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Upper estimates for the eigenfunctions of higher order
+ of a linear differential operator

V. KOMORNIK
Dedicated to Professor Béla Szbékefalvi-Nagy on the occasion of his 70th birthday

In several problems of the spectral theory of non-selfadjoint differential opera-
tors it occurs the need to estimate the eigenfunctions of higher order of these operators
(cf. [31, [41, [5], [7, (8], [11]). These results were proved in general by the application
of the mean value formulas of TITCHMARSH [2], MoISEEV [6] and Jo6 [7]. For the case
of the Schrédinger operator, exact estimates were obtained in [7]. However, in
case the differential operator is of order n=3, the mean value formula becomes
rather complicated (see [6]), and it seems to be hard to obtain exact estimates by
its application. In this paper, we choose another approach: using the method of
variation of constants instead of the mean value formula, we trace the difficulties
back to the investigation of some concrete determinants. As the result of these
considerations, we obtain the formula of Theorem 1. This formula actually equals
the mean value formula in case of the Schrédinger operator, but differs from it in
general.

Using this. formula, we extend the upper estimates of [7] to the case of an ar-
bitrary linear differential operator. We obtain estimates not only for the eigen-
functions, but also for their derivatives. These results are formulated in Theorem 2.

Let GCR be an arbitrary open interval and consider the formal differential
operator

6y

Lu=u™+pu"V+.. . +puu,
D15 -+ D€L}, (G) are arbitrary complex functions.
Let A be a complex number. The function u_,: G—~C, u_;=0 is called an
eigenfunction of order —1 of the operator L with the eigenvalue A. As it is usual,

a function u;: G—-C, u;#0 (i=0,1,...) is said to be an eigenfunction of order
i of the operator L with the eigenvalue A if u;, together with its first n—1
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derivatives is absolute continuous on every compact subinterval of G and if for
almost all x¢€G the equation

Lu)(x) = duy(x)+ ;-1 (x)

holds, where u;_, is an eigenfunction of order i—1 with the eigenvalue A.
We shall prove the following result:

Theorem 1. Given any pair of integers m=0; n=2 there exist entire functions
£+ fiws h; (j=0,0=i<n, IékéNE(m-{-I)n') with f(2)#0 for |z|<n=" such that the
following formulas are valid:

Given any eigenfunction u,, of order =m of the operator (1) wzth the eigen-
value A€C, introducing for j<m the functions

) up: G~ C, u;=Luj—Aujyy,
we have that ‘
N
FOYUD () = 3 fiu(Ar)u, (x+kt) +
k=1
(3) x+kt

+ Zhaom 3 b [ Gty (A G+ kt =) p,(u$=D (@) de

Jor all j=0,0=i<n, and for all x€G with x+NtcG. ‘
The functions fo, are multiples of f and therefore if j—-—l-—O< this formula
can be simplified by f. :

Consider now the special case . ‘
(4) Lu = u™+pu®~34 .. +p,u, GcCR isa bounded open interval. - -

It is well-known that the eigenfunctions of the operator (4) can be éxtended to ébéolute

continuous functions on G (see [1y. Usmg Theorem l we shall prove the follownng
estlmates

. Theo rem 2. There exist constants

Ky = Ha(n, |Gl IPelles PRl m=0,1,

(IG| denotes the length of ‘G)- such that given any etgenfunctton u,, of order m of
the operator (4) wzth the eigenvalue 2 EC we have

© Nl = A (14T |)J"+'+“”’Ilu Il

foraII OS]Sm OSt<n and 1=r= oo, . :
" Moreover, if p,, ..., p.€LP(G) for some l< p<oo then there exist constants

‘%fn‘: = xnf(n’ [Gl, ||Pz"p,'--~, "pn"p)’ m= 09 13 N R
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such that, putting q=(1-1/p)™%
© ol ,Ilq = -1”’(1+ IV—|)’"+'|I um"q

forall 0=j=m and O=i<n.

In the first section of this paper we prove Theorem 1 for the case G=R,
p1=py=...=p,=0. In its full generality Theorem I'is proved in Section 2. Finally,
Theorem 2 will be proved in Section 3.

1. Some properties of the operator Lp=»", G=R. In this section v, will
denote an arbitrarily fixed eigenfunction of order =m- of the operator L, with
the eigenvalue A=p" and, for j<m, we mtroduce the functxons v; —-v(’" —)w
We shall also use the notation '

2m

e,=0 ", p=12.,n
The following assertion is obvious:

Lemma 1. v, has the form
ZO Z rp(pr)reepx lf A ;éo,

2 p_xrn+p—1 lf A =Q’

r=0p=
with appropriate constants a,,¢C.

Q) Om(x) =

For any t€R, we define the determinant D(et) 'of typé NXN in the follow]ng
way: let the (rn+p)-th entry of the k-th row (1=k=N,1=p=n, 0=r=m) be

®) | | ' _____(kg,,’ Y ghayt

One can see easily that D is an entire function w1th isolated roots. A more thorough
investigation shows (cf. [12]) that
m(m+1)

© D(et)—C(et) [_1IT (ef'p — eegt)](m+

1=p<q=n
with some constant C #0. Let us denote the subdeterminant of D(gt), correspond-
ing to the element (8) by Dy,(ot), and define formally D, (¢t)=0 for r>m.

Lemma 2. There exzst numbers C;i€C, indepéndent ‘of the choice of v,
such that for all j=0, Osi<n and x, t€R,

(10) W0 = 3 {2 Cu 3 e”“Dg;gf)’)}vm(&é# ke,

whenever D(gt)#0.
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Proof. By (7)and (9), forany 1=k=N we have

kgp 1y

(1) oG +kt) = ;’ 228 o, (),

where
r!
wps(x) Z arp (r S)' (pr)'—’ e@,

Hence for all 1=p=n,0=s=m,

(12) W) = 3 Durs(@)

2 D(ed U (x+ k1),

(12) is fonhally true also for s>m if we put w,,=0. It follows directly from the
definition of g,, that for all 1=pn, s=0;i{=0, xR,

(3 20 =& 2 ),
and hence ‘
(14) W () — A,y (x) = g (:)wp,s+,,(x).

In the light of (12), our assertion (10) can be writtén in the form

(15) U(‘) (x) =M 2 Qp 2 Jis ps(x)

S§=

First we prove it for i=0, by induction on j. For j=0; (15) follows from (11)
with Cgo=1. Suppose the formula is true for some ;j=0; then it is true also for
Jj+1. Indeed, we have by (14) and the inductive hypothesis that

s =¥ 3 Z ROt = 3 2t 3 (1) wyarg) =

p=1ls=j p=1ls=j
= )+ Z”»”E”’{ g (n)c } ,
- p=1r=j+1 Yg=max(1,r—jn) q Jo.r=q wpf(x).
Thus (15) is true for all j=0, i=0. Hence the general case follows by (13):
. R | Cd(iY |
s =2 3 B Con@@ =4 2 5ty () wpasato =

p=1s=j p=1s=j =0
; n jnti min(i,r— j)

= )' 2 2{ [ ) Jo,r— q} pr(x)‘
- p=1 i 4= max(o r—Jn) . )

The lemma is proved.
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Now we introduce some special eigenfunctions of the operator L, which will
also be used in Section 2. Define the functions K,,: C)XR—C in the following way:

K,(0,x)=0 if m<0;

n &,- x .
,,g‘; o ee if o#0, )
Koo, x) = “A=a"

- x"l .
= if ¢=0;

Km(Q’ x)-E f KO(Q: x_t)Km—l(Q5 t) at if m=> 0.
(]

Lemma 3. For any pair of integers m and O=i<n,
(16) DK, (0, x) = AD3 K (0, x)+ DK, -1 (0, %),

1 if m=0 and i=n-1,

(a7 D; Ko (0, 0) = {0 otherwise.

Moreover, there exist entire functions h., such that h.(0)=1 and

xnm+n—1—i

(1) DiK,(0,2) = - b (A7),

_ (nm+n—1-—i)!
Consequently, for any m=0, 0=i<n and @€C, DiK, (o, -) is an eigenfunction
of order m of the operator L, with the eigenvalue 1=g".

Proof. For m=0, (16)—(18) can be shown by easy computation, using the
identity ' -
LI ni if i=n,

Qp -

| —
p=1 0 if 0§i<n;

for m<0 they are obvious. Suppose they are true for some m=0, and we shall
conclude from this their validity also for m+1. It suffices to show (16) and (18)
for i=0. In fact, the cases i =0 of (16) and (18) hence follow by repeated deriva-
tion and (17) is a consequence of (18). Using the definition of K., and the inductive
hypothesis,

. d,, x. .
DiKpi1(0: %) = 7 [Kole, x—0Kn(o, dt =
0

n—-1 x ‘ v
= 2 DiK(e, 0) D3~ K, (0, ¥)+ [ DiKo(a, x—1)Kn(e, dt =
j= 0

=Ko, )+ [ AKo(@, x— 1) K (0, ) dt = K,y 41(0, X)+ Kn(0, %),
. 0 ’ - .
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and (16) is proved. Td show (18), we use the explicit forms

(19) h(2) = zalz* gigﬁé,{'l=o, af=1, j=0,1,...,m

We can write

Q0) Kypi1(o, %) = j O S e ot— z))"k—’m—L S‘a'"(gt)"’dt
m+1AS (n— 1)’ <k (mm+n—1! 5

)n—1+kn cnm+n—1+rn
(n—-1)! (mm+n-1)!

= xM(m+1)+n-1 S' 2”7 (Qx)(k+r)naoam f( dé -
) ) :k;o r=0

xn(m+1)+n— +1 s
(n(m+1)+n_1)' Za (QX)

where

S, L : _ ~
s (1 é)n—l-!—nk énm+n 14 (s—k)n

m+l ! ! Z‘ 0 m
@y a (n (1) 1)'k=oakas—k6[ (-1 (mm+n-1)!

d¢;

hence, in view of (19), we easﬂy obtam

22) a"1+1 =1 and hm V a"‘+1

(to deduce the first equahty, we integrate by parts n—1 times). (22) shows the
legality of the demonstration of (20). Finally, (20) and (22) yield (18).

Lemma 4. Given any eigenfunction v, of order =m with some eigemvalue A,
there exists a sequence v, such that v, , iIs an eigenfunction of order =m with
the eigenvalue 2, #A, M—2, and for all 0=j=m, O<l<n and x€R, we have
Uy )~ (2) (ko).

Proof. For A0 this is a direct consequence of Lemma 1. For A=0, it
follows from Lemmas 1 and 3 (see (18)).

Now we prove Theorem 1 for L=L,. All the following formulas will be taken
for all j=0, 0=i<n and x, t€R. Introducing the entire functions dj; by the
formulas

in+i n .
(23) d;iu(ot) = 2 Ciis Z;(gpt)f”'kas(&t), k=1,..,N
C s=J 2= .

(see (10)), we have the identities

(24) '- D(en)tin+iold (x) = 2 i (01) U (x + K1)

whenever .D(gt)#0. Let u denote the smallest multiplicity of the root 0 in the
functions d . We claim that u is greater than or equal to the multiplicity of the
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root 0 -in " D. Indeed, in the opposite case, dividing both sides of (24) by (ot)*
and putting ¢—0, x=0, =1, we would obtain from Lemma 4 for some j, i that
the identity E :

. N :
2 d;ikvm(k) =0
S

holds for all eigenfunctions of order =m with the eigenvalue 0, i.e., for all pdly-
nomials of degree <N with some coefficients dj,, at least one of which _differs
from zero. But this is impossible because putting v, (x)=x", r=0,1, ..., N—1, the

resulting system of linear equations has the only solution d}, = dn2 =dfiy=0.

Assume D(ot)#0. Then taking into account also (9), we can d1v1de (24) by

m(m+1)

Clen *. [ _I_ (@t-e f)]‘"'“’z .

and we obtain the identities
(25) A (Qt) drtip® | (x) 21 ST (@) v, (x+ k1)

where f*, fi+ are suitable entire -functio_ns with the properties -
(26) g f*0) =1 and f*) =0 if |zjl<n -
It follows from the construction of f* and fj, that |

2ni

S*etem) = /(o) and fla(ete™ ) = fiu(ed);

therefore there exist entire functions such that

@7) fren = Gy and  fl(en) = fiu(Am).

From (25)—(27) the formulas (3) of Theorem 1 follow whenever D(g#)>0. How-
ever, this last condition can be eliminated with the aid of Lemma 4. The first part
of Theorem 1 is proved. To prove the second part of the theorem, it suffices to
show that

doo (@8) = Cono Z;kao(gt)a k=1,.,N
p=

is a multiple of
o m(m+1)

(Qt) [ I (e —eep')](mﬂ)’

—p<qsn _

this can be shown smularly to (9) Theorem 1 for L, is proved
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2. Proof of Theorem 1. Using the notations of Theorem 1, introduce the func-
tions

28) My, 0 = Q- ) O= 2,0 = 3 p.Ou37 ),
@9) b0 =u @+ 3 [ K x—0MGuy,, s

for 0=r, j=m, t, x¢G where a is an arbitrarily fixed point of G. First we show that
GO o) = uPx+ 3 [ DiK(e, x—DM(u;_,, dt (jSm, 0=i<n),
r=0, R

(31) vy =0 —Av;,, (j<m), v_;=0.

Indeed, using (29) and (17), we get that for any j=m, 0=i=n,

) Ldf ‘
v.il) (x) = u}i) (x)+r§o_d_x_f f Kr(Q9 x_t)M(uj—n t) dt =

j X
= ul® () + DKoo, OM(yj, )+ 3 [ DiK, (o, x— ) M(u;_,, ) dt.
r=04 . .
For 0=i<n this implies (30) in view of (17). Now let i=n. Using also (29), (2),
(28) and (16), we conclude that

vfP (x) — Aoy (x) =

= ”5") (x)—Auy(x)+ M (u;, x)+ é’ f[DgK,(Q, x—8)—AK. (0, x— )M (u;_,, Hdt =

j-1 ¥
=uaW+ 3 [ Ko x—0)M@y-i-,, Dat,

whence the first part of (31) follows. v_,;=0 is obvious by (29). »,, being the restric-
tion of an eigenfunction of order =m of the operator L, with the eigenvalue
4 (by.(31)); we can apply Theorem 1 for v,. Using also (30), we obtain the identities

sy (u. )+ 3 [ Dy, (0, x =) Mty 7 &) =

r=jg

m x+tkt

= 3 1) (une k0t 3 [ Kookt =) M (s ) )

for all j=0, 0=i<n, x€G and x+ Nit€G. By (18) and (28) this identity would
coincide with (3) if we could replace the lower bound a in all the integrals by x.
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But this is allowed by the following remark: K,(g, -) is an eigenfunction of order
r of L, with the eigenvalue A (Lemma 3), and therefore we have

N
SAMP"HDIK, (0, x—1) = kzl Jin(A") K (g, x—t+k¥)
for any j=0,0=i<n and x,t 1€R. Furthermore, DK, ;=0 for any j=>r,
O=i<n. Thus Theorem 1 is proved.

3. Proof of Theorem 2. Using the notations of Theorem 1, let us fix a constant
C such that for all 0= =m, 0=i<n and I1=k=N,

- (32 ‘ |fin@] = Clf(2)] if [z|=1
and
(33) [hi@|=C if |z]= NN

Assume ps; ...; p,€LXG) (1=p=<0), and define the numbers ¢, R, M, (where
p~t+q'=1) as follows:

(34) e=(@AN)H(b—a)"1 (G = (a, b)),
. 1 b—a s_]ll P
35 R=m1n{t, N ,mm{ W'2§S§n}}’
vV P
(36) M, = max {R"*|uP |,: 0=j=m, 0=i<n}

Using (3), (32), (33), (35), and (36), for any O§j§_m,.0§i<n, a§x§a+b and

0=t¢=R we can write

g ul ()l =C Z' (kD) + NC? 3 5 (NRye+= Uil lum=2ly =

r=0s=2

=C 2 |t (6 + k)| + NN C2 g g(RS Upd YR uG=2] ) =
N
= C 2 |un(x+kb)|+eM,,
k=1

ie.,

37 g ;) = C Z ltm (x+ k0)| +EM,.

First we prove (5) (9= <=). Applying the operation

‘R
NR-1 j .dt

0
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to both sides, we obtain
. . N R L -
RiH|u® i(x)| = NCRT 3 [ |u(x+ ki)| di + NeM...
k=14 ) )
Using the Holder inequality;' one cari easily see that

R BN
R [ Jun(x+kn)| dt = RV |,
0

and therefore ) .
Rjn+i lu,(p:)—](x)l = vN?CR_llr II um“r + N8M°° °

a+b
This is true for all aéxé%, but one can quite similarly prove it for all

at+b

=x=b, too. Hence

: R U@ = N2CR™ |u,ll,+ NeMes,
and in view of (34) and (36), . .
= N:CR ), +5 M.

. M. = 2N2CR 1”||u,,,||,.
Hence (5) follows by (34), (35) and (36).

b
To prove (6), put t-R in (37) and take the L"( a—;— ] norm of both sides-:

J"‘”Ilu“),ll (a,"_“’]: NCllupll,+(b—a)y1eM,.
2

A similar estimate can be obtained for [[u¥ AL [a+b b),- too. Therefore, .in view
2 » N L - -
of (36) and (34),
! 1. . .o
M, = 2NC||um||q+5Mq, S B

M, =4NC|u,ll,.

Hence (6) follows by (34), (35) and (36).

Remark. For n=2 the functions fj, h; in Theorem 1 have some special
properties. Using these properties, one can show with the method of the paper [7]
the following stronger form of (5): .

14l = Ko m(1+ VAP (14 [Re VI L,

Just this result was proved in [7].
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