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On the homotopy type of some spaces occurring 
in the calculus of variations 

A. KÓSA 

Dedicated to Professor B. Sz.-Nagy on the occasion of his 70th birthday 

1. Let H€N and let D c R x R " be an open region. Suppose ¿̂ CR" 
are given such that (0, £0), (1, Denote by M(D) the class of continuous 
functions JC: [0, l]-«-R" such that 

(1) x(0) = £„, x(l) = fx, and r(x):= {(í, *(0)|*€[0,1])} c D. 

The space of Revalued continuous functions over [0,1] will be denoted by C„[0,1]. 
Thus M(D) is a subspace of C„[0,1]. Endow M(D) with the relative topology 
of C„[0,1]. 

The global methods of the calculus of variations (see [1], [3], [5] and [6]) lead 
us to the following problem: how can the homotopy type of M(D) be described 
from that of D1 In this paper we establish a connection between the homotopy 
types of the spaces D and M(D) for a rather wide class of regions D. We shall 
define a class of admissible regions and for this class we shall prove the following 
theorem. 

Theorem. Suppose D c R x R " is an admissible region and its homotopy 
type is the one point union S*i\/Sr*\¡ ...\¡S*k of the spheres Sr' of dimension 
(/ = 1,2, . . . , k). Then the homotopy type of M(D) is the one point union 
S"-i-iV5 r«-1V-VST"-1 of the spheres 5 r ' - 1 (i = l, 2,. . . , k). 

2. In this section the necessary definitions and constructions will be given. 

Def in i t ion 1. The regions Dlt fi2cRn+1 satisfying (1) will be called r-in-
variantly homeomorphic, if there exists a uniformly continuous homeomorphism 
<p:Di^-D2 such that 

a) <K(Uo) = «Uo)> = 
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b) the diagram 

<p: Di — D2 

R 
is commutative where prx: R'XR"—R1 is the projection of the space R l X R " 
onto the first factor. 

n 
Denote by / „ cR" the n-dimensional open unit interval XK*> '[• Let k,i 

¡=i 
(i=k) and r (r^n) be positive integers and <5£]0, l/2[ a real number. For the 
ordered quadruple (k, /', r, ¿) define the set Q(k, i, r, c5) as the product 

( k m i x . i : 

Now, suppose that the positive integers n,k are given. Let r2, r(l)€N t 

for i = 1, 2, ..., k), a, p, 5£Ik. Suppose that for all / = 1,2, 
and 2d£Jk. The set D(k, r, a, P, ¿ ) c R X R " will be given in the following manner: 

D(k, r, a, p, 8) := {(/, *KRxR n | / € [0 , 1], x£i„, . and. if *£[<*„ p,] then 

x$Q(k, i, rt, <5,)}. 

D e f i n i t i o n 2. A region Z>cR"+ 1 is said to be admissible if there exist 
*€N,.r€N* (r^n, / = 1,2, ..., k), a, p, 5ak.(*i^P„ / '=1 ,2 , ..., k, 28<iln),.. such that 

k 
the intersection T l K ' f t t ¡ s nonempty, and D and D(k, r, a, p, 8) are' /-in-

¡=1 • 
variantly homeomorphic regions. 

. . R e m a r k : It can be easily seen that the homotopy type of the regions 
D(k, r, a, p, 8) (and,thus that of D) is the one point union S'y\]S'*\/...\JST*. 

Now, choose real numbers <x0, p0,a.', P', t0 such that 0 < a ' < a 0 < / 0 < / ? 0 < / r < T . 
Define the function / : [0, 1] —[0, 1] in the following way: 

/€[0, a']U[P', 1],. 

te[p0, Pi-

rn :={ 

t - a ! 

a „ - a - C o - a O , 

to, 

>o+4^r(p'~t0i P -P0 
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The restriction of / to the set [0, a0]U]/?o> U is invertible and the inverse also can 
be easily given: 

t, i Ç ^ a l U D S M ] , . 

( / l [0 ,a 0 ]U ] / î „ , l ] ) 1 ( 0 = 

/—a 
a ' + r («0-oO> , tÇ[oc', /„], 

Q a 

P - to 

Let N, /-iN" ( r ^ n , / = 1 , 2 , f c ) , a', J3'€]0,1[ ( a ' c f t ) , <5eRk (2<5<E/*) 
be given. Define the subspace M(k, r, a', /T, <5)cC„[0,1] as follows: 

M(/c, r, a', P', §) .:= {x£ C„[0, 1] | * | [ s , . n const., | (x) = : x(a'), . 

Z(x)(LIn\nQ(k, i, r, d), x(t) = £O+4-(£(*)-£O) ('€[0, a']), 
¡=i a 

*(O = ax)+-^r(Ql-ax)) ID}. . 

Finally, denote by j the identity map of [0, 1]. 

3. We start with a simple observation. 

L e m m a 1. If the regions D1,D2czR"+1 satisfying the condition (1) are ^in-
variant ly homeomorphic, then M(DX) and M(D2) are homeomorphic. 

P r o o f . Let <p\Dx-+D2 be a /-invariant homeomorphism (in this case, ob-
viously, the inverse <p-1: D2—DX is also a /-invariant homeomorphism). Define 
the desired homeomorphism <P: M(D1)-~M(D2) as follows: 

(*(*)) (0 :=,pr2<p (/,*(/)) (/£[0,1]), . 

where pr2: R ^ R " — R " is the projection of the product space R1XR" onto the 
second factor. From the /-invariance of the homeomorphism <p it follows im-
mediately, that <P is a homeomorphism. It is also clear that <P~1 has a form similar 
to that of 

($-1(x))(/) = pr2<? )-1(i,x(0) (/€[0,1]). 

From Lemma 1 it follows that it is sufficient to determine the homotopy type 
.of; the spaces M(D{k, r, a, /?, <5)). We now turn to the calculation of the homotopy 
type of the space M(k, r, a.', ft', 5). For this purpose we shall prove the following 

L e m m a 2. The homotopy type of the space M(k, r;a.', P', 5) is the one point 
union 5 ' ' - 1 V5 r «- 1 V. . .V5 r " - 1 of the spheres S''"1 (/ = 1,2, ...,k). 
J . > • • 

"' . P roo f . It is obvious that the space M(k, r, a ' , P', <5) is homeomorphic to the 
n 

n-dimensional region 7 „ \ (J Q(k, i, r, 3). The desired homeomorphism W can be 
¡=i 
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given by (£ |Af(t,r,a',p',i))-\ where ^ is the function from the end of the 2nd 

k 
point. Now, by the definition of the sets Q(k, i, r, 5) the region / „ \ U U r-> 

>=i 
is homotopically equivalent to the one point union S T i - 1 V iS T i " 1 V . . .VS"* - 1 

of the spheres S*"'-1 (i = 1 ,2 , . . . , Ac). 
* 

Choose numbers t0£ f ) ]a(, ft[ and a0 , ft; a', ft£]0, 1[ such that the inequalities 
<=i 

0 < a' < a0 < mm {«¡} < max {ft} < ft, < ft < 1 

are satisfied. 

L e m m a 3. The space M(k, r, a', ft, 5) is a deformation retract of the space 
M(D(k, r, a, ft <5)). 

P r o o f . A homotopy 

F: [0,1 ]XM(D(k, r, a, ft <5)) - M(D(k, r, a, ft 5)) 
is defined by 

_ f x o ( 2 t / + ( l —2x)j), t€[0, 1/2], 
F(x, x) : - | ( 2 _ 2 t ) ; c o / + (2T—1) !F(x(r0)), T€[1/2, 1], 

where r]/ is the function from the preceding proof. 
The restriction of X<-+F(T, X) to M(k, r, a', ft, <5) is the identity, because the 

elements of M(Jc, r, a.', ft', <5) are constant over [a', ft] and linear over the rest 
of [0,1], consequently 

xo(2T/+( l -2T)/ ) | [ a , , , , ] = £(*) = x \ [ a , < n , 

o(2t/ + (l —2T)/)|[o,a'juw,i] = * o (2r/+ (1 - 2T)j) j[0i x>]ulir,1} = X^.^uwm]» 

for x€[0,1/2], and 

[ (2—2x)x of+ ( 2 T — 1 ) !P (X ( I 0 ) ] [A ' , / ) ' ] = ( 2 - 2 T ) X ( / 0 ) + ( 2 T - 1 ) X ( / 0 ) = x | [ a , , r ] > 

[(2—2t) x o / + (2T—1) (x (/0)] [o, A- ] u w Ml = [(2-2T)X+(2T-1)X]|[0,C[.]l,[p..1i = 

for T6[l/2, 1]. 
The function xt—F(0, x) is the identity over M(D(k, r, a, ft <5)). The function 

XH-F(1,X) is a retract of M(D(k, r, a, ft <5)) onto M(k,r,u', p',5). The proof 
of Theorem follows immediately from Lemmas 1—3. 

If n=2 and the region D is 73 \{(i , 1/2, 1/2) | /€[0,1]}, furthermore 
eo 

=(1/2, 1/3), then the homotopy type of M(D) 
is the one point union V S® 

i= — » 
of infinitely many 0-dimensional spheres. There are as many spheres as there are 
different ways to wind the graphs of the functions around the omitted segment. 
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