Von Neumann's coordinatization theorem ${ }^{1)}$

ISRAEL HALPERIN

In Honour of Béla Szōkefalvi-Nagy on his 70th birthday

1. Notation. L denotes a complemented, modular lattice with homogeneous basis $a_{1}, \ldots, a_{N}, N \geqq 4 \quad\left[2 ;\right.$ Part II, Def. 3.1]; $A^{j} \equiv a_{1} \vee \ldots \vee a_{j} ; a b$ means $a \wedge b$; $a \dot{\vee} b$ means $a \vee b$ if $a b=0 ; L_{j i} \equiv\left(b \in L: b \dot{\vee} a_{j}=a_{i} \dot{\vee} a_{j}\right)$.

If \mathscr{R} is a ring and $m \leqq N$, then $\mathscr{R}^{N}(m)$ denotes the right \mathscr{R}-module $\left(\left(\alpha_{1}, \ldots, \alpha_{N}\right)\right.$: all $\alpha_{i} \in \mathscr{R}$ and $\alpha_{i}=0$ for $\left.m<i \leqq N\right) ;\left(\alpha_{1}, \ldots, \alpha_{m}\right)_{N}$ is an abbreviation for $\left(\alpha_{1} ; \ldots, \alpha_{m}, 0, \ldots, 0\right) \in \mathscr{R}^{N}(m) ; \mathscr{R}^{N} \equiv \mathscr{R}^{N}(N) ; L\left(\mathscr{R}^{N}(m)\right)^{N}$ denotes the set of finitely generated submodules of $\mathscr{R}^{N}(m)$, ordered by inclusion.
2. Von Neumann's theorem. In each $L_{j i}(j \neq i)$, addition and multiplication can be defined so that:
(2.1) The $L_{j i}$ become regular rings with unit, isomorphic to a common regular ring \mathscr{R} [2, Part II, Theorem 9.2].
(2.2) For each j the sublattice $\left(b \in L: b \leqq a_{j}\right)$ is isomorphic to $L(\mathscr{R})$, the lattice of principal right ideals of \mathscr{R} [2, Part II; Theorem 9.2].
(2.3) L is isomorphic to $L\left(\mathscr{R}^{N}\right)$ [2, Part II; Theorem 14.1].
3. Outline of von Neumann's proof. (3.1) Choose $c_{1 j}=c_{j 1}, 2 \leqq j \leqq N$, so that $c_{j 1} \dot{\vee} a_{j}=c_{j 1} \dot{\vee} a_{1}=a_{j} \dot{\vee} a_{1}$; set $c_{j i}=\left(c_{j 1} \vee c_{1 i}\right)\left(a_{j} \vee a_{i}\right)$ for $1, i, j$ all different.
(3.2) Call a family $\alpha \equiv\left(\alpha_{j i} \in L_{j i}: i \neq j\right.$) an L-number if $\left(\alpha_{j i} \vee c_{j k}\right)\left(a_{k} \vee a_{i}\right)=\alpha_{k i}$ and $\left(\alpha_{j i} \vee c_{i k}\right)\left(a_{j} \vee a_{k}\right)=\alpha_{j k}$. Note: For every $b \in L_{j i}$ there exists a unique L-number α with $\alpha_{j i}=b$ [2, Part II; Lemma 6.1].
(3.3) Let \mathscr{R} denote the set of L-numbers with operations:

$$
\begin{gathered}
(\alpha+\beta)_{j i}=\left(\alpha_{j k} \vee\left(\beta_{j i} \vee a_{k}\right)\left(a_{j} \vee c_{i k}\right)\right)\left(a_{j} \vee a_{i}\right), \\
(\alpha \beta)_{j i}=\left(\alpha_{j k} \vee \beta_{k i}\right)\left(a_{j} \vee a_{i}\right) .
\end{gathered}
$$

(3.4) For each $\alpha \in \mathscr{R}$ and $1 \leqq j \leqq N$, define the reach of α into a_{j} by $\alpha_{j}^{(r)} \equiv$ $\equiv\left(\alpha_{j i} \vee a_{i}\right) a_{j}$ (does not depend on $i, i \neq j$).

Received August 20, 1981.
${ }^{1}$) A sketch of this paper appeared in C. R. Math. Rep. Acad. Sci. Canada, 3 (1981), 285-290.
(3.5) Prove: $\alpha \gamma=\beta$ has a solution γ if and only if $\beta_{j}^{(r)} \leqq \alpha_{j}^{(r)}$ (holds for all j if for some j) [2; Part II, Lemma 9.4] or [1, (3.2) with multiplication reversed].
(3.6) Prove: For each $b \leqq a_{j}: b=e_{j}^{(r)}$ for some' idempotent $e \in \mathscr{R}$ [2, Part II, Theorem 9.3].
(3.7) Deduce: Parts (2.1); (2.2) of the theorem hold [2, Part II, Theorem 9.2].
(3.8) $)_{m}$ Prove: For $1 \leqq m \leqq N$ there exists an isomorphism

$$
\varphi_{m}:\left(b \in L: b \leqq A^{m}\right) \rightarrow L\left(\mathscr{R}^{N}(m)\right) \quad \text { with } \quad \varphi_{1} \subset \varphi_{2} \subset \ldots \subset \varphi_{N} .
$$

Note: φ_{N} establishes Part (2.3) of the theorem. The outstanding difficulty in von Neumann's proof is to establish the φ_{m}.
4. Von Neumann's strategy to prove (3.8) . (4.1) Call b an m-element if (i) $m=1$ and $b \leqq a_{1}$, or (ii) $2 \leqq m \leqq N$ and $b \dot{\vee} A^{m-1} \leqq A^{m}$.
(4.2) For each m-element b define $\varphi(b)$, a submodule of $L\left(\mathscr{R}^{N}(m)\right.$, as follows:
(i) If $b \leqq a_{1}$ define $\varphi(b) \equiv(e, 0, \ldots, 0) \mathscr{R}$ with e idempotent and $e_{1}^{(r)}=b$.
(ii) If $2 \leqq m \leqq N$ define $\varphi(b) \equiv\left(-\alpha_{1}, \ldots,-\alpha_{m-1}, 1\right)_{N} e \mathscr{R}$ with e idempotent and $\quad e_{m}^{(r)}=\left(A^{m-1} \vee b\right) a_{m}$, with $\quad b^{\prime} \dot{\vee} e_{m}^{(r)}=a_{m} \quad$ and $\quad\left(\alpha_{i}\right)_{i m}=\left(b \vee b^{\prime} \vee A^{i-1} \vee a_{i+1} \vee \ldots\right.$ $\left.\ldots \vee a_{m-1}\right)\left(a_{i} \vee a_{m}\right)$.

Note: $\varphi(b)$ is determined uniquely by b though e, b^{\prime}, and the α_{i} may not be; also $\quad\left(\alpha_{i}\right)_{i m}\left(A^{m-1} \vee b\right)=\left(b \vee A^{i-1} \vee a_{i+1} \vee \ldots \vee a_{m-1}\right)\left(a_{i} \vee a_{m}\right)$.
(4.3) For each $x \in L$ and decomposition $x=\bigvee_{i=1} x_{i}$ with x_{i} an i-element, (such decompositions exist for all x), assign to x the submodule $\varphi\left(x_{1}\right)+\ldots+\varphi\left(x_{N}\right)$.
(4.4) $)_{m}$ Prove: the set $\left(\varphi\left(x_{1}\right)+\ldots+\varphi\left(x_{m}\right): x \leqq A^{m}\right)=L\left(\mathscr{R}^{N}(m)\right)$.
(4.5) $)_{m}$ Prove: For decompositions $x=\bigvee_{i=1}^{m} x_{i}, y=\bigvee_{i=1}^{m} y_{i}: x \leqq y$ if and only if $\sum_{i=1}^{m} \varphi\left(x_{i}\right) \leqq \sum_{i=1}^{m} \varphi\left(y_{i}\right)$. Note: (4.5) $)_{m}$ implies that $\varphi_{m}(x) \equiv \sum_{i=1}^{m} \varphi\left(x_{i}\right)$ has the same value for all decompositions of x; then (4.4) $)_{m},(4.5)_{m}$ establish (3.8) $)_{m}$.

Von Neumann established (4.4) $)_{m}$ without difficulty [2, Part II, Theorem 11.2]; (4.5) ${ }_{1}$ follows immediately from (3.5), (3.6). But von Neumann's proof of (4.5) ${ }_{m}$, $2 \leqq m \leqq N$ [2, Part II, pages 168-208], is a virtuoso demonstration of mathematical technique.
5. A. new proof of $(4.5)_{m}, 2 \leqq m \leqq N$. We use direct lattice calculations (for the case $m=2$, in particular) and reduce part of the case m (to the case $m-1$) when $3 \leqq m \leqq N$.

We require the following properties of L-numbers.

$$
\begin{equation*}
(\alpha-\beta)_{j k}=\left(\alpha_{j i} \vee\left(a_{k} \vee \beta_{j i}\right)\left(a_{j} \vee c_{i k}\right)\right)\left(a_{j} \vee a_{k}\right) \quad[1,(2.3)] \tag{5.1}
\end{equation*}
$$

hence

$$
\begin{gather*}
(\alpha-\beta)_{j}^{(r)}=\left(\alpha_{j i} \vee \beta_{j i}\right) a_{j}, \tag{5.2}\\
(\alpha+\beta \gamma)_{j i}=\left(\beta_{j k} \vee\left(\alpha_{j i} \vee a_{k}\right)\left(\gamma_{k i} \vee a_{j}\right)\right)\left(a_{j} \vee a_{i}\right) \tag{5.3}\\
\quad[1,(5.2) \text { with multiplication reversed }] .
\end{gather*}
$$

6. Proof of (4.5) $)_{2}$. We assume $x_{1} \leqq a_{1}, y_{1} \leqq a_{1}, x_{2} \dot{\vee} a_{1} \leqq a_{2} \vee a_{1}, y_{2} \dot{\vee} a_{1} \leqq a_{2} \vee a_{1}$ and we need to prove:
(6.1) $x_{1} \vee x_{2} \leqq y_{1} \vee y_{2}$ if and only if $\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right) \leqq \varphi\left(y_{1}\right)+\varphi\left(y_{2}\right)$. Because of modularity we need consider only the case $x_{1}=0, \varphi\left(x_{1}\right)=0$ (use (4.5) $)$.

Now the inequality $\varphi\left(x_{2}\right) \leqq \varphi\left(y_{1}\right)+\varphi\left(y_{2}\right)$ is equivalent, in turn; to each of:

$$
\begin{equation*}
\left(-\alpha_{1}\left(x_{2}\right) e\left(x_{2}\right), e\left(x_{2}\right)\right)_{N}=\left(e\left(y_{1}\right), 0\right)_{N} \beta_{1}+\left(-\alpha_{1}\left(y_{2}\right) e\left(y_{2}\right), e\left(y_{2}\right)\right)_{N} \beta_{2} \tag{6.2}
\end{equation*}
$$

for some $\beta_{1}, \beta_{2} \in \mathscr{R}$;
(6.4) $\left(a_{1} \vee x_{2}\right) a_{2} \leqq\left(a_{1} \vee y_{2}\right) a_{2}$ and, (use (5.2)),

$$
\left.\left(\alpha_{1}\left(x_{2}\right) e\left(x_{2}\right)\right)_{13} \vee\left(\alpha_{1}\left(y_{2}\right) e\left(x_{2}\right)\right)_{13}\right) a_{1} \leqq y_{1}
$$

(6.5) . (i) $a_{1} \vee x_{2} \leqq a_{1} \vee y_{2}$ and
(ii) $\left(\alpha_{1}\left(x_{2}\right) e\left(x_{2}\right)\right)_{13} \leqq y_{1} \vee\left(\left(\alpha_{1}\left(y_{2}\right) e\left(x_{2}\right)\right)_{13}\right.$.

The inequality (6.5) (ii) is equivalent to each of:

$$
\begin{equation*}
\left(\left(\alpha_{1}\left(x_{2}\right)\right)_{12} \vee\left(e\left(x_{2}\right)\right)_{23}\right)\left(a_{1} \vee a_{3}\right) \leqq y_{1} \vee\left(\left(\alpha_{1}\left(y_{2}\right)\right)_{12} \vee\left(e\left(x_{2}\right)\right)_{23}\right), \tag{6.6}
\end{equation*}
$$

$$
\begin{gather*}
\left(\left(\alpha_{1}\left(x_{2}\right)\right)_{12} \vee\left(e\left(x_{2}\right)\right)_{23}\right)\left(a_{1} \vee a_{3} \vee\left(e\left(x_{2}\right)\right)_{23}\right) \leqq y_{1} \vee\left(\alpha_{1}\left(y_{2}\right)\right)_{12} \vee\left(e\left(x_{2}\right)\right)_{23} \tag{6.7}\\
\left(\alpha_{1}\left(x_{2}\right)\right)_{12}\left(a_{1} \vee\left(a_{3} \vee\left(e\left(x_{2}\right)\right)_{23}\right) a_{2}\right) \leqq y_{1} \vee\left(\alpha_{1}\left(y_{2}\right)\right)_{12} \tag{6.8}\\
\left(\alpha_{1}\left(x_{2}\right)\right)_{12}\left(a_{1} \vee\left(a_{1} \vee\left(e\left(x_{2}\right)\right)_{21}\right) a_{2}\right) \leqq y_{1} \vee\left(\alpha_{1}\left(y_{2}\right)\right)_{12} \tag{6.9}
\end{gather*}
$$

$$
\begin{equation*}
\left(\alpha_{1}\left(x_{2}\right)\right)_{12}\left(a_{1} \vee x_{2}\right) \leqq y_{1} \vee\left(\alpha_{1}\left(y_{2}\right)\right)_{12} \tag{6.10}
\end{equation*}
$$

Now (6.5) (i) and (6.10) together are equivalent to:

$$
\begin{equation*}
x_{2} \leqq y_{1} \vee y_{2} \tag{6.11}
\end{equation*}
$$

which establishes (6.1), i.e. (4.5) ${ }_{2}$.
7. Proof of (4.5) $)_{m}$ assuming (4.5) $)_{m-1} ; 3 \leqq m \leqq N$. We assume $x_{1} \leqq A^{m-1}, y_{1} \leqq$ $\leqq A^{m-1}, x_{2} \dot{\vee} A^{m-1} \leqq A^{m}, y_{2} \dot{V} A^{m-1} \leqq A^{m}$ and we must prove
(7.1) $x_{1} \vee x_{2} \leqq y_{1} \vee y_{2}$ if and only if $\varphi_{m-1}\left(x_{1}\right)+\varphi\left(x_{2}\right) \leqq \varphi_{m-1}\left(y_{1}\right)+\varphi\left(y_{2}\right)$ where φ_{m-1} is the isomorphism on A^{m-1} determined by φ (existing since (4.5) $)_{m-1}$ is assumed to hold). We may assume that $x_{1}=y_{1}(=z$, say $)$.

We recall that [2, Part II, Lemma 13.2] states: if $a \leqq b$ then every x can be expressed as $(x \vee a)(x \vee c)$ for some c with $a \dot{\vee} c=b$. Repeated application of this lemma shows that our z can be expressed as $z^{(1)} \wedge z^{(2)} \wedge \ldots \wedge z^{(m-1)}$ where, for each $j<(m-1): z^{(j)} \vee a_{j}=A^{m-1}$, and $z^{(m-1)} \geqq A^{m-2}$.

It is clearly sufficient to establish (7.1) with z replaced by $z^{(j)}, j=1, \ldots, m-1$. Thus, in (7.1), we need consider only:
case (1): $z \geqq A^{m-2} ;$ and case (2): $z \vee a_{j}=A^{m-1}$ for some $j<(m-1)$.
The proof of (7.1) for case (1). We use lattice calculations as in the proof of $(4.5)_{2}$ in $\S 6$. With the present z, x_{2}, y_{2},

$$
\varphi_{m-1}(z)=u_{1} \mathscr{R}+\ldots+u_{m-2} \mathscr{R}+u_{m-1} g \mathscr{R}
$$

where u_{j} is the vector in \mathscr{R}^{N} with j-th component 1 and all other components 0 , and g is an idempotent with $(g)_{m-1}^{(r)}=z a_{m-1}$.

Let

$$
\varphi\left(x_{2}\right)=\left(-\alpha_{1}, \ldots,-\alpha_{m-1}, 1\right)_{N} e \mathscr{R}, \quad \varphi\left(y_{2}\right)=\left(-\beta_{1}, \ldots,-\beta_{m-1}, 1\right)_{N} f \mathscr{R} .
$$

Then the last inequality of (7.1) is equivalent to each of the following:
(i) $e f=e$ and (ii) $\left(\beta_{m-1}-\alpha_{m-1}\right) e \in g \mathscr{R}$,
(7.3) (i) $\left(x_{2} \vee A^{m-1}\right) a_{m} \leqq\left(y_{2} \vee A^{m-1}\right) a_{m}$, i.e., $x_{2} \vee A^{m-1} \leqq y_{2} \vee A^{m-1}$, and
(ii) $\left(\left(\beta_{m-1}-\alpha_{m-1}\right) e\right)_{m-1}^{(r)} \leqq z a_{m-1}$.

Choose any $k \leqq N$ with k different from $m-1, m$. Then (7.3) (ii) is equivalent to each of the following:

$$
\begin{equation*}
\left(\alpha_{m-1}\right)_{m-1, m}\left(a_{m-1} \vee a_{k} \vee e_{m k}\right) \leqq z a_{m-1} \vee\left(\beta_{m-1}\right)_{m-1, m} \vee e_{m k} \tag{7.6}
\end{equation*}
$$

$$
\begin{align*}
& \left(\left(\beta_{m-1} e\right)_{m-1, k} \vee\left(\alpha_{m-1} e\right)_{m-1, k}\right) a_{m-1} \leqq z a_{m-1} \tag{7.4}\\
& \left(\alpha_{m-1} e\right)_{m-1, k} \leqq z a_{m-1} \vee\left(\beta_{m-1}\right)_{m-1, m} \vee e_{m k} \tag{7.5}
\end{align*}
$$

$$
\begin{equation*}
\left(\alpha_{m-1}\right)_{m-1, m}\left(a_{m-1} \vee a_{m}\left(a_{k} \vee e_{m k}\right)\right) \leqq z a_{m-1} \vee\left(\beta_{m-1}\right)_{m-1, m} . \tag{7.7}
\end{equation*}
$$

The left hand side of (7.7) equals

$$
\left(\alpha_{m-1}\right)_{m-1, m}\left(a_{m-1} \vee e_{m}^{(r)}\right)=\left(\alpha_{m-1}\right)_{m-1, m}\left(x_{2} \vee A^{m-1}\right)=\left(x_{2} \vee A^{m-2}\right)\left(a_{m} \vee a_{m-1}\right)
$$

In the presence of (7.3) (i), the right hand side of (7.7) may now be replaced by each of

$$
\begin{array}{cl}
\left(z a_{m-1} \vee\left(\beta_{m-1}\right)_{m-1, m}\right)\left(y_{2} \vee A^{m-1}\right), & z a_{m-1} \vee\left(y_{2} \vee A^{m-2}\right)\left(a_{m} \vee a_{m-1}\right), \\
\left(y_{2} \vee A^{m-2} \vee z a_{m-1}\right)\left(a_{m} \vee a_{m-1}\right), & \left(y_{2} \vee z\right)\left(a_{m} \vee a_{m-1}\right), \quad y_{2} \vee z,
\end{array}
$$

so (7.4) (ii) is equivalent to each of

$$
\left(x_{2} \vee A^{m-2}\right)\left(a_{m} \vee a_{m-1} \vee A^{m-2}\right) \leqq y_{2} \vee z, \quad x_{2} \vee A^{m-2} \leqq z \vee y_{2}
$$

Thus (7.4) is equivalent to: $x_{2} \leqq z \bigvee y_{2}$ and this establishes (7.1) for case (1).
The proof of (7.1) for case (2). Choose z_{m-1} so that $z_{m-1} \dot{\vee} z a_{j}=$ $=z\left(a_{j} \dot{\vee} a_{m-1}\right)$. Then: $z_{m-1} \leqq z ; \quad z_{m-1} \dot{\vee} a_{j}=a_{m-1} \dot{\vee} a_{j} ; z_{m-1} \dot{\vee} A^{m-2}=z \bigvee A^{m-2}=A^{m-1} ;$ and $\varphi_{m-1}\left(z_{m-1}\right)=\varphi\left(z_{m-1}\right)=(0, \ldots,-\beta, 0, \ldots, 1)_{N} \mathscr{R}$ with $-\beta$ in the j-th place and 1 in the ($m-1$)-th place.

Set $\quad \bar{x}_{2}=\left(x_{2} \vee z_{m-1}\right)\left(A^{m-2} \vee a_{m}\right), \bar{y}_{2}=\left(y_{2} \vee z_{m-1}\right)\left(A^{m-2} \vee a_{m}\right)$. Then $\bar{x}_{2} A^{m-1}=0=$ $=\bar{y}_{2} A^{m-1} ; z \vee \bar{x}_{2}=z \vee x_{2} ; z \vee \bar{y}_{2}=z \vee y_{2}$ and so the inequality $z \vee x_{2} \leqq z \vee y_{2}$ can be expressed as: $z \bigvee \bar{x}_{2} \leqq z \vee \bar{y}_{2}$.

If $\varphi\left(x_{2}\right)=\left(-\alpha_{1}, \ldots,-\alpha_{m-2},-\alpha_{m-1}, 1\right)_{N} \dot{e} \mathscr{R} \quad$ and $\varphi\left(y_{2}\right)=\left(-\beta_{1}, \ldots,-\beta_{m-2}\right.$, $\left.-\beta_{m-1}, 1\right)_{N} f \mathscr{R}$ then (use (5.3)):

$$
\begin{gathered}
\varphi\left(\bar{x}_{2}\right)=\left(-\alpha_{1}, \ldots,-\alpha_{j-1},-\alpha_{j}-\beta \alpha_{m-1},-\alpha_{j+1}, \ldots,-\alpha_{m-2}, 0,1\right)_{N} e \mathscr{R} \\
\varphi\left(\bar{y}_{2}\right)=\left(-\beta_{1}, \ldots,-\beta_{j-1},-\beta_{j}-\beta \beta_{m-1},-\beta_{j+1}, \ldots,-\beta_{m-2}, 0,1\right)_{N} f \mathscr{R}
\end{gathered}
$$

so the inequality

$$
\varphi_{m-1}(z)+\varphi\left(x_{2}\right) \leqq \varphi_{m-1}(z)+\varphi\left(y_{2}\right)
$$

can be expressed as:

$$
\varphi_{m-1}(z)+\varphi\left(\bar{x}_{2}\right) \leqq \varphi_{m-1}(z)+\varphi\left(\bar{y}_{2}\right)
$$

(use: $(0, \ldots, 0,-\beta, 0, \ldots, 1)_{N}\left(\beta_{m-1}-\alpha_{m-1}\right) e$, with $-\beta$ in the j-th place and 1 in the ($m-1$)-th place, is in $\varphi_{m-1}(z)$).

Thus we need only prove (7.1) in case (2) with z, x_{2}, y_{2} replaced by $z, \bar{x}_{2}, \bar{y}_{2}$ respectively. We may now also replace z by $\bar{z}=z A^{m-2}$. Then we observe that all of $\bar{z}, \bar{x}_{2}, \bar{y}_{2}, \leqq A^{m-2} \dot{\vee} a_{m}$. Hence we can apply (4.5) $)_{m-1}$ with $a_{1}, \ldots, a_{m-2}, a_{m-1}$ replaced by $a_{1}, \ldots, a_{m-2}, a_{m}$ (replacing $\left(\alpha_{1}, \ldots, \alpha_{m-1}\right)_{N}$ in $\mathscr{R}^{N}(m-1)$ by $\left(\alpha_{1}, \ldots, \alpha_{m-2}, 0\right.$, $\left.\alpha_{m-1}\right)_{N}$ in $\mathscr{R}^{N}(m)$); this replacement is permitted because it preserves the order of the a_{j}, and the functions φ, φ_{m-2}. This establishes (7.1) for the case (2) and completes the proof of $(4.5)_{m}$. This completes the proof of von Neumann's theorem.
8. Supplementary remark. Call $a_{1}, \ldots, a_{N}, N \geqq 3$ a Desarguesian basis for a complemented modular lattice L if for some $c_{1 j}, j>1$:
(i) (Bjarni Jónsson) a_{i} is perspective to some $b_{i} \leqq a_{1}$ for $i \geqq 2$ with $b_{2}=b_{3}=a_{1}$;
(ii) $a_{2} a_{1}=a_{3}\left(a_{2} \dot{\vee} a_{1}\right)=0$ and $a_{1} \vee \ldots \vee a_{N}=1$, and
(iii) the formulae (3.3) make \mathscr{R} a regular ring if, in the definition of L-number, i, j are restricted to $\{1,2,3\}$.

If such a Desarguesian basis for L exists, then the $a_{i}, i>3$ can be altered so that $\left\{a_{1}, \ldots, a_{N}\right\}$ becomes an independent basis for L and, with some changes, the above proof of von Neumann's theorem holds; the condition (iii) can be replaced
by certain Desarguesian-type lattice conditions (K. D. Fryer and I. Halperin, Acta Sci. Math., 17 (1956), 203-249; B. Jónsson, Trans. Amer. Math. Soc., 97(1960), 64-94).

The proof is simplified when, in the definition of L-number, the i, j are further restricted to $j<i$; but then the use of $e_{N}^{(r)}$ in (4.2) above and $(e(x))_{21}$ in (6.9) above, and the use of $k(<m-1)$ in (7.5) above (when $m=N$) must be (and can be) adjusted.

References

[1] K. D. Fryer and I. Halperin, On the coordinatization theorem of J. von Neumann, Canad. J. Math., 7 (1955), 432-444.
[2] J. von Neumann, Continuous Geometry, Princeton University Press (1960).

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TORONTO
TORONTO, CANADA, M5S 1A1

