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On arithmetic functions with regularity properties 
I. KATAI 

Dedicated to Professor Bela Szokefalvi-Nagy on his 70th anniversary 

1. We shall say that an additive function /(«) is of finite support if f(p")—0 
whenever p is a large prime. Let 

P(z) = a0+at1z+ ...+akzk, ak=l, a0 ^ 0 

be an arbitrary polynomial with complex coefficients. The operators E,A,I are 
defined by the following relations: 

Ex„ — x„+i, Axn = xn+1—x„, Ix„ = x„. 

We are interested in the following problem: What is the set of additive func-
tions f(n) satisfying the relation 

(1.1) P(E)f(n) — 0 (n — ) . 
This question was raised in [1]. Recently we solved it for completely additive func-
tions. Namely, from a famous result of E. Wirsing we deduced that if a completely 
additive function f(n) satisfies the relation 

(1-2)
 P i

f
) f ( n ) 

log n 

then f(n) is a constant multiple of log«; f(n)=c logn satisfies (1.2) with c^O 
only if i ' ( l )=0 . In the same paper we proved that for a completely additive func-
tion f(ri), 

(1.3) 1 Z\P(E)f(n)\ - 0 ( x — ) 
X J S , 

implies that f(n)=c log n. The method used there cannot be applied without 
change to additive functions. Now we shall show how we can modify the method 
so as to be suitable for additive functions. 
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T h e o r e m 1.1. If (1.3) holds for a complex valued additive function f(n), then 
f{n)=c log n+f(ri) where f(ri) is an additive function of finite support satisfying 
the recursion 
(1.4) ¿ W i ( « ) = 0 (n = 1, 2, ...). 
If P{ 1)^0, then c = 0. 

T h e o r e m 1.2. If f(n) is a complex valued additive function satisfying the 
linear recursion 
(1.5) P(E)f(n) = 0 (n = 1,2, . . . ) , 
then 

1) f(pa) = 0 for every prime power p* satisfying p>k+\, 
2) f(pr+1)=f(py) if Py+1-Py>k+1, 
3) / («) is periodic with B where B— Hp1' and yp is the smallest integer 

psk + l 
satisfying py'+1—p',p1. 

A modification of Theorem 1.2 was proved earlier by L. LovAsz, A. SARKOZY 
and M. SIMONOVITS [2]. We shall deduce it immediately from Theorem 1.1. 

P r o o f of T h e o r e m 1.1. If the relation 

(1.6) ^ 2\HE)Kn)\-0 (JC-CO) 
X n^a 

holds for a polynomial k(z) then it holds for any other polynomial K(z) that is 
k 

a multiple of k(z). Let P(z)= JJ {z—Q^), and for a fixed integer m > 1, let 
¡=i 

Qm{zr)= n i z r - O T ) . Since P{z) divides QJz"), therefore 
i=i 

^ 2 \Qm(Em)f(n)\ - 0, * llSj 
and so 

(1.7) ^ 2 \Qm(Em)f(nm)\^0. X mn^x 

Let Qm(z)=p0+p1z+... +pkzk (pk= 1); A{m, ri)= 2 Pj{f(Hn+j))--/(»+/)}• Then 
j=o 

(1.8) A (w, n) = Qm(Em)f(nm) -Qm(£)/(«). 

Applying the operator P(E) and taking into account that P(E)\P(E)Qm(E), we 
yet that 

i 2 \P(E)A(m, «)| s 1 2 \P(E)Qm(Em)f(nrn)\ + ^ 2 \P(E)Qm{E)f(n)\, 
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whence 

(1.9) lim — 2 \P(E)A(m, n)| = 0. 
X n S x 

Let now P>2k+\ be a prime, and let n run over the set satisfying Py\\n 
with v S l fixed. Then 

A(P, n) = Po{f(Pv+1)-f(Pv)}+(Pi + -+Pk)AP) = 

= p0{f(py+i)-xn-m}+Qm(mp), 
A(P,n+h) = f{P)Qm (1) (0 < h ^ 2k). 

Consequently 

(1.10) P(E)A (m, n) = P(i)Qm(i)AP)+«oMAPv+1)-APv)~AP)}-

Observing that the set of n's has a positive density, we get that 

(1.11) P(Wm(X)AP)+«oPo{APv+1)-APv)-AP)}-
Let now n run over the integers = 1 (modP) . Then we have A(P,n+h) = 

=AP)Qm(\) (0=h^2k), and so P(E)A(m, n)=P(l)Qm(l)f(P). Repeating the 
above argument we get P( l )0 m ( l ) / (P)=O. Since P ( 1 ) ^ 0 implies that g m ( l ) ^ 0 , 
we have / ( P ) = 0 provided P(1)^0 . From (1.11) we get that 

APv+1)-APy)~AP) = 0 (v = 1, 2, ...), 
and hence f(Pv)=vf(P) ( v s l ) . 

Let P be an arbitrary prime, and let y0 be so large that Py°>2k+l. Let 
%, . . . , e2)c be fixed nonnegative integers such that Py°\\n and Pe'\\n+i (i = 1, ..., 2k) 
hold for at least one n. Let Ay denote the set of those n's for which Py\\n and 
Pe'\\n+i (i = 1,. . . , 2k). The following assertion is obvious: Ay is nonempty for 
ySy0 and it has a positive density. 

Clearly P(E)A(n,P) is constant if n runs over the elements of Ay, therefore 
it equals 0 on Ay. Hence 

P(E)A(nltP)-P(E)A (n2,P) = 0 

if n1£Ay+1, n2£Ay (ySy„)- Consequently 

«o MAPy+2)~APy+1)} = «Jo{APy+1)-AP% 
and from aopoy^O we get that 

(1-12) = ( y s y 0 ) , =APy+1)-APy)-
Now we write / («) as fi(n)+f2(n) where f2(n) is a completely additive function 
defined as follows: / 2 0 H =/(/"") if P>2k+2. Then f1(Pa)=Q if P>2k+2. 
For a smaller prime P we put f2(P)=Zy , which implies by (1.12) that f1(Pi+1)= 
=MPJ) i f y s y 0 . 
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Now we have shown that /i(/i) is a function of finite support, and it is periodic 
with a period Consequently 

P(£)(£«—/)/ 1 (n) = 0. 

Taking into account the relation 

CE°>-I)P(E)f(n) = P{E){E*>-1)fMHEB>-I)P{E)Mn) = (£«.-/)P(£)/2(n), 

we have 

(1.13) ^ 2 P * ' - I ) P ( E ) M n ) \ - 0. 
X n S x 

From the theorem cited above we get that f2(n)=c log n. Earlier we have proved 
that f(P)=fa(P)=0 for every large P, provided P(l)^0. This implies that f2(n) =0; 
furthermore, from the periodicity of /i(n) and from (1.3) we get that P(E)f1(n)=0 
(n = 1,2,...). 

Assume now that P(1)=0. Then P(E) clog«—0, whence (1.3) yields that 

T 2 \P(E)fM\ - 0 (* -X nSx 

Using the periodicity of /i(w) we get that P(E)f1(n)=0 («= 1,2,...). This finishes 
the proof of Theorem 1.1. 

Proof of Theorem 1.2. Since (1.5) implies (1.3), we get that f(n)=f1(n) + 
+clogn, P(E)Mn)=0-, moreover, by (1.5), P(E)c\ogn=P(E)(f(n)-f1(n))=0, 
which is impossible for Therefore we have that /(«)—/i(M) is of finite support. 
Then there exists a K such that f(p*)=0 for each prime p>K. For an integer 
n let AK(n) denote the product of all prime factors of n not greater than K. Let 
S(n) be the exact exponent of p in n:pi(n)\\n, and set A'K(n)=p~i(n)AK(n). 

Let be chosen so that ¿(«J^ySO, n1=py (modpy + 1), and let y be so large 
that py+1—py>k+1. Then we can find an integer n2 satisfying the following 
relations: ¿(/j2)=y+l, A'K(n1)=A'K(n2), AK(n1+j)=AK(n2+j) ( j = l,...,k). Taking 
into account the equality / (n )= f(AK(n)), we get from (1.5) that 

0 = P(E)f(n2)-P(E)f(n2) = oo {f(P*+1)-f(P% 

which by a 0 ^ 0 implies that /(P J + 1)=/(P5 ' ) . 
Thus 1) and 2) are proved; 3) is an immediate consequence of them. 

Remark. The assertion of Theorem 1.1 remains true if (1.3) is replaced by 

(1.3)' lim inf 2 = 0. log X nSx n 
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2. Theorem 2.1. Let f be a completely additive real valued function, and let 
P be a nonzero polynomial with rational coefficients satisfying the relation 

(2.1) ' APP(E)f(n) = 0 (modi) 

with a suitable integer Ap^O. Then there exists an integer B such that f(n)=g(n)/B, 
where g(n) is an integer valued additive function. 

First we prove the following 

L e m m a 2.1. If Akf(ri)=0 (mod 1) («= 1, 2, ...) for a ksl, and f(ri) is 
completely additive, then /(w) = 0 (mod 1). 

P roof . Let us assume that k=\. Then summing the congruences f{n+\) — 
— f (n )=0 (mod 1) for n=pu,...,qu— 1, we have f(q) — f(p)=0 (mod 1) for 
each pair p,q which by q=np gives that f(n) = 0 (mod 1). 

Now we use induction on k. Assume that our lemma is true for k, and consider 
the condition Ak+1f(n)=0 (mod 1). Starting from 

N£ Ak+1f(n) = Akf(N)-Akf( 1) = 0 (mod 1), 
n=i 

we get 
Akf(N) = c (mod 1), c = Akf( 1). 

If Q is an arbitrary polynomial with integer coefficients, then 

(E-I)kQ(E)f(N) = cQ( 1) (modi). 

Let Q(z)=QJz)==(l+z+...+zm-i)k. Then (E-l)kQm(E)=(Em-l)\ 

consequently 
(Em — I)kf(mN) = cQJ\) (modi); 

furthermore; 
(Em - I)kf(mN) = ( E - I f f { N ) = c (mod 1), 

whence c (0 m ( l ) - l )=O (mod 1). Since Qm(\)=mk, we get c{mk-\)=Q (mod 1) 
(m=2,3, . . . ) . Therefore c is a rational number. Let c=A/B, where A, B are 
coprime integers. If B?± 1, then by choosing m=B, we get c(Bk—\)=Q (mod 1), 
c = 0 (mod 1), which is a contradiction. This completes the proof of the lemma. 

Proof o f T h e o r e m 2 . 1 . Let A be the set of all polynomials P with rational 
coefficients for which 

APP(E)f(n) = 0 (mod 1) 

holds with a suitable integer AP. Then A is an ideal in Let P(z)= 
k 

= TJ (z—0j)£A. From the fundamental theorem of symmetric polynomials it follows 
j=i 

17 
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that 
' k am 

;=l Z - t i j 

has rational coefficients; consequently 

Furthermore, Rm(Em)f(nm)=Rm(l)f(m)+Rm{E)/(«). Let F be an integer such 
that FRm(Em)f(n)=0 (mod 1). Then we have 

FRm(l)f(m) + FRm(E)f(n) = 0 (mod 1). 

If 7?m(l)=0, then Rm€A. If /?m(l)^0, then applying the operator A we get that 

FRm{E)Af{n) = 0 (modi), 
whence Rm(z)(z—l)dA. 

Let P be the generator element of A, that is, a polynomial of minimum degree 
in A. Let deg P=k. From (2.1) we get that A is not empty. If k=0, then our 
theorem is obviously true. For k ^ l assume first that P(1)=0. Then 
(2.2) ¿(z) = (P(z), Rm(z))eA, 
implying deg 5(z)=k, i.e., Rm(z)=P(z), 
(2.3) {ft, ..., 6k} = {0f, ..., 0j?} (m = 2, 3, ...), 
whence it follows that 0 1 = . . . = 0 t = l , P ( z ) = ( z - 1 ) \ Assume now that P(l)^0. 
Then 

8(z) = (P(z), Rm(z)(z-1))£A, 

consequently deg S(z)=k, and from (z— 1, P(z))=l we get that P(z)=Rm(z) 
(m=2,3, . . . ) , which implies (2.3), and so 01 = . . . = 0 t = l , which is impossible. 

Thus we have proved the following assertion: If (2.1) holds with a suitable 
P then there exists an integer i V O and an integer /c=»0 such that 
(2.4) FAkf(n) = 0 (mod 1). 

Using Lemma 2.1 with Ff(n) instead of f(n) we get that Ff(n) is an integer for 
every n. This finishes the proof of the theorem. 

3. Con jec tu re . Let P(z) = \+cc1, z+...+akzk (ksl) be a polynomial with 
at least one irrational coefficient. If a completely additive function f(n) satisfies 
the relation P(E)f(n)=0 (mod 1) (n= l , 2, ...) then /(«) is identically zero. 

Theo rem 3.1. The conjecture is true for k=2. 

Proof . Let {=/(2) , ri=f(3). From P(E)f( 1)=0 we get that 

(3.1) a ^ = - a 2 r j (modi), 
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and from P(E)f(2)=0 that 

(3.2) (2a2 + l)f+<xit] = 0 (modi). 

Similarly, by considering P (£ ) / (« )=0 (mod 1) for n—1 and «=6, and taking 
into account (3.1) we deduce: 

/ ( 7 ) = - a 1 / ( 8 ) - a a / ( 9 ) = - 3 a 1 ^ - 2 a 2 r , (modi), 

(3.3) /(7) = (modi), 

<*i/(7) = —/(6)—a2/(8) (modi), 

(3.4) a i / ( 7 ) = - ( 1 + 3 ait)!;-« (mod 1). 
Similarly, 

(3.5) a 1 / ( 5 ) = - ( 2 + a 2 ) i - a 2 > 7 (niod 1) (n = 4). 

Starting from P(£) / (14)=0 (mod 1) we get 
(^ + 4a 2 a+ / (7 )+a 1 / ( 3 )+a 1 / ( 5 ) = 0 (modi). 

Substituting (3.3) and (3.5) into the left hand side, we get (1 +4a2)^+a2ij+aLr/ -
—(2+a2)^—x2t]=0 (mod 1), whence — ̂ +3a 2^+a 1 j /=0 (mod 1), and, by (3.2), 

(3.6) = (modi), 
(3.7) w = - 5 < T (modi). 
For «=26 and «=13 we have 

/ ( 2 • 13)+a1 / (33)+a2 / (22 • 7) = 0 (modi) 
/ ( 1 3 ) + a i / ( 2 - 7 ) + a 2 / ( 3 . 5 ) = 0 (modi), 

where by subtraction we get 
(3.8) a2 /(7) = ^ - I r j - l a . ^ (modi). 
Considering «=5 and taking into account (3.8) we get 
(3.9) /(5) = a 1 ^ - a 1 / ; - 3 ^ + 2>, (modi). 
Putting now «=25 and «=12 we get that 

/ ( 5 2 )+a j / (2 • 13)+a2/(33) = 0 (modi), ; 

/ (12)+ a i / (13)+a 2 / (14) = 0 (mod 1). 
Subtracting them and by using (3.8), (3.9) we deduce that 

(3.10) 5 ^ - 3 ^ + 2 « ^ = 0 (modi). 
From « = 3 we get 

(3.11) ^ / ( 5 ) = - i / - 2 a ^ (modi). 

Putting now «=48 we have 

/ (2 3• 3)+a!/(7 2)+a 2 / (5 2• 2) = 0 (modi), . 

17» 
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and by (3.11) and (3.4) we get 
(3.12) . 9£ + 3f/+4<x1£ = 0 (mod 1). 
Since / (2 3 )+a 1 / (3 2 )+a 2 / (2)+a 2 / (5)=0 (mod 1), we get that 

«¡¡/(5) = - 5 ^ - 2 « ! (modi) 
(see (3.6), (3.7)) which implies by (3.11) that 
(3.13) ij + 5£+2a1g = 0 (modi). 
Now from (3.10), (3.12), and (3.13) we infer that 

7£-7i/ = 0 (modi) and 4 q - 8 £ = 0 (modi), 
which proves that £ and ц are rational numbers. Assume now that £ ^ 0 and 
t]7±0. Then (3.6) and (3.7) show that аг and a2 are rational numbers, and the 
proof is finished. Let £ = 0 and q^O. Then by (3.7) and (3.1) we get that ax and 
a2 are rational numbers. In the case t]=0, £¿¿0 we use (3.6) and (3.1) to derive 
the same result. 

Finally, let us assume that <ü=0, >7=0, and P is the smallest prime for which 
/ ( P ) ^ 0 . Since P >3, therefore P + l is a composite number, / ( P + 1 ) = 0 , and 
so a x / ( P + 1 ) = 0 (mod 1). Let us consider the relation 

(3.14) / ( P ) + a 1 / ( P + l ) + a 2 / ( P + 2 ) = 0 (modi). 
If P+2 is a composite number then / ( P + 2 ) = 0 , and so / ( P ) = 0 (mod 1). Using 
that a i / (P )=0 (mod 1), a 2 / (P )=0 (mod 1), and that / ( P ) ^ 0 , we deduce that 
ax and ot2 are integers. Assume now that P+2 is a prime number. If f(P+2)=0 
then we are done as before. Let / ( Р + 2 ) ^ 0 . Then 

/(Р+2)+А1/(Р+3)+ССГ/(Р+4) = 0 ( m o d 1), 

and P+3,P+4 are composite numbers with prime factors smaller than P, whence 
it follows that f(P+3)=f(P+4)=0 and / ( P + 2 ) = 0 (mod 1). Since 

Д Р + l ) + a , / ( P + 2 ) + a 2 / ( P + 3 ) = 0 (mod 1), 
we have oc1/(P+2)=0 (mod 1), and so ax is a rational number. (3.14) implies 
that a2 is also rational. The proof is complete. 
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