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Von Neumann's coordinatization theorem 
ISRAEL HALPERIN 

In Honour of Beta Szokefalvi-Nagy on his 70th birthday 

1. Notation. L denotes a complemented, modular lattice with homogeneous 
basis a1,...,aN, TVS4 [2, Part II, Def. 3.1]; AJ=a1\/...\/aj; ab means a/\b; 
a\jb means a\jb if ab=0; L}i={b£L:b\Ja—a^a}). 

If Si is a ring and m^N, then 8%N(m) denotes the right 52-module ((ax, ..., aN): 
all «.£3% and a f = 0 for m ^ i ^ N ) ; (a l5 ..., am) is an abbreviation for 
(a l 5 . . . ,a m , 0, . . . ,0 )£@ N (m) ; AT); L{St\m))"denotes the set of finitely 
generated submodules of !%N(m), ordered by inclusion. 

2. Von Neumann's theorem. In each L^ (yV/), addition and multiplication can 
be defined so that: 

(2.1) The Lji become regular rings with unit, isomorphic to a common regular 
ring 01 [2, Part II, Theorem 9.2]. 

(2.2) For each j the sublattice (b(LL: b^aj) is isomorphic to L{M), the 
lattice of principal right ideals of 01 [2, Part II, Theorem 9.2]. 

(2.3) L is isomorphic to L(3tN) [2, Part II, Theorem 14.1]. 

3. Outline of von Neumann's proof. (3.1) Choose clj=cJ1, 2 s j s N , so that 
6-J! V a j = cn \/a1 =aj V ¿/J; set cJt=(CJ:L V ¿'LIX*2; V «¡) f o r i , / , / all different. 

(3.2) Call a family a = ( a j ^ L ^ : an ¿-number if (txjlVcJk)(akV«,)=<xki 

and (ajt\/cik)(ajVak)=ajk. Note: For every there exists a unique ¿-number 
a with a J t = b [2, Part II, Lemma 6.1]. 

(3.3) Let denote the set of 1,-numbers with operations: 

( « + % = ( « ( F T , V A4)(AY.V C I T))(AYV A ; ) , 

= ( a ^ V f e X ^ V a ; ) . 

(3.4) For each oc and 1 = /=TV, define the reach of a into ay by 
=(ayjV a,)^ (does not depend on i , i ^ j ) . 
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(3.5) Prove: ay=jS has a solution y if and only if (holds for all 
j if for some j ) [2, Part II, Lemma 9.4] or [1, (3.2) with multiplication reversed]. 

(3.6) Prove: For each b^aj:b=eip for some'idempotent [2, Part II, 
Theorem 9.3]. 

(3.7) Deduce: Parts (2.1), (2.2) of the theorem hold [2, Part II, Theorem 9.2]. 
(3.8)m Prove: For lSmSiST there exists an isomorphism 

q>m\ (b£L: b 3= Am) - L{MN(m)) with ^ c < p 2 c . . . c cpN. 

Note: (pN establishes Part (2.3) of the theorem. The outstanding difficulty in von 
Neumann's proof is to establish the <pm. 

4. Von Neumann's strategy to prove (3.8)m. (4.1) Call b an m-element if 
(i) m = 1 and or (ii) 2 S m ^ N and b</Am-1^Am. 

(4.2) For each m-element b define q>(b), a submodule of L(3$N(m)), as 
follows: 

(i) If define cp(b)=(e, 0, ..., 0)^ with e idempotent and e[r)=b. 
(ii) If 2 S w S i V define <p(b) = ( —a!, ..., —.am_i, with e idempotent 

and e^=(Am-1yb)am, with b'Ve%=am and ( ^ ^ ( b y b'\J ai+1\J... 
...Va«-i)(fliVflJ-

Note: (p(b) is determined uniquely by b though e, b', and the a ; may not be; 
also (a,) (Am~1\/b) = (b\/Ai-1\/ai+1V...\/am-1)(ai\/am). 

N 
(4.3) For each x£ L and decomposition x= V * ; w ' th an /-element, 

¡=1 
(such decompositions exist for all x), assign to x the submodule <p(x1)+...+<p(xN). 

(4.4)m Prove: the set ((p(Xl)+... + (p(xm): x^Am)=L(@\m)). 
m m 

(4.5)m Prove: For decompositions x=\Jxt, y= \J y{\ if and only 
¡=i ;=i m m m 

if 2<P(xi)^ 2<p(yd. Note: (4.5)m implies that <pm(x)= 2(p{x{) has the same 
¡ = 1 i = l 1 = 1 

value for all decompositions of x; then (4.4)m, (4.5)m establish (3.8)m. 

Von Neumann established (4.4)m without difficulty [2, Part II, Theorem 11.2]; 
(4.5)x follows immediately from (3.5), (3.6). But von Neumann's proof of (4.5)m, 

[2, Part II, pages 168—208], is a virtuoso demonstration of mathematical 
technique. 

5. A new proof of (4.5)m, We use direct lattice calculations (for the 
case m = 2, in particular) and reduce part of the case m (to the case m — 1) when 

We require the following properties of ¿-numbers. 

(5.1) (x-P)J k = ( a j ,V( a t V^,)( a j Vc i t ))( a j .Va t ) [1, (2.3)3, 
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hence 

(5.2) ( a - P ) P = (x jMjdci j , 

(5.3) («+fo)ji = (PjkV(ZjiVak)(ykiVaJ))(ajVai) 
[1, (5.2) with multiplication reversed]. 

6. Proof of (4.5)2. We assume x2V«i=«2Vfli, y2\! ax^a2M 
and we need to prove: 

(6.1) XiV*2=yiV;>2 if and only if + ( p ( x 2 ) ^ ^ ( j i ) + (p(y2)- Because of 
modularity we need consider only the case x x =0, (p(x1)=0 (use (4.5)!). 

Now the inequality ^ ( x ^ ^ ^ y ^ + ^ y 2 ) is equivalent, in turn, to each of: 

(6.2) (~<xi(jxje(xj, e(x2))N = (e(jj), 0 ) N f t + ( -a 1 ( j 2 ) e (y 2 ) , e(y2))Nf$2 

for some ft, 

(6.3) e(y2)eix2)=e(x2) and {^{y^eix^-a^eix^fp == (e(^))ir); 

(6.4) (a!V^2K = («xVj2)«2 and, (use (5.2)), 

( a i ^ e ^ X s V i a ^ j ^ e ^ X a ) « ! S j i j 

(6.5) (i) a1V*2^«iVj>2 and 
(ii) ( a ^ ^ K ^ X a = y-L V ((ai(j2>(x2)),3. 

The inequality (6.5) (ii) is equivalent to each of: 

(6.6) ((«iC^izV (e(*2))23)(aiVa3) = JiV ( ( ^ ( j ^ V (e(x2))23), 

(6.7) ((ai(*2))12V (e(x2))23)(ai Va3V (e(x2))23) ^ JiV(a1(j2))12V(e(jc2))23, 

(6.8) (*2))i2(«iV(«3V(e(x2))23)a2) . V i V M J ^ W 

(6.9) (« i (^^(aiVi f l iV (e(x2))21)a2) ^ y ^ ( ^ ( y 2 ) ) u , 

(6.10) (oti(^))i2(aiVx2) ^ J i V M ^ -

Now (6.5) (i) and (6.10) together are equivalent to: 

(6.11) ^ J ' l V . P l , 

which establishes (6.1), i.e. (4.5)2. 

7. Proof of (4.5)m assuming (4.5)m_1; 3 g m S i i . We assume x1SAm~1, y ^ 
SA"-1, x2VAm-1^Am, y2VAm~1^Am and we must prove 

(7.1) x^x^yiVya if and only if <pm-1(x1) + q>(x2)^<pm_1(y1) + <p(y2) where 
<pm-1 is the isomorphism on A1"-1 determined by cp (existing since (4.5)m_1 is 
assumed to hold). We may assume that x1 = y1 (=z, say). 
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We recall that [2, Part II, Lemma 13.2] states: if a^b then every x can be 
expressed as (x\Ja)(x\Jc) for some c with a\Jc=b. Repeated application of this 
lemma shows that our z can be expressed as z (1 ) Az(2) A -Az ( m - 1 ) where, for each 
j<(m—l): z(J)Vfly=y4m-1, and z ( 

It is clearly sufficient to establish (7.1) with z replaced by za),j = l, ..., m—l. 
Thus, in (7.1), we need consider only: 

case (I): z^Am~2, and case (2): z\Jaj=Am~1 for some y < ( m - l ) . 

T h e p r o o f of (7.1) f o r case (1). We use lattice calculations as in the 
proof of (4.5)2 in §6. With the present z, x2,y2, 

= H 1^ + ... + Mm_2<%+ 

where Uj is the vector in with y'-th component 1 and all other components 0, 
and g is an idempotent with (g)^)_1=zom_1. 

Let 

<?(**) = •••» ~«m-i, Ihet*. y(y2) = ( - f t , ..., fim—i> 

Then the last inequality of (7.1) is equivalent to each of the following: 
(7.2) (i) ef=e and (ii) ( p ^ - z ^ e i g ® , 
(7.3) (i) (x2VAm-1)amS(y2VAm~1)am, i.e., x2\J Am~1^y2y Am-\ and 

(ii) { { f i m ^ - o i m ^ ) e f t ^ z a ^ . 
Choose any k^N with k different from m—l, m. Then (7.3) (ii) is equiv-

alent to each of the following: 

(7-4) ( O C i ^ . ^ V ^ e ) ^ J a r a _ 1 ^ z a m _ 1 ; 

(7-5) (am-ie)m-i>fc ^ 

(7.6) (am_1)m.ljm(am_ 1Vakyemk) s zam_1V(Pm-i)m.1>mVemk; 

(7.7) == zam_iV (/?m_i)m_ 1>m« • 

The left hand side of (7.7) equals 

( « m - i ) m . l i m ( f l m - i V a = ( a m - i L . ^ V ^ - 1 ) = (x2V;4m-2)(amV 

In the presence of (7.3) (i), the right hand side of (7.7) may now be replaced by each of 

(zam-iV(^m-i)m_lm)(j2V^"'~1), zam-1V(y,VA*-*)(amVam.1), 

(j2V^m-2Vzam_ 1)(amVam . 1), (y2V z)(amV a ^ ) , y2V z, 
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so (7.4) (ii) is equivalent to each of 

(x 2 V^ m - 2 )(a m Va m _ 1 V4 m - 2 )S7 2 Vz, Am~* ^ zVyM. 

Thus (7.4) is equivalent to: x2^z\Jy2 and this establishes (7.1) for case (1). 

The p r o o f of (7.1) for case (2). Choose so that zm-x\Jza~ 
=z(ajyam.1). Then: zm_1Va~am_1VflJ-; z ^ y Am~*=z\/A^^A"1-1-; 
and (¡om_1(zm_1)=9(^m-1)=(0,..., -P, 0, ..., \)Nm with - j 3 in the y-th place 
and 1 in the (m — l)-th place. 

Set x2=(x2Vzm-0(Am-2\/am), y2=(y2Vzm^)(Am-2VaJ. Then x2Am~1=0= 
=y2Am~1; z\Jx2=z\Jx2, zyy2=z\Jy2 and so the inequality z\Jx2^z\Jy2 can be 
expressed as: z y x2-^z\l y2. 

If (p(x2)=(-cc1, ..., —am_a> ~«m-i. and cp(y2)=(-Pi, ..., ~Pm-2, 
1 ) w / « then (use (5.3)): 

9(xd = ( - < * i . •••> -<*j-i> -<*J-P<*m-1>-<*j+i, • • • > - O m - 2 , 0 , \)Ne3i, 

<p(y2) = (~/»l, -Pj-1, -Pj-PPm-1, -Pj +1, .... Pm — 2 > 0, 

so the inequality 

can be expressed as: 

(use: (0, ..., 0, —/?, 0, ..., l)iv(/Jm-i —am-i)e, with —p in they-th place and 1 in the 
(m—l)-th place, is in <pm~i(z)). 

Thus we need only prove (7.1) in case (2) with z, x2,y2 replaced by z, x2, y2 

respectively. We may now also replace z by z=zAm~a. Then we observe that all of 
z, x2, y2, ^Am~2\Jam. Hence we can apply (4.5)m_! with a1; ..., am_2, am_x replaced 
by ay, ...,am_2, am (replacing (ax, in ®N(m-\) by (a1} ..., am_2, 0, 
am_1)JV in £%N(m)); this replacement is permitted because it preserves the order of 
the aj, and the functions q>, <pm-2. This establishes (7.1) for the case (2) and 
completes the proof of (4.5)m. This completes the proof of von Neumann's theorem. 

8. Supplementary remark. Call a l5 . . . , % , i V s 3 a Desarguesian basis for 
a complemented modular lattice L if for some c\j, j > 1: 

(i) (Bjarni Jonsson) ai is perspective to some bt^a1 for i S 2 with b2=bi=a1, 
(ii) a2ax=as(a2V £i)=0 and a1\/...\/aN=l, and ' 

(iii) the formulae (3.3) make Si a regular ring if, in the definition of ¿-number, 
i,j are restricted to {1, 2, 3}. 

If such a Desarguesian basis for L exists, then the at, /=*• 3 can be altered 
so that {al3 ..., aN} becomes an independent basis for L and, with some changes, 
the above proof of von Neumann's theorem holds; the condition (iii) can be replaced 
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by certain Desarguesian-type lattice conditions (K. D . FRYER and I. HALPERIN, 
Acta Sci. Math., 17 (1956), 203—249; B. J6NSSON, Trans. Amer. Math. Soc., 97(1960), 
64—94). 

The proof is simplified when, in the definition of ¿-number, the i, j are further 
restricted to but then the use of e ^ in (4.2) above and (e(x))21 in (6.9) above, 
and the use of k ( < m — 1 ) in (7.5) above (when m=N) must be (and can be) adjusted. 
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