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On partial asymptotic stability and instability. I 
(Autonomous systems) 

L. HATVANI 

Dedicated to Professor Beta Szokefalvi-Nagy on his 70th birthday 

1. Introduction 

Ljapunov's direct method is the most powerful tool for establishing also partial 
stability properties, i.e. stability properties regarding some variables only [1]—[3]. 
One finds, however, that in many applications it is very complicated to construct 
an appropriate Ljapunov function. For example, the derivative of the total mechan-
ical energy of a holonomic mechanical system under the action of dissipative 
forces is negative definite with respect to velocities only, thus it cannot be used in 
the basic theorems to establish asymptotic stability or instability with respect to 
the generalized coordinates. The method of BARBASHIN and KRASOVSKI! [4], [5] 
and LASALLE'S invariance principle [6] enable us to get asymptotic stability or 
instability by Ljapunov functions with semidefinite derivative. These methods have 
been extended to the study of partial stability [1], [7], [8]. However, in comparison 
with the stability investigations concerning all variables, a new difficulty appears: 
the extensions require the boundedness of all the uncontrolled coordinates along 
every solution. As it was shown in [9] by an example, this condition cannot be 
omitted. Our purpose is to replace this condition by such ones which can be checked 
directly, i.e. without a priori knowledge of the solutions. 

We first study what we can state after having dropped the condition of bounded-
ness of the uncontrolled coordinates. This allows us to locate the limit set of the 
vector function whose components are the controlled coordinates of a solution. 
Then we can find additional conditions on the Ljapunov function which assure the 
zero solution of an autonomous system to be partially asymptotically stable or 
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unstable. Starting from the localization result mentioned above, in the continuation 
[10] of the present paper we give some additional conditions on the right-hand side 
of the system which imply the same properties. We apply our results to study 
stability properties of mechanical equilibrium in the presence of dissipative forces. 
As special cases we study motions of a material point along certain surfaces in a 
constant field of gravity. 

2. Notations, definitions. Preliminaries 

Consider the system of differential equations 

(2.1) x = X(x, t), 

where t€R+=[0, and x=(x1, ...,x*) belongs to the space Rk with a norm |x|. 
Denote by Bk(g) the open ball in Rk with center at the origin and radius £>>0, Bk(g) 
its closure in Rk. Let a partition x=(y, z) (y£Rm, z£Rn\ l s m ^ f e , n=k—m) be 
given. Assume that the function X is defined on the set Fy\ 

Ty = GyxR+ (Gy = Bm(H)XR"; 0 

it is continuous in x, is measurable in t, and satisfies the Carathéodory condition 
locally (i.e. for every compact set KczRk there is a locally integrable h: R+—R+ 

such t h a t ' ^ ( x , 01—^(0 for all (x, t)£KXR+), so the local existence of solutions 
of initial value problems is assured, and every solution has a maximal extension. 
We denote by x(t)=x(t-, x0, t0) any solution with x(/0)=x„. If (2.1) is autonomous, 
i.e. X does not depend on t, we use the notation x{t\ x0)=x(/; x0, 0). We always 
assume that solutions are z-continuable [2], i.e. if x(0=CK0> z (0) ¡ s a solution 
of (2.1) and \y(t)\^H'<H for t£[t0,T), then x(t) can be continued to the 
closed interval [i0, T̂l-

The zero solution of (2.1) is said to bé: 
y-stable if for every e>0, t0£R+ there exists a 3(e, t0)>0 such that |x0|<c5(e,r0) 

implies |>>(í;x0, i0)|<e >for 
asymptotically y-stable if it is ^-stable, and for every t0dR+ there exists a 

<t(/0)=-0 such that |x0|<<t(/0) implies x0, f0)|—0 as i— 
uniformly asymptotically y-stable if it is ^-stable so that the number ¿(e, t0) 

can be chosen independently of t0, and there exists a CT>0 such that \y(t\ x0 , f0)| —0 
uniformly in x0£Bk(cr) as f— 

y-unstable if it is not .y-stable. 
Let x=q>(t)=(ip(t), %(t)) be a solution of (2.1) defined on an interval [i„, 

(t0£R+; \¡/\[/„, °°)-i im , [/0, °°)-Rn). A point q€Rm is a y-limit point of the 
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solution x—(p{t) if there exists a sequence {f,} such that °° and iKh)-**! 
as The partial limit set Qy(q>) of x=cp(t) with respect to y is the set of all 
its j-limit points. It is easy to see that if \j/ is bounded then Qy(q>) is non-empty, 
compact, connected and is the smallest closed set approached by i j / ( t) as 

The complete trajectory y(q) of (2.1) belonging to a non-continuable solution 
£:(<x,ß)+Rk is defined by y(|) = {¿(i): oc<i</?}. It is known [11] that if (2.1) is 
autonomous then the set E=Qx((p)C[Gy is semiinvariant with respect to (2.1), which 
means that for every x0£E the equation (2.1) has a solution £ suchthat ^(0)=x0 

and y(^)c:E. 
A continuous function V : r'y-*R, r'y—GyXR+ (G'y=Bm{H')XR"\ 0 < / / ' < / / ) 

is a Ljapunov function of (2.1) if V(0, t)=0, V is locally Lipschitzian and 

H x t 0 = limsupV(x+hXix,t)t+h)-V(x,t) ^ 0 

ä-O+ h 

for all (x, t)£r'y. The function V is called the derivative of V with respect to (2.1). 
We say that a function a: R+—R+ belongs to the class Jf if it is continuous, 

strictly increasing and a(0)=0. A function V : T'y-*R is said to be positive definite 
in y or positive y-definite if there exists a function suchthat a(\y\)^V(y,z,t) 
for all (y,z,t)£r'y. 

Let us given a continuous function W : LXRqXR+-+R, where L<zRp is 
open, p = l, q=0 are integers. Following LASALLE'S notation [6], for cdR we 
denote by H/~1[c, the set of the points u£Rp for which there is a sequence 
{(«,, vt, i;)} suchthat u^u, — W ( « i 5 A;, ?;)—c as If W: L—R 
(i.e. q=0 and W does not depend on t), then W~l[c, is the inverse under 
W of c and is denoted by W - 1(c) as usual. 

We say that a function x = (y, z): R+-<-Rk is z-bounded if z: R+—R" is 
bounded for /^0. 

Now we can cite the following extensions of the Barbashin—Krasovskii theorem 
to partial stability, which contain the original theorems as special cases 0>=x). 

T h e o r e m A (A . C. OZIRANER [9]). Suppose that every solution of the autonomous 
system 
(2.2) x = X(x) 

starting from a sufficiently small neighbourhood of the origin is z-bounded. 
I. If there exists a Ljapunov function V : G'y-*R such that 
(i) V is positive y-definite and F(0)=0; 

(ii) the set {x: F(x)>0}DF_1(0) contains no complete trajectory of (2.2), 
then the zero solution of (2.2) is uniformly asymptotically stable. 

IT If there exists a Ljapunov function V : Gy->-R such that 



222 L. Hatvani 

(i') K(0) = 0, and every neighbourhood of the origin contains a point x with 
F(x)<0; 

(ii') the set (jc: K ( i ) < 0 } n K _ 1 ( 0 ) contains no complete trajectory of ( 2 . 2 ) , 

then the zero solution of (2.2) is y-unstable. 

In [12] J. P. LASALLE pointed out that the essence of the Barbashin—Krasovskil 
method consists in the location of the limit sets and formulated it in his "invariance 
principle": If V\G'y—R is a Ljapunov function of ( 2 . 2 ) , and <p: R+—Rk is 
a solution of the same equation such that | < p ( O I — f o r t SO, then 
G ^ v O c K - H O j n K - K c ) with some c£R. 

3. Theorems on general differential systems 

First of all we have to locate the partial limit set of solutions of 

(3.1) i: = X(x) 

with the knowledge of boundedness only of controlled coordinates. An easy but, 
so it appears, useful generalization of LaSalle's invariance principle is 

L e m m a 3.1. Suppose that V : G'y-*R is a Ljapunov function of (3.1) and 
let x=<p(t) = ty(t),x(t)) be a solution of (3.1) such that \\J/(t)\^H"<H' for t£R+. 
Then either a) ¡/(Ol -*00 as t—°° or b) v(t) = V((p(t))-*v0 as t—<*>; the set 
Qx((p) is not empty and is contained in V -1(0) Pi V-I(v0). 

P r o o f . Assume that a) is not satisfied. Then, because of the boundedness 
of ip, there exist q£Rm, r^R", vQ£R and a sequence {if} such that ti-*°°,ip(tl)-<-q, 
x(td-»r and v(ti)^v0 as /— Since &x(<p) is semi-invariant with respect to (3.1), 
there exists a solution x(t) = x(t\q,r) of (3.1) for which y(x)ci2x((p). Let 1£R+ 

be fixed. Then there exists a sequence {?,} such that (i/»(?,), ^(f,))—x(f; q, r) 
and v(ii) — V(x(i; q, r)) as / - » . Since v is decreasing, V(x(l; q, r))=v0, which 
completes the proof. 

Denote by Py: Rk-+Rm the orthogonal projection from Rk into Rm, i.e. 
P(x)=y. 

L e m m a 3.2. Let V,q> satisfy the conditions of Lemma 3.1 and assume, in 
addition, that V is bounded from below. Then 

Qy(q>) c Py{Qx(<p))U F~1 [i;„, H, 

where v0 is defined by v(t)=V(<p(t))^»v0 as f—°o. 

P r o o f . Introduce the notations L=Qy((p), M=Py(Qx(cp)), N=L\M. Ob-
viously, M<zL\ therefore, it is sufficient to prove that N a V ' ^ V o , »]. If q£N, 
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then there are a sequence {/,} and v0£R such that /¡ — q , — 
v(t;)—v0 as z — i . e . q£ V^Vq, H - Since v is nonincreasing, v0 is independent 
of q, thus J V c K " x K . • 

The lemma is proved. 

T h e o r e m 3.1. Let V : G'y—R be a positive y-definite Ljapunov function of 
(3.1) such that for every o 0 the set V~1(0)C)V _1(c) contains no complete trajectory. 
Then the zero solution of (3.1) is y-stable and for every solution x(t) = (y(t), z(t)) 
starting from a sufficiently small neighbourhood of the origin either a) V(x(tj)-+0 
(and, consequently, |y(/)| — 0) or b) |z(/)| —°° as 

P r o o f . Since V is positive j-definite and V(x)^0, the zero solution of (3.1) 
is ^-stable (see [11], p. 15) and, a fortiori, every solution starting from some neigh-
bourhood Bk(g)(e> 0) of the origin is ̂ -bounded. Let x=(p(t)=(\jj(t), %(t)) be such 
a solution. Suppose |x(0l"t-

°° as t°°. We have to prove that in this case v(t) = 
— V(<p(t))-*0 as t— 00. By Lemma 3.1, v(t)-~v„SO, and there is a point p£Rk 

such that /76i3x(^>)cK-1(0)nK-1(fo)- The set Qx((p) is semiinvariant with respect 
to (3.1); consequently, K ' ^ f l F " 1 ^ » ) contains a complete trajectory of (3.1). By 
the assumptions this implies v0=0. 

The proof is complete. 
Theorem A.I in the previous section is a corollary of Theorem 3.1. Indeed, 

by Theorem 3.1, the conditions of Theorem A.I imply that the zero solution of 
(3.1) is .y-stable and V(x(t; x0))-*0 as t — °° for all x0£Bk(<7) with some <r>0. 
Application of the classic covering theorem of Heine—Borel—Lebesgue gives that 
this convergence is uniform in x0£Bk(p) (see [9]), which implies uniform asymptotical 
j-stability because V is positive ̂ -definite. 

The following two theorems show how to make use of the alternative given in 
Lemma 3.1 and Theorem 3.1 for getting sufficient conditions for partial asymptotic 
stability of the zero solution of an autonomous system. 

Theorem3.2 . Let the assumptions of Theorem 3.1 be satisfied. Suppose, 
in addition, that V(y, z)—0 uniformly in y£Bm(H') as V (y, z) 0 and \z j 
Then the zero solution of (3.1) is uniformly asymptotically y-stable. 

P r o o f . In view of Theorem 3.1 and the remark following its proof, it is suf-
ficient to prove that the function V tends to 0 along every solution starting from 
some neighbourhood of the origin. Denote by (p(t)=(\j/(t), /(/)) an arbitrary 
solution of (3.1) with \il/(t)\^H"<H' (/€/?+) and let v(t)=V(<p(t))-~v0 as 
Since v(t)=V(<p(t))s0 for all t£R+ and the function v is bounded from below, 
there exists a sequence {?,} such that and K((p(i;))—0 as / — B y 
Theorem 3.1 either v0—0 or the sequence {z;=/(/,)} diverges to infinity in norm as 
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/ — oo, in the latter case we have z,)—0, |z,| — and, simultaneously, 
V(ip(ti), z?)—v0 as i—oThe last assumption of the theorem implies wo=0, 
which completes the proof. 

It may be pointed out that Theorem 3.2 improves certain results which can be 
obtained by the application of some basic theorems on partial uniform asymptotic 
stability (see [2, 13]) to autonomous systems. To illustrate this fact let us recall 
a theorem o f K . PEIFFER and N . ROUCHE [13, T h . IV] . F o r (3 .1) it says that i f 

there exists a positive ^-definite Ljapunov function V : G'y-*R such that F(x)—0 
uniformly in x£Gy as F(x)—0, then the zero solution of (3.1) is uniformly asympto-
tically ^-stable. This obviously follows from Theorem 3.2. In fact, Theorem 3.2 
improves this corollary as it is shown by the following example. 

Consider the system 

(3.2) x1 =-x: 1 ( l+(^ 3 ) 2 ) , x 2 = - x 2 , x3 = x 3 - ( x 3 ) 3 

and let j>=(x\x2), z=x3. The function V(x\ x2, x3)=(x1)2+(x2)2+(x2)2(x3)2 is 
positive (x1, x2)-definite, its derivative with respect to (3.2) reads F(xx, x2, x 3 )= 
= -2(x1)2(l+(x3)2)-2(x2)2-2(x2)2(x3)4. If F—0 then 

(3.3) x1 — 0, x2 — 0, (x2)2(x3)4 - 0, 

which do not imply that F—0; therefore, the theorem of Pfeiffer and Rouche 
cannot be applied to this case. On the other hand, |x3| —-» and (3.3) together 
already imply V—0 and Theorem 3.2 can be applied. 

C. RISITO [7] proved that the statements of Theorem A (without uniformity) 
remain true if instead of (ii) and (ii') one requires the following: the set {(y, z): y=0} 
is invariant and the region F - 1 ( 0 ) \ { ( j , z): j = 0 } contains no complete positive 
semi-trajectory. Lemma 3.2 allows us to extend this result to the case when the 
uncontrolled coordinates are not supposed to be bounded. 

Theorem 3.3. Let V:Gy—R be a positive y-definite Ljapunov function of 
(3.1). Suppose that for every c>0 

(i) if the set F-1(0) fl F -1(c) contains a complete trajectory then this trajectory 
is contained also in the set {(y, z): y=0}; 

(ii) V~\c, ~]c{0}. 
Then the zero solution of(3.1) is asymptotically y-stable. 

Proof . As it was shown in the proof of Theorem 3.1, the zero solution starting 
from some, neighbourhood of the origin is ^-bounded. Let x=q>(t)=(ijj(t), /(>)) 
be such a solution. We have to prove that |«K0|—0 as t— i.e. Qy(cp)= {0}. 
The function v(t) = V(<p(t)) is nonincreasing and nonnegative, hence 
If v0=0 then the statement is true because F is positive ^-definite. Assume that 



On partial asymptotic stability and instability. I 225 

v0>0 and there exists a q such that 0T±q£Qy((p). By Lemma 3.2 and condition (ii) 
there is an r£R" such that p=(q, r)£Qx(<p). The set £2x(<p) is semiinvariant, hence 
there exists a solution f : ( — R k of (3.1) for which £(0)=p and >>(£)cr 
<zQx(cp). In view of Lemma 3.1 y{£) is contained also in the set F J(0) (~1 V 1(w0). 
On the other hand, q^ 0; therefore y(£) is not contained in the set {x: ^=0}, 
in contradiction to condition (i) of the theorem. This means that either v0=0 or 
Qy((p)=0, which completes the proof. 

Corollary 3.1. Let condition (i) in Theorem 3.3 be satisfied. Suppose, in 
addition, that there is a number such that 0<[y|<i> implies 

(3.4) lim V(y, z) = oo. 
y-y.M-oo 

Then the zero solution of (3.1) is asymptotically y-stable. 

The alternative given in Lemma 3.1 can be used also for getting sufficient con-
ditions for the instability of the zero solution of (3.1). 

Theorem 3.4. Suppose that there is a Ljapunov function V: Gy->-R of (3.1) 
satisfying the following properties: 

(i) for every <5>0 there exists xa(8)£Bk(5) with F(x„(d))<0; 

(ii) there is an e0 (0<e0<//') such that for every c<0 the set 

(3.5) F - 1 (0) H F _ 1 (c) H (Bm (e0) X R") 

contains no complete trajectory. 
Then for every 8 (0<<5<£0) either a) every curve yy(x0(5)): t<—y(f, x0(<5)) 

(t£R+) leaves the ball Bm(eQ) in finite time, or b) |z(i; x0(<5))|->-°° as t—° 
Proof . If the statement is not true, then for some <5„ (0<<50<£0) there exists 

a solution 
(3.6) <p{t) = (>K0, lit)) (q>(0) = x0(c>0)) 
such that 

(3.7) | « K 0 l ^ o 0€i?+); v(t) = V(cp(t)) -1>0 < 0 (t - ~)> 

the limit set Qx{(p) is not empty and is contained in the set (3.5) for c—Vq. On the 
other hand, £2x(<p) is semiinvariant, thus (3.5) contains a complete trajectory in 
contradiction to condition (ii) of the theorem. 

The proof is complete. 

Corollary 3.2. Let the conditions of Theorem 3.4 be satisfied. Suppose, in 
addition, that 
(3.8) lim inf V(y, z) ^ 0 

uniformly in y£Bm(s0). Then the zero solution of (3.1) is y-unstable. 

15 
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Theorem 3.5. Let the conditions of Theorem 3.4 be satisfied. Suppose, in 
addition, that the Ljapunov function V is bounded from below on the set Bm(e0)XRn, 
and 
(3.9) lim inf V{y, z) & 0 

uniformly in ydBm(e0). Then the zero solution of (3.1) is unstable with respect to y. 

P r o o f . We shall prove that for all ¿ > 0 every curve defined in 
Theorem 3.4 leaves the ball Bm(s0). If it is not true then for some S0 (0<<50<e0) 
the solution (3.6) possesses properties (3.7), and, by Theorem 3.4, |x(0l~*"°° a s 

t—oo. Similarly to the proof of Theorem 3.2 it can be proved that (3.9) implies 
v0—0. This contradiction completes the proof. 

4. Applications to mechanical systems 

Consider a holonomic mechanical system of r degrees of freedom with time-
independent constraints under the action of potential and dissipative forces. The 
Lagrangian equations of motions are 

.... d BT dT dP 
(4"1} dtW~H=-di+Q' 

where the following notations [11] are used: the column vectors q,q£Rr consist 
of generalized coordinates and velocities, respectively (vT denotes the transposed 
of v£Rr); the potential energy P:q>—-P(q)£R is continuously differentiate, 
P(0)=0; T = T(q, q) = (\¡2)qTA{q)q is the kinetic energy, where the symmetric 
matrix function A: q*-*A(q)€Rr*r is continuously differentiable; the continuous 
function Q - ( q , q)>-<-Q(q, q)£Rr is the resultant of non-energic and dissipative 
forces with complete dissipation, i.e. there exists a function c£Jíí such that 
QT(q, q)q=—c(\q\) for all q, q£Rr. Assume that q = q—0 is an equilibrium of 
(4.1) and the motions starting from a neighbourhood of this equilibrium depend 
continuously on the initial coordinates and velocities. 

L. SALVADORI [11] proved that if the equilibrium at q=0 is isolated then it is 
asymptotically stable if P has a minimum there, and unstable if P has no mini-
mum there. By means of a simple example with one degree of freedom K. PEIFFER [14] 
showed that this theorem would be false without the condition that the equilibrium 
at q—0 is isolated. Applying our results we give sufficient conditions for asymptotic 
stability and instability of the equilibrium at q—0 (possibly non-isolated) with 
respect to velocities or some generalized coordinates. 
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For qd Rr denote by X(q) (A(q)) the smallest (largest) eigenvalue of the sym-
metric matrix A(q). We can estimate the kinetic energy as follows 

(4.2) jX{q)\q\* T(q, q) i A(q)\q\* (q, q£R'). 

For every q£Rr the matrix A(q) is positive definite (i.e. A(q)>Q) (see [11], 
p. 362); therefore, (4.1) can be rewritten into the equivalent normal form 

x = X(x) (x = col (q, q))._ 

As is known (see [11], p. 358), the derivative of the total mechanical energy H = T+ P 
with respect to (4.1) is H(q, q) — Q(q, q)q^0\ consequently, H is a Ljapunov 
function of (4.1). The dissipation is complete, hence for arbitrary c£R we have 

H-^O^H-^c) = {col(q, q): P(q) = c, q = 0}; 

therefore, the complete trajectories of (4.1) contained in this set are the equilibria 
q = q0, q=0 for which P(q0) = c. 

Sometimes we shall use a partition q=co\ (q, q) of the vector of generalized 
coordinates, where q£Rs, q£Rr~s, O^s^r ( i f s=0 then q=q, and the conditions 
and statements concerning q are to be dropped). 

In his first paper on partial stability, V. V. RUMJANCEV [1] proved that in the 
absence of any potential forces the equilibrium q = q=0 of (4.1) is asymptotically 
^-stable provided that there are some constants A0, A0 such that 

0 < == X(q) S A(q) sS A0. 

The following two corollaries generalize this result to the case of the presence of 
potential forces. 

C o r o l l a r y 4.1. Suppose that the potential energy P(q, q) is positive ¿¡-definite 
and the region {q: P(q)^~ 0} contains no equilibria. If for some H' 

(4.1) . Iim }„{q,q) = c0 

uniformly in qPBs(H'), then the equilibrium q = q=Q of (4.1) is asymptotically 
q-stable. 

P r o o f . We will apply Corollary 3.1 to equation (4.1) and Ljapunov function 
H with y=q. Condition (4.3) and inequality (4.2) imply that H is positive ^-definite 
as well, hence the equilibrium is ^-stable (see [11], p. 15) and we can assume that 
q belongs to a bounded set. Consequently, in (4.3) we can change — °° into 
\q\and, in view of (4.2), we have T(q,q)->-c° as \q\-~ °° for every q^O. 
This means, that all conditions of Corollary 3.1 are fulfilled. 

15* 
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C o r o l l a r y 4.2. If 
(i) P ( 9 ) s 0 (qZR'); 

(ii) the set {q. P(q)>0} contains no equilibria; 
(iii) (0<;.0=const.)/ 
(iv) lim exists; 

(v) there are ddtf and H'>0 such that 

(4.4) Q(q,q)q^-d(T(q,q)) (q£Rr, \q\^H% 

then the equilibrium q = q=0 of (4.1) is asymptotically q-stable. 

P r o o f . If P(cf)-*-°° as |<?l->'0°5 
then the generalized coordinates are bounded 

along every motion, and the statement follows from Theorem A in Section 2. 
Suppose the limit of P is finite. By Theorem 3.1 the equilibrium q=q=0 is 
^-stable, and for every motion (q(t), q(t)) starting from some neighbourhood of 
<7 = 4=0 either h(t)=H(q(t), q(t))-*0 or \q(t)\ — °° as In the second case 
P{q{t)) has a finite limit, thus T(q(t), q(t))-*T0 as i-«>. If r 0 > 0 , then by 
condition (v) jh{i) = Q(q(t), q(tj)q(t)^-d{T0) < 0 (i£i?+), 

which is impossible, because h is non-negative. Therefore, in both cases 
T(q{t), q{t))-*Q t-+». According to (iii) and (4.2) this implies |<?(0|-*0 as t-~ 
which completes the proof. 

Condition (iv) is rather restrictive, but if we know more of the behaviour of gen-
eralized coordinates we can weaken it, as its only role is to assure the existence of the 
(finite or infinite) limit of the potential energy along motions. For example, if 
P(q, q) is positive ^-definite then we can assume that q£Bs(H') with some constant 
H'. Suppose that P(q, q)-~P*(q) as — If P*(q) is constant then (iv) is 
satisfied. The case of changing PJ4) c a n be treated by the application of the 
further development of the Barbashin—Krasovskil method in another direction [10]. 

As to condition (v), it is obviously fulfilled if there is a A0 such that A(q)^A0 

for all q£Rr (namely, d(u)=c(ujA0)). 
If we know a priori that the generalized coordinates are bounded, then con-

ditions (iii)—(v) can be dropped, and the statement is a consequence of Oziraner's 
theorem (Theorem A in Section 2). But it is worth noticing that the conditions of 
Corollary 4.2 can be satisfied even if the generalized coordinates are not bounded. 
This can be shown by the system of one degree of freedom described by the equation 

q+q3 = 0 (q,q£R) 

found by K. PEIFFER (see [11], p. 115) in order to prove that complete dissipation does 
not imply stability in case P(q)^0. 
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Applying Corollary 3.1 to equation (4.1) and Ljapunov function H with 
y—q we obtain 

C o r o l l a r y 4.3. If 
(i) P is positive q-definite; 

(ii) the set {q:q?±0} contains no equilibria; 
(iii) for every q0^0, lim P(q, q) = 

then the equilibrium q—q—0 is asymptotically q-stable. 

Assuming that the equilibrium q=0 is isolated with respect to the region 
{q : /•(<?) <0} and P has no minimum there, W. T. KOITER [15] proved that the 
equilibrium is unstable. The special case q = q of our following corollary shows that 
it is, in fact, ^-unstable. 

C o r o l l a r y 4.4. Suppose that for some H',e0,l0 (0<eo<7/', A0>0) the 
following conditions are satisfied: 

(i) for every S (0<<5<e0) there is a qa(5)£Br(S) with P(q0(<5))<0; 
(ii) l(q, 0 (\q\^H\ q£Rr~s); 

(iii) the region {q: P(q)<0, e0} contains no equilibria. 
Then for every 5 (0<<5<e0) either a) the curve y^'(q0(S), 0): t^-q(t\ q0(S), 0) (t£R+) 
leaves the ball Bs(s0) in finite time, or b) | q(t\ 0̂(<5), as /-<». 

Proof . We can apply Theorem 3.4 with V = H,y=q, observing that condition 
(ii) precludes the possibility of \q(t')\ — without \q(t)\-*°° as 

Now, Corollary 3.2 yields 

C o r o l l a r y 4.5. Let all conditions of Corollary 4.4 be satisfied. Suppose, in 
addition, that 

(iv) lim inf P(q, q) ^ 0 uniformly in q£Bs(H'). 
|4| — 

Then the equilibrium q = q = 0 of (4.1) is q-unstable. 

Examples . Finally, in order to illustrate the results of this section we study the 
stability properties of the mechanical system of two degrees of freedom introduced 
and investigated by K. PEIFFER and N. ROUCHE [13]. Consider a point of mass 
equal to 1 moving in a constant field of gravity in the inertial frame of reference 
Oxyz; Oz directed vertically upward. Suppose the point is constrained to move 
on a surface of equation z=(1/2)j>2(1 + ; t 2 ) and furthermore, that it is subjected to 
viscous friction. The total mechanical energy is H = T+P where 

T = J X2 + J y2 + J y2 [y (1 + X2) + xxy}2, /> = / (1 + X3) 
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and g is the acceleration in the gravity field. Let the dissipative forces be defined 
by the formulas 

(4.5) V — W & = 

By Rumjancev's theorem ([1], see also [11], p. 15) the equilibrium x = y = x = 0 
is (y, x, _y)-stable, but the coordinate x may be even unbounded. Therefore, 
although the system is autonomous, the earlier theorems of Barbashin—Krasovskii 
type cannot be applied to establish asymptotic stability with respect to (y, x, y). 
Peififer and Rouche proved that the stability is asymptotic with respect to x. 
Applying Corollary 4.3 with q=y we obtain that the equilibrium is asymptotically 
^-stable even under arbitrary nonlinear friction with total dissipation (the special 
form (4.5) of the dissipative forces is not needed). 

Note that by the use of the Ljapunov—Malkin theorem on the critical case of 
the stability investigations by first approximations (see [16], p. 113) one can prove 
that the equilibrium is stable with respect to all variables, the stability is asymptotic 
with respect to ( y , x, y), and for every motion starting from some neighbourhood 
of the equilibrium x(t)-+x0=const, as 

Our theorems allow us to investigate the general case when the point is con-
strained to move on a surface of equation z=f(x,y) (/(0, 0)=0). Corollaries 4.3 
and 4.5 yield conditions on the potential energy P =gf(x, y) assuring the equilibrium 
x=y=0 to be asymptotically ^-stable or ^-unstable. We illustrate this by two 
simple examples. 

Let 

_ i ( l/2)j 2 ( l+x 2 )+e~ 1 / | ; t | sin2(l/x2) (x ^ 0) 
n X ' y ) lO (x = 0). 

By Corollary 4.3, the equilibrium x = y = x = j > = 0 is asymptotically j-stable in 
spite of the fact that the region {(x, y): P(x, y ) > 0 } contains equilibria (see con-
dition (ii) in Theorem A in Section 2). 

A s Corollary 4.5 shows, in the case of / ( x , y)=y3l(l +x 2 ) the equilibrium 
x=y=x=y=0 is ^-unstable. 
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