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Upper estimates for the eigenfunctions of higher order 
of a linear differential operator 

V. KOMORN1K 

Dedicated to Professor Bila Sz5kefalvi-Nagy on the occasion of his 70th birthday 

In several problems of the spectral theory of non-selfadjoint differential opera-
tors it occurs the need to estimate the eigenfunctions of higher order of these operators 
(cf. [3], [4], [5], [7], [8], [11]). These results were proved in general by the application 
of the mean value formulas of TITCHMARSH [2], MOISEEV [6] and Jo6 [7]. For the case 
of the Schrodinger operator, exact estimates were obtained in [7]. However, in 
case the differential operator is of order n ^ 3 , the mean value formula^ becomes 
rather complicated (see [6]), and it seems to be hard to obtain exact estimates by 
its application. In this paper, we choose another approach: using the method of 
variation of constants instead of the mean value formula, we trace the difficulties 
back to the investigation of some concrete determinants. As the result of these 
considerations, we obtain the formula of Theorem 1. This formula actually equals 
the mean value formula in case of the Schrodinger operator, but differs from it in 
general. 

Using this formula, we extend the upper estimates of [7] to the case of an ar-
bitrary linear differential operator. We obtain estimates not only for the eigen-
functions, but also for their derivatives. These results are formulated in Theorem 2. 

Let GczR be an arbitrary open interval and consider the formal differential 
operator 

Lu = H<">+p1M<"-1>+...+pBM, 

^ Pi, ...,/>„€Lf^G) are arbitrary complex functions. 

Let A be a complex number. The function u ^ : G—C, M_1=0 is called an 
eigenfunction of order — 1 of the operator L with the eigenvalue A. As it is usual, 
a function ut: G-*C, u^O (i=0,1, ...) is said to be an eigenfunction of order 
i of the operator L with the eigenvalue A if ut, together with its first n— 1 
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derivatives is absolute continuous on every compact subinterval of G and if for 
almost all x£G the equation 

(Lut)(x) = AuiM+iii^ix) 

holds, where i/,_1 is an eigenfunction of order i— 1 with the eigenvalue A. 
We shall prove the following result: 

T h e o r e m 1. Given any pair of integers msO, there exist entire functions 
ffJik,hj(js=0,0^i<n,l?sk^N=(m+i)n) with / ( z ) ^ 0 for |z|<7t" such that the 
following formulas are valid: 

Given any eigenfunction um of order ^m of the operator (1) with the eigen-
value A€C, introducing for j<m the functions 

(2) u y . G ^ C, Uj = L u J + 1 - X u j + 1 , 
we have that 

fantJn+iuj».j(x)= 2fM^n)um(x+kt) + 
k=l 

^ N m n *+*< 

+ Z f j i k m 2 2 / (x+kt-T)"<'+1)_1/IR(A(X+FEI-T)»)ps(T)U<*Z?(T)dx 
• ft=l r = 0 1=1 J 

for all y'sO, and for all x£G with x+Nt£G. 
The functions foak are multiples of f and therefore if j = i = 0, this formula 

can be simplified by ./. 

Consider now the special case 

(4) Lu = M ( n ) + p 2 " ( , , _ 2 ) + G c R is a bounded open interval. 

It is well-known that the eigenfunctions of the operator (4) can be extended to absolute 
continuous functions on G (see [1]). Using Theorem 1 we shall prove the follciwing 
estimates: . . 

T h e o r e m 2. There exist constants -

JiTm = Xm(n, |G|, W k , . .^ l lp j ! ) , wi — 0,1, ..., 

(|G| denotes the length of G) such that given any eigenfunction um of order m of 
the operator (4) with the eigenvalue AgC, we have 

(5) " l l u i ' l y l U ^ ^ l + l ^ l V ' " ^ ^ ' ^ « « . ! ! , : 

for all OS/Sm, and 1 ^r^ 
Moreover, if p2, •••, pn£Lp(G) for some 1 then there exist constants 

J f * = Win, |G|, ||p2||p, ,.., | |p j p ) , m =0,1, ...j ; > 
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such that, putting q = (l — l/p) 1, 

(6) ii « £ M , s + m r + i w u j q 

for all 0== j=m and 

In the first section of this paper we prove Theorem 1 for the case G = R , 
P\—Pi— -= />n=0- In its full generality Theorem l is proved in Section 2. Finally, 
Theorem 2 will be proved in Section 3. 

1. Some properties of the operator LQv=v'"\ G=R. In this section vm will 
denote an arbitrarily fixed eigenfunction of order s m -of the operator L0 with 
the eigenvalue X=Q" and, for J<M, we introduce the functions VJ=V<-"11—XVj+1. 
We shall also use the notation 

2ni -f 

QP= Qe " , P = 1, 2, ..., n. 

The following assertion is obvious: 
Lemma 1. vm has the form 

(7) vm(x) = 
2 2 arp(ePx)reV if /1^0, 

r= 0 p-1 

2 2<*rPx"'+p~1 if * = o, 
p = 0 p = l 

with appropriate constants arpdC. 

For any R, we define the determinant D(gt) of type NxN in the following 
way: let the (ra+/>)-th entry of the &-th row O ^ r s m ) be 

(8) rl 
One can see easily that D is an entire function with isolated roots. A more thorough 
investigation shows (cf. [12]) that 

m(m +1) 
(9) D(et) = C(Qt) 2 [ n (e'p'-e'4t)Ym+1)' 

1— 

with some constant C ^ 0. Let us denote the subdeterminant of D(gt), correspond-
ing to the element (8) by Dkpr(gt), and define formally Dkpr(Qt)=0 for r>m. 

Lemma 2. There exist numbers Cjis£C, independent of the choice of vm, 
such that for all 0, 0^i<n and x, f£R, 

N (jn+i n n ( 0 ( \ V 
(10) v<Hj(x) = 2 \ 2 CjisZ 

*=1 lp=i p=i U\Qt) ) 
whenever D(et)^ 0. : ' 
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P r o o f . By (7) and (9), for any l ^ k ^ N we have 

" m (kn iV 
( 1 1 ) vm(x+kt) = 2 2 - ^ p - wpJW, 

p=l s=0 S! 
where 

m r \ 

wp,(x) = 2 arp ( r _ 5 ) , (e P xy- 'e 'p* . 

Hence for all 1 S p ^ n , O ^ s ^ m , ( 1 2 ) wp,(x) = J ^ M ^ + f c i ) . 

(12) is formally true also for s > m if we put wp s=0. It follows directly from the 
definition of q p s that for all l ^ p n , iSO, i SO, xgR, 

(13) w « ( * ) = Q'P ¿ I ' W . + 4 ( * ) , 
q=0\(]/ 

and hence 

(14) = A J M Wp>s+4(x). 
«=1 W ' 

In the light of (12), our assertion (10) can be written in the form 

n jn+i 
(15) v«lj(x) = V 2 e'P 2 cjisWps(x). 

p=1 s=j 

First we prove it for i=0, by induction on j. For j=0, (15) follows from (11) 
with C 0 0 0= 1- Suppose the formula is true for some / s 0 ; then it is true also for 
y '+l . Indeed, we have by (14) and the inductive hypothesis that 

••vm-J-1(x) = X> 2 2CjoAw№(x)-Xwps(x)] = V 2 2 CJOsA ¿ln)wpt+,(x) = 

n (j+l)n f min(n,r—j) ( n \ I 
= v + 1 2 2 \ 2 c A r l w , w . p=lr=7 + l l«=max(l,i—./n) \ q > ) 

Thus (15) is true for all j~0, i=0. Hence the general case follows by (13): 

v«Lj(x) = P 2 2 Cjo^Hx) = xJ 2 2 cJOsQl
p 2 i ' K..+,(*) = 

n jn+i ( min(i,r-j) ( I \ 1 

= V 2 e ' P 2 \ 2 L\cJ0.,-q\wp,(x). 

The lemma is proved. 
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Now we introduce some special eigenfunctions of the operator L0 which will 
also be used in Section 2. Define the functions Km: C x R — C in the following way: 

Km(Q,x)sO if m < 0 ; 

k 0 ( q , x ) = 

Z ^ e ' P * if 
P=I NX (A = Q") 

if Q = 0; l ( » - l ) ! 
X 

Km(e,x) = f K 0 ( g , x t ) d t if m > 0 . 
o 

L e m m a 3. For any pair of integers m and 0 

(16) Dl+iKm{Q,x) = Wi
iKm{Q,x)+D{Km^{Q,x)t 

(17) 7 )^ m ( i , ( 0) = {J if
Qt 

m = 0 and i = n — 1, 
otherwise. 

Moreover, there exist entire functions hl
m such that h'JO)=1 and 

yjim+n-1 — i 
(18) + 

Consequently, for any m^O, 0^z'<n and C, Dl
2Km(Q, •) is an eigenfunction 

of order m of the operator L0 with the eigenvalue X=Q". 

P r o o f . For m = 0 , (16)—(18) can be shown by easy computation, using the 
identity 

" . _ inX if i = n, 
A Q p lO if 0 S i < n ; 

for 0 they are obvious. Suppose they are true for some m^O, and we shall 
conclude from this their validity also for m + 1 . It suffices to show (16) and (18) 
for i '=0. In fact, the cases i > 0 of (16) and (18) hence follow by repeated deriva-
tion and (17) is a consequence of (18). Using the definition of Km+l and the inductive 
hypothesis, 

d" x 

DlKm + 1(Q, x) = - y - f K0(e, X-t)Km(Q, t)dt = 
0 

= "Z DJMQ,0)DRL-JKM(Q,X)+ F D»MQ,X-t)KM(Q,t)dt = 
J=0 0 

* 

= KM(Q, x)+F XK0(Q, x-t)KM(Q, t) dt = XKM+1(Q, x)+Km(e, X), 
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and (16) is proved. To show (18), we use the explicit forms 

(19) h%z) = 2 I w n m\=0, ai = 1, j = 0, 1, ..., m. 
л=о 

We can write 
? f v _ A"-l » ¡nm+n-l a> 

( 2 0 ) = / Ц у г 2 « £ ( « ( * - o r ( n w + „ _ 1 ) ; 2 0 " P i e t y dt = 

oo oo l / i г\л —1+k/i znm + n — l+rn 

.t=or=o * V (n — 1)! (nm + n - 1 ) ! 

^Jifm + l j + n - l 

(n(m + l) + n — 1)! s=o ' 
where 

s * Л1 Е\л — l + л * K i r n i + n - l + ( s - l i ) n 

(21) = (i»(m + l ) 1 ) ! 2 4ar-k/ ^ j p - %w + n_1)! 

hence, in view of (19), we easily obtain 

(22) «o+ 1 = 1 and lim VlapM = 0 k-*oo 

(to deduce the first equality, we integrate by parts n — 1 times). (22) shows the 
legality of the demonstration of (20). Finally, (20) and (22) yield (18). 

Lemma 4. Given any eigenfunction vm of order S m with some eigenvalue A, 
there exists a sequence vkm such that vkm is an eigenfunction of order S m with 
the eigenvalue Xk^X, Xk-*X, and for all j = m, and xdR, we have 

Proof . For X^0 this is a direct consequence of Lemma 1. For A=0, it 
follows from Lemmas 1 and 3 (see (18)). 

Now we prove Theorem 1 for L=L0. All the following formulas will be taken 
for all j SO, and x, /£ R. Introducing the entire functions dJik by the 
formulas 

jn+i n 
(23) dJikiet) = 2 Cj* ZiePt)ln+iDkps(dt), k = 1, ...,jv 

s=j p=1 

(see (10)), we have the identities 

(24) Diet)t»+lv«lJix)= 2djikie0vmix + kt) 
k = 1 

whenever Let /i denote the smallest multiplicity of the root 0 in the 
functions dJik. We claim that fi is greater than or equal to the multiplicity of the 
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root 0 in D. Indeed, in the opposite case, dividing both sides of (24) by (gt)" 
and putting 0—0, x = 0 , t = \, we would obtain from Lemma 4 for some j, i that 
the identity . a 

2d%vm(k) = 0 
k=0 

holds for all eigenfunctions of order g m with the eigenvalue 0, i.e., for all poly-
nomials of degree <iST with some coefficients d*ik, at least one of which differs, 
from zero. But this is impossible because putting vm(x)=xr, r=0, 1, ..., N— 1, the 
resulting system of linear equations has the only solution. dja=dji2= ...=dJiN=0. 

Assume D(qî)?±0. Then taking into account also (9), we can divide (24) by 

m(m-f 1) 
C(gt)"~^~\_ n (Qpt-8Mm+1)*> 

l^p ..-
and we obtain the identities 

(25) rte0tJ"+'v2>-j(x)= Zfh(et)vm(x+kt) 

where f*,f*ik are suitable entire functions with the properties 

(26) /*(0) = 1 and 0 if |z| < n. 

It follows from the construction of / * and f*jk that 

2 ni 2ni 

f*{Qte •>) = /* (Qt) and nk(Qte-)=f%k(ôt); 

therefore there exist entire functions such that 

(27) P(Qt) =f(h") and f*ik(gt) =fjik(h«). 

From (25)—(27) the formulas (3) of Theorem 1 follow whenever Z)(ei)^0. How-
ever, this last condition can be eliminated with the aid of Lemma 4. The first part 
of Theorem 1 is proved. To prove the second part of the theorem, it suffices to 
show that 

dWk(Qi) = Cooo 2DkPo(et), k = 1, ..., N 
P=l 

is a multiple of 
• m(m + l ) 

(CO"-*"" [ II (e',,-e^P<)Уm+»i; 
XSpcq^n 

this can be shown similarly to (9). Theorem 1 for L0 is proved. 
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2. Proof of Theorem 1. Using the notations of Theorem 1, introduce the func-
tions 

(28) M(uj_r,t) = (.LuJ.r)(t)-u]"2r(t)= ¿ A ( / ) « j "_-/>(/), 
3 = 1 

(29) Vj(x) = Uj(x) + 2 f K(e, x-t)M(uj_„ t) dt, 
r~° a 

for 0 t , x £ G where a is an arbitrarily fixed point of G. First we show that 

(30) v(f> (x) = ««)*-1- 2 f&iKie, x~t)M(uj_r, t) dt ( ; s m, 0 ^ i < n), 
' = « a 

(31) vj = -¿Vj+i 0 ' < m ) , u_! = 0. 

Indeed, using (29) and (17), we get that for any j^m, 0 ^ / S n , 

vPix) = "i°(x)+¿-¿- /Kr(e, x-t)M(uj.r, t)dt = 

= u(p (x)+D'flK0(e, 0 ) M ( u j , x)+ 2 ¡DMe, x-t)M(uj_„ t) dt. 
r=o i 

For this implies (30) in view of (17). Now let i—n. Using also (29), (2), 
(28) and (16), we conclude that 

vf(x)-X «,,(*) = 

= «$»>(*)-A«J(*) + M(ttJ,*)+ 2 f[DiKr(e,x-t)-XKr(e,x-i)]M(Uj_r, t)dt = 

j - i * 
= «^(xH 2 / *r((?, X-t)M(Uj.,.r, t)dt, 

r = 0 0 

whence the first part of (31) follows, is obvious by (29). wm being the restric-
tion of an eigenfunction of order ^m of the operator L0 with the eigenvalue 
A (by.(31)), we can apply Theorem 1 for vm. Using also (30), we obtain the identities 

fmtJn+i[u«lj(x)+ 2 f Di
iKr_J(Q,x-T)M(um_r,z)dx} = 

N t m x t k t \ 
= 2fj*W)\um(x+kt)+ 2 f K(e,x+kt-z)M(um-„r)dx\ 

for all y s O , x£G and x+Nt£G. By (18) and (28) this identity would 
coincide with (3) if we could replace the lower bound a in all the integrals by x. 
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But this is allowed by the following remark: Kr(Q, •) is an eigenfunction of order 
r of L0 with the eigenvalue X (Lemma 3), and therefore we have 

/{XW+'BLKr-jie, x-z) = 2 fjikWKie, x-r+kt) 
k=l 

for any y s O , O^i'-cw and x , t, t £ R . Furthermore, D'2Kr-j=0 for any 
Thus Theorem 1 is proved. 

3. Proof of Theorem 2. Using the notations of Theorem 1, let us fix a constant 
C such that for all O^j^m, and l^k^N, 

(32) \fjik{z)\ C\f(z)\ if |z| ^ 1 
and 
(33) \hj(z)\ £ C if \z\ S NN. 

Assume p2; ...,p„£Lp(G) (1 and define the numbers e, R, Mq (where 
p~1+q~1= 1) follows: 

(34) e = (4iV)_1(i—A)-1 '4 (G = (a, b)), 

(35) H = m i n j J - , min{ ] / c n ^ M , : 

(36) Mq = max {^"+'11 « « J 4 : m, O s / < n } . 

Using (3), (32), (33), (35), and (36), for any a ^ s ^ and 

O ^ t ^ R we can write 
N m n 

i J"+ i |«m-jWI ^ C 2 \um(x+kt)\ + NC2 2 ^ ( W + ̂ - ' l l p J I p l l ^ l l , = 

fc=l r = 0 s = 2 

N m n = c 2 \um(x+kt)\+NNc2 2 2(RS~1\\Ps\\p)(Rrn+"~s\\"m-r)\\q) ^ 
* = 1 r = 0 5 = 2 

^ c 2 \um(x+kt)\ + eM9, 
k= 1 

i.e., 

(37) t^W-jW] S C 2 \um(x + kt)\+eMq. 
k=1 

First we prove (5) {q= Applying the operation 
' R 

NR~1 f -dt 
o 
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to both sides, we obtain 
<v « . 

RJm+,\u<P-j{x)\ * NCR-1 2 f \um(x+kt)\dt + NeM„. 
k=1J 

Using the Holder inequality, one can easily see that 
R 

R-i f \um(x + kt)\dt^ R-V'WuJr, 
o 

and therefore 
S N2CR~llr|| HJ|, + NeM„. 

a + b 
This is true for all flgjg , but one can quite similarly prove it for all 

a + b — — S i ^ i ) , too. Hence 

RJn+i\\u«lj\\„S NtCR-V'WuJl + NeM^, 

and in view of (34) and (36), % 

M„ ^ N*-CR-*'\\um\\r + ^Mm, 

A/«, i": 2N2CR~llr\\um\\r. 

Hence (5) follows by (34), (35) and (36): 

To prove (6), put t—R in (37) and take the Lq^a, ~ ~ n o r m of both sides: 

NC\\uJq+(b-ay>eMq. ' 

A similar estimate can be obtained for ||t/21,-||£„^+fc 6 j , too. Therefore, .in view 

of (36) and (34), 

Mq^2NC\\uJq + jMq, 

Mq^4NC\\uJq. 

Hence (6) follows by (34), (35) and (36). 

R e m a r k . For n=2 the functions fjik, hj in Theorem 1 have some special 
properties. Using these properties, one can show with the method of the paper [7] 
the following stronger form of (5): 

I I k W J - ^ ^2,m(l + + |Re / X | y + 1 / , | | u j | r . 

Just this result was proved in [7]. 
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