ? l r \ X i ) = Z i X - X J - W u (see Theorem 4.4 in [5]). Then the 
_ j=i 

singular subspaces of A(X) and At(X) corresponding to A; coincide. By Theorem 

3.2, the operator function Zi(X)=Ai(X)A(X)~1 is analytic and invertible in 
Moreover, Z ; ( A ) - / 6 l , Agi/,. Write Zl(X)= ¿ ( A - A ^ Z y , and let X(X) b e a n 

j=o 
everywhere invertible analytic (in Q) operator function such that X(X)—Id X, X£Q, 
and 

j X ^ i X ^ Z t j , j = 0, k,, i = 1 , 2 , . . . . 

The existence of such X(X) is ensured by Lemma 2.1. Now put A(X)=X(X)A(X). 
Let us check that the requirements of Theorem 1.1 are satisfied with this choice 

of A(X). Indeed, 

A(X) — I = X(X) (A (A) -1)+X(X) - It X, 

for all A€ Q. For every A;, in a neighbourhood of A; we have 

A(X) = X(X)A(X) = X W i Z ^ - i . Z ^ A i X ) . 
Now because ofthe choice of X(X) we obtain Zi(A)(^(A))-1=(A-Ai) ,c'+1C/i(A)+/ 

for some operator function C/;(A) which is defined and is analytic in a neighborhood 
of Xj. Hence 

SP^4-1(A,) = 2 (X-Xt)~JMij, i= 1, 2, ..., 

and Theorem 1.1 is proved completely. 
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Finally, observe that in view of Theorem 3.1, the part a) of the proof of Theorem 
1.1 provides the proof for Theorem 1.2. 

In conclusion let us remark that Theorem 1.2 can be stated also in terms 
of singular subspaces, as well as in terms of canonical set of Jordan chains, in 
the same way as in the finite dimensional case (see [5]). We state it in terms of cano-
nical set of Jordan chains: Let X2, ... be a sequence as in Theorem 1.2, and for 
every let be given a set of vectors in B : 

(4.2) Jo l , Jk.,-1,1, ?02, •••, Jfcji-1,2, yoq, •••, ykq,-\q 

(q depends on /) with linearly independent vectors . . . , y^. Then there exists 
an analytic (in Q) operator valued function A(A) such that A(X) — for all 

c (^)={Ai , A2, ...}, and for every / = 1 , 2 , . . . , the set (4.2) is a canonical 
set of Jordan chains of A(X) corresponding to . The proof of this statement is 
obtained immediately from Theorem 1.2, taking into account the remark at the 
end of Section 3. 
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