Von Neumann's coordinatization theorem ¹⁾

ISRAEL HALPERIN

In Honour of Béla Szőkefalvi-Nagy on his 70th birthday

1. Notation. L denotes a complemented, modular lattice with homogeneous basis $a_1, ..., a_N$, $N \ge 4$ [2, Part II, Def. 3.1]; $A^j \equiv a_1 \lor ... \lor a_j$; ab means $a \land b$; $a \lor b$ means $a \lor b$ if ab = 0; $L_{ji} \equiv (b \in L: b \lor a_j = a_i \lor a_j)$.

If \mathscr{R} is a ring and $m \leq N$, then $\mathscr{R}^{N}(m)$ denotes the right \mathscr{R} -module $((\alpha_{1}, ..., \alpha_{N}))$: all $\alpha_{i} \in \mathscr{R}$ and $\alpha_{i} = 0$ for $m < i \leq N$; $(\alpha_{1}, ..., \alpha_{m})_{N}$ is an abbreviation for $(\alpha_{1}, ..., \alpha_{m}, 0, ..., 0) \in \mathscr{R}^{N}(m)$; $\mathscr{R}^{N} \equiv \mathscr{R}^{N}(N)$; $L(\mathscr{R}^{N}(m))$ denotes the set of finitely generated submodules of $\mathscr{R}^{N}(m)$, ordered by inclusion.

2. Von Neumann's theorem. In each L_{ji} $(j \neq i)$, addition and multiplication can be defined so that:

(2.1) The L_{ji} become regular rings with unit, isomorphic to a common regular ring \Re [2, Part II, Theorem 9.2].

(2.2) For each j the sublattice $(b \in L: b \leq a_j)$ is isomorphic to $L(\mathcal{R})$, the lattice of principal right ideals of \mathcal{R} [2, Part II; Theorem 9.2].

(2.3) L is isomorphic to $L(\mathcal{R}^N)$ [2, Part II, Theorem 14.1].

3. Outline of von Neumann's proof. (3.1) Choose $c_{1j}=c_{j1}$, $2 \le j \le N$, so that $c_{j1} \dot{\lor} a_j = c_{j1} \dot{\lor} a_1 = a_j \dot{\lor} a_1$; set $c_{j1} = (c_{j1} \lor c_{1i})(a_j \lor a_i)$ for 1, *i*, *j* all different.

(3.2) Call a family $\alpha \equiv (\alpha_{ji} \in L_{ji}: i \neq j)$ an L-number if $(\alpha_{ji} \lor c_{jk})(a_k \lor a_i) = \alpha_{ki}$ and $(\alpha_{ji} \lor c_{ik})(a_j \lor a_k) = \alpha_{jk}$. Note: For every $b \in L_{ji}$ there exists a unique L-number α with $\alpha_{ii} = b$ [2, Part II, Lemma 6.1].

(3.3) Let \mathcal{R} denote the set of L-numbers with operations:

$$(\alpha + \beta)_{ji} = (\alpha_{jk} \lor (\beta_{ji} \lor a_k)(a_j \lor c_{ik}))(a_j \lor a_i),$$

$$(\alpha \beta)_{ii} = (\alpha_{jk} \lor \beta_{ki})(a_j \lor a_i).$$

(3.4) For each $\alpha \in \mathscr{R}$ and $1 \leq j \leq N$, define the reach of α into a_j by $\alpha_j^{(r)} \equiv \equiv (\alpha_{ii} \lor a_i)a_i$ (does not depend on $i, i \neq j$).

¹) A sketch of this paper appeared in C. R. Math. Rep. Acad. Sci. Canada, 3 (1981), 285-290.

Received August 20, 1981.

I. Halperin

(3.5) Prove: αγ=β has a solution γ if and only if β_j^(r) ≤α_j^(r) (holds for all j if for some j) [2; Part II, Lemma 9.4] or [1, (3.2) with multiplication reversed].
(3.6) Prove: For each b≤a_j: b=e_j^(r) for some idempotent e∈ 𝔅 [2, Part II, Theorem 9.3].

(3.7) Deduce: Parts (2.1); (2.2) of the theorem hold [2, Part II, Theorem 9.2]. (3.8)_m Prove: For $1 \le m \le N$ there exists an isomorphism

$$\varphi_m: (b \in L: b \leq A^m) \rightarrow L(\mathscr{R}^N(m)) \text{ with } \varphi_1 \subset \varphi_2 \subset \ldots \subset \varphi_N$$

Note: φ_N establishes Part (2.3) of the theorem. The outstanding difficulty in von Neumann's proof is to establish the φ_m .

4. Von Neumann's strategy to prove $(3.8)_m$. (4.1) Call b an m-element if (i) m=1 and $b \leq a_1$, or (ii) $2 \leq m \leq N$ and $b \lor A^{m-1} \leq A^m$.

(4.2) For each *m*-element *b* define $\varphi(b)$, a submodule of $L(\mathscr{R}^{N}(m))$, as follows:

(i) If $b \leq a_1$ define $\varphi(b) \equiv (e, 0, ..., 0) \mathscr{R}$ with e idempotent and $e_1^{(r)} = b$.

(ii) If $2 \le m \le N$ define $\varphi(b) \equiv (-\alpha_1, ..., -\alpha_{m-1}, 1)_N e\mathcal{R}$ with *e* idempotent and $e_m^{(r)} = (A^{m-1} \lor b)a_m$, with $b' \lor e_m^{(r)} = a_m$ and $(\alpha_i)_{im} = (b \lor b' \lor A^{i-1} \lor a_{i+1} \lor ...$ $\ldots \lor a_{m-1})(a_i \lor a_m)$.

Note: $\varphi(b)$ is determined uniquely by b though e, b', and the α_i may not be; also $(\alpha_i)_{im}(A^{m-1} \lor b) = (b \lor A^{i-1} \lor a_{i+1} \lor ... \lor a_{m-1})(a_i \lor a_m).$

(4.3) For each $x \in L$ and decomposition $x = \bigvee_{i=1}^{N} x_i$ with x_i an *i*-element, (such decompositions exist for all x), assign to x the submodule $\varphi(x_1) + \ldots + \varphi(x_N)$.

 $(4.4)_m \quad \text{Prove: the set } (\varphi(x_1) + \ldots + \varphi(x_m) \colon x \leq A^m) = L(\mathscr{R}^N(m)).$

(4.5)_m Prove: For decompositions $x = \bigvee_{i=1}^{m} x_i, y = \bigvee_{i=1}^{m} y_i$: $x \le y$ if and only if $\sum_{i=1}^{m} \varphi(x_i) \le \sum_{i=1}^{m} \varphi(y_i)$. Note: (4.5)_m implies that $\varphi_m(x) = \sum_{i=1}^{m} \varphi(x_i)$ has the same value for all decompositions of x; then (4.4)_m, (4.5)_m establish (3.8)_m.

Von Neumann established $(4.4)_m$ without difficulty [2, Part II, Theorem 11.2]; (4.5)₁ follows immediately from (3.5), (3.6). But von Neumann's proof of $(4.5)_m$, $2 \le m \le N$ [2, Part II, pages 168—208], is a virtuoso demonstration of mathematical technique.

5. A new proof of $(4.5)_m$, $2 \le m \le N$. We use direct lattice calculations (for the case m=2, in particular) and reduce part of the case m (to the case m-1) when $3 \le m \le N$.

We require the following properties of L-numbers.

(5.1)
$$(\alpha - \beta)_{ik} = (\alpha_{ii} \lor (a_k \lor \beta_{ii})(a_i \lor c_{ik}))(a_i \lor a_k) \quad [1, (2.3)],$$

hence

(5.2)
$$(\alpha - \beta)_i^{(r)} = (\alpha_{ii} \lor \beta_{ii}) a_i,$$

(5.3)
$$(\alpha + \beta \gamma)_{ji} = (\beta_{jk} \lor (\alpha_{ji} \lor a_k)(\gamma_{ki} \lor a_j))(a_j \lor a_i)$$
[1, (5.2) with multiplication reversed].

6. Proof of (4.5)₂. We assume $x_1 \leq a_1$, $y_1 \leq a_1$, $x_2 \lor a_1 \leq a_2 \lor a_1$, $y_2 \lor a_1 \leq a_2 \lor a_1$ and we need to prove:

(6.1) $x_1 \lor x_2 \le y_1 \lor y_2$ if and only if $\varphi(x_1) + \varphi(x_2) \le \varphi(y_1) + \varphi(y_2)$. Because of modularity we need consider only the case $x_1 = 0$, $\varphi(x_1) = 0$ (use (4.5)₁).

Now the inequality $\varphi(x_2) \leq \varphi(y_1) + \varphi(y_2)$ is equivalent, in turn, to each of:

(6.2)
$$(-\alpha_1(x_2)e(x_2), e(x_2))_N = (e(y_1), 0)_N \beta_1 + (-\alpha_1(y_2)e(y_2), e(y_2))_N \beta_2$$

for some $\beta_1, \beta_2 \in \mathcal{R}$;

(6.3)
$$e(y_2)e(x_2)=e(x_2)$$
 and $(\alpha_1(y_2)e(x_2)-\alpha_1(x_2)e(x_2))_1^{(r)} \leq (e(y_1))_1^{(r)};$

(6.4) $(a_1 \lor x_2)a_2 \le (a_1 \lor y_2)a_2$ and, (use (5.2)),

$$(\alpha_1(x_2)e(x_2))_{13} \vee (\alpha_1(y_2)e(x_2))_{13})a_1 \leq y_1;$$

(6.5) (i)
$$a_1 \lor x_2 \leq a_1 \lor y_2$$
 and
(ii) $(\alpha_1(x_2)e(x_2))_{13} \leq y_1 \lor ((\alpha_1(y_2)e(x_2))_{13}.$

The inequality (6.5) (ii) is equivalent to each of:

$$(6.6) \qquad ((\alpha_1(x_2))_{12} \lor (e(x_2))_{23})(a_1 \lor a_3) \leq y_1 \lor ((\alpha_1(y_2))_{12} \lor (e(x_2))_{23}),$$

$$(6.7) \qquad \left((\alpha_1(x_2))_{12} \lor (e(x_2))_{23} \right) \left(a_1 \lor a_3 \lor (e(x_2))_{23} \right) \leq y_1 \lor \left(\alpha_1(y_2) \right)_{12} \lor \left(e(x_2) \right)_{23}$$

(6.8)
$$(\alpha_1(x_2))_{12}(a_1 \vee (a_3 \vee (e(x_2))_{23})a_2) \leq y_1 \vee (\alpha_1(y_2))_{12},$$

(6.9)
$$(\alpha_1(x_2))_{12}(a_1 \lor (e(x_2))_{21})a_2) \leq y_1 \lor (\alpha_1(y_2))_{12},$$

(6.10)
$$(\alpha_1(x_2))_{12}(a_1 \lor x_2) \leq y_1 \lor (\alpha_1(y_2))_{12}.$$

Now (6.5) (i) and (6.10) together are equivalent to:

$$(6.11) x_2 \leq y_1 \lor y_2,$$

which establishes (6.1), i.e. $(4.5)_2$.

7. Proof of $(4.5)_m$ assuming $(4.5)_{m-1}$, $3 \le m \le N$. We assume $x_1 \le A^{m-1}$, $y_1 \le \le A^{m-1}$, $x_2 \lor A^{m-1} \le A^m$, $y_2 \lor A^{m-1} \le A^m$ and we must prove

(7.1) $x_1 \lor x_2 \le y_1 \lor y_2$ if and only if $\varphi_{m-1}(x_1) + \varphi(x_2) \le \varphi_{m-1}(y_1) + \varphi(y_2)$ where φ_{m-1} is the isomorphism on A^{m-1} determined by φ (existing since (4.5)_{m-1} is assumed to hold). We may assume that $x_1 = y_1 (=z, \text{ say})$.

I. Halperin

We recall that [2, Part II, Lemma 13.2] states: if $a \leq b$ then every x can be expressed as $(x \lor a)(x \lor c)$ for some c with $a \lor c = b$. Repeated application of this lemma shows that our z can be expressed as $z^{(1)} \land z^{(2)} \land \ldots \land z^{(m-1)}$ where, for each j < (m-1): $z^{(j)} \lor a_j = A^{m-1}$, and $z^{(m-1)} \geq A^{m-2}$.

It is clearly sufficient to establish (7.1) with z replaced by $z^{(j)}$, j=1, ..., m-1. Thus, in (7.1), we need consider only:

case (1):
$$z \ge A^{m-2}$$
; and case (2): $z \lor a_j = A^{m-1}$ for some $j < (m-1)$.

The proof of (7.1) for case (1). We use lattice calculations as in the proof of $(4.5)_2$ in §6. With the present z, x_2, y_2 ,

$$\varphi_{m-1}(z) = u_1 \mathscr{R} + \ldots + u_{m-2} \mathscr{R} + u_{m-1} g \mathscr{R}$$

where u_j is the vector in \mathscr{R}^N with *j*-th component 1 and all other components 0, and g is an idempotent with $(g)_{m-1}^{(r)} = za_{m-1}$.

Let

$$\varphi(x_2) = (-\alpha_1, ..., -\alpha_{m-1}, 1)_N e\mathcal{R}, \quad \varphi(y_2) = (-\beta_1, ..., -\beta_{m-1}, 1)_N f\mathcal{R}.$$

Then the last inequality of (7.1) is equivalent to each of the following:

- (7.2) (i) ef = e and (ii) $(\beta_{m-1} \alpha_{m-1})e \in g\mathcal{R}$,
- (7.3) (i) $(x_2 \lor A^{m-1}) a_m \leq (y_2 \lor A^{m-1}) a_m$, i.e., $x_2 \lor A^{m-1} \leq y_2 \lor A^{m-1}$, and (ii) $((\beta_{m-1} - \alpha_{m-1}) e)_{m-1}^{(r)} \leq za_{m-1}$.

Choose any $k \le N$ with k different from m-1, m. Then (7.3) (ii) is equivalent to each of the following:

(7.4)
$$((\beta_{m-1}e)_{m-1,k} \lor (\alpha_{m-1}e)_{m-1,k}) a_{m-1} \leq za_{m-1};$$

(7.5)
$$(\alpha_{m-1}e)_{m-1,k} \leq za_{m-1} \vee (\beta_{m-1})_{m-1,m} \vee e_{mk}$$

(7.6)
$$(\alpha_{m-1})_{m-1,m} (a_{m-1} \vee a_k \vee e_{mk}) \leq z a_{m-1} \vee (\beta_{m-1})_{m-1,m} \vee e_{mk};$$

(7.7)
$$(\alpha_{m-1})_{m-1,m} (a_{m-1} \lor a_m (a_k \lor e_{mk})) \leq z a_{m-1} \lor (\beta_{m-1})_{m-1,m}.$$

The left hand side of (7.7) equals

$$(\alpha_{m-1})_{m-1,m}(a_{m-1} \lor e_m^{(r)}) = (\alpha_{m-1})_{m-1,m}(x_2 \lor A^{m-1}) = (x_2 \lor A^{m-2})(a_m \lor a_{m-1}).$$

In the presence of (7.3) (i), the right hand side of (7.7) may now be replaced by each of

$$(za_{m-1} \lor (\beta_{m-1})_{m-1,m}) (y_2 \lor A^{m-1}), \quad za_{m-1} \lor (y_2 \lor A^{m-2}) (a_m \lor a_{m-1}), (y_2 \lor A^{m-2} \lor za_{m-1}) (a_m \lor a_{m-1}), \quad (y_2 \lor z) (a_m \lor a_{m-1}), \quad y_2 \lor z,$$

so (7.4) (ii) is equivalent to each of

$$(x_2 \vee A^{m-2})(a_m \vee a_{m-1} \vee A^{m-2}) \leq y_2 \vee z, \quad x_2 \vee A^{m-2} \leq z \vee y_2.$$

Thus (7.4) is equivalent to: $x_2 \leq z \lor y_2$ and this establishes (7.1) for case (1).

The proof of (7.1) for case (2). Choose z_{m-1} so that $z_{m-1}\dot{\vee}za_j = z(a_j\dot{\vee}a_{m-1})$. Then: $z_{m-1} \leq z$; $z_{m-1}\dot{\vee}a_j = a_{m-1}\dot{\vee}a_j$; $z_{m-1}\dot{\vee}A^{m-2} = z \vee A^{m-2} = A^{m-1}$; and $\varphi_{m-1}(z_{m-1}) = \varphi(z_{m-1}) = (0, ..., -\beta, 0, ..., 1)_N \mathscr{R}$ with $-\beta$ in the *j*-th place and 1 in the (m-1)-th place.

Set $\bar{x}_2 = (x_2 \lor z_{m-1})(A^{m-2} \lor a_m)$, $\bar{y}_2 = (y_2 \lor z_{m-1})(A^{m-2} \lor a_m)$. Then $\bar{x}_2 A^{m-1} = 0 = \bar{y}_2 A^{m-1}$; $z \lor \bar{x}_2 = z \lor x_2$; $z \lor \bar{y}_2 = z \lor y_2$ and so the inequality $z \lor x_2 \leq z \lor y_2$ can be expressed as: $z \lor \bar{x}_2 \leq z \lor \bar{y}_2$.

If $\varphi(x_2) = (-\alpha_1, ..., -\alpha_{m-2}, -\alpha_{m-1}, 1)_N \dot{e}\mathcal{R}$ and $\varphi(y_2) = (-\beta_1, ..., -\beta_{m-2}, -\beta_{m-1}, 1)_N f\mathcal{R}$ then (use (5.3)):

$$\varphi(\bar{x}_{2}) = (-\alpha_{1}, ..., -\alpha_{j-1}, -\alpha_{j} - \beta \alpha_{m-1}, -\alpha_{j+1}, ..., -\alpha_{m-2}, 0, 1)_{N} e^{\mathcal{R}},$$

$$\varphi(\bar{y}_{2}) = (-\beta_{1}, ..., -\beta_{j-1}, -\beta_{j} - \beta \beta_{m-1}, -\beta_{j+1}, ..., -\beta_{m-2}, 0, 1)_{N} f^{\mathcal{R}}$$

so the inequality

can be expressed as:

 $\varphi_{m-1}(z) + \varphi(x_2) \leq \varphi_{m-1}(z) + \varphi(y_2)$

$$\varphi_{m-1}(z) + \varphi(\bar{x}_2) \leq \varphi_{m-1}(z) + \varphi(\bar{y}_2)$$

(use: $(0, ..., 0, -\beta, 0, ..., 1)_N(\beta_{m-1} - \alpha_{m-1})e$, with $-\beta$ in the *j*-th place and 1 in the (m-1)-th place, is in $\varphi_{m-1}(z)$).

Thus we need only prove (7.1) in case (2) with z, x_2, y_2 replaced by z, \bar{x}_2, \bar{y}_2 respectively. We may now also replace z by $\bar{z}=zA^{m-2}$. Then we observe that all of $\bar{z}, \bar{x}_2, \bar{y}_2, \leq A^{m-2} \lor a_m$. Hence we can apply $(4.5)_{m-1}$ with $a_1, \ldots, a_{m-2}, a_{m-1}$ replaced by $a_1, \ldots, a_{m-2}, a_m$ (replacing $(\alpha_1, \ldots, \alpha_{m-1})_N$ in $\mathscr{R}^N(m-1)$ by $(\alpha_1, \ldots, \alpha_{m-2}, 0, \alpha_{m-1})_N$ in $\mathscr{R}^N(m)$); this replacement is permitted because it preserves the order of the a_j , and the functions φ, φ_{m-2} . This establishes (7.1) for the case (2) and completes the proof of $(4.5)_m$. This completes the proof of von Neumann's theorem.

8. Supplementary remark. Call $a_1, ..., a_N$, $N \ge 3$ a Desarguesian basis for a complemented modular lattice L if for some $c_{1j}, j > 1$:

(i) (Bjarni Jónsson) a_i is perspective to some $b_i \leq a_1$ for $i \geq 2$ with $b_2 = b_3 = a_1$, (ii) $a_2a_1 = a_3(a_2 \lor a_1) = 0$ and $a_1 \lor \dots \lor a_N = 1$, and

(iii) the formulae (3.3) make \mathscr{R} a regular ring if, in the definition of *L*-number, *i*, *j* are restricted to $\{1, 2, 3\}$.

If such a Desarguesian basis for L exists, then the a_i , i > 3 can be altered so that $\{a_1, ..., a_N\}$ becomes an independent basis for L and, with some changes, the above proof of von Neumann's theorem holds; the condition (iii) can be replaced by certain Desarguesian-type lattice conditions (K. D. FRYER and I. HALPERIN, Acta Sci. Math., 17 (1956), 203–249; B. JÓNSSON, Trans. Amer. Math. Soc., 97 (1960), 64–94).

The proof is simplified when, in the definition of *L*-number, the *i*, *j* are further restricted to j < i, but then the use of $e_N^{(r)}$ in (4.2) above and $(e(x))_{21}$ in (6.9) above, and the use of k (< m-1) in (7.5) above (when m=N) must be (and can be) adjusted.

References

 K. D. FRYER and I. HALPERIN, On the coordinatization theorem of J. von Neumann, Canad. J. Math., 7 (1955), 432-444.

[2] J. VON NEUMANN, Continuous Geometry, Princeton University Press (1960).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TORONTO TORONTO, CANADA, M5S 1A1