On the homotopy type of some spaces occurring in the calculus of variations

A. KOSA
Dedicated to Professor B. Sz.-Nagy on the occasion of his 70th birthday

1. Let $n \in \mathbf{N}$ and let $D \subset \mathbf{R} \times \mathbf{R}^{n}$ be an open region. Suppose $\xi_{0}, \xi_{1} \in \mathbf{R}^{n}$ are given such that $\left(0, \xi_{0}\right),\left(1, \xi_{1}\right) \in D$. Denote by $M(D)$ the class of continuous functions $x:[0,1] \rightarrow \mathbf{R}^{n}$ such that

$$
\begin{equation*}
\left.x(0)=\xi_{0}, x(1)=\xi_{1}, \quad \text { and } \quad \Gamma(x):=\{(t, x(t)) \mid t \in[0,1])\right\} \subset D . \tag{1}
\end{equation*}
$$

The space of \mathbf{R}^{n}-valued continuous functions over $[0,1]$ will be denoted by $C_{n}[0,1]$. Thus $M(D)$ is a subspace of $C_{n}[0,1]$. Endow $M(D)$ with the relative topology of $C_{n}[0,1]$.

The global methods of the calculus of variations (see [1], [3], [5] and [6]) lead us to the following problem: how can the homotopy type of $M(D)$ be described from that of D ? In this paper we establish a connection between the homotopy types of the spaces D and $M(D)$ for a rather wide class of regions D. We shall define a class of admissible regions and for this class we shall prove the following theorem.

Theorem. Suppose $D \subset \mathbf{R} \times \mathbf{R}^{n}$ is an admissible region and its homotopy type is the one point union $S^{r_{1}} \vee S^{r_{s}} \vee \ldots \vee S^{r_{k}}$ of the spheres $S^{r_{i}}$ of dimension $r_{i} \geqq 1$ $(i=1,2, \ldots, k)$. Then the homotopy type of $M(D)$ is the one point union $S^{r_{1}^{-1}} \vee S^{r_{2}^{-1}} \vee \ldots \vee S^{r_{k}-1}$ of the spheres $S^{r_{1}^{-1}}(i=1,2, \ldots, k)$.
2. In this section the necessary definitions and constructions will be given.

Definition 1. The regions $D_{1}, D_{2} \subset \mathbf{R}^{n+1}$ satisfying (1) will be called t-invariantly homeomorphic, if there exists a uniformly continuous homeomorphism $\varphi: D_{1} \rightarrow D_{2}$ such that
a)

$$
\varphi\left(0, \xi_{0}\right)=\left(0, \xi_{0}\right), \varphi\left(1, \xi_{1}\right)=\left(1, \xi_{1}\right)
$$

Receidev October 19, 1982.
b) the diagram

is commutative where $\mathrm{pr}_{1}: \mathbf{R}^{\mathbf{1}} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{1}$ is the projection of the space $\mathbf{R}^{1} \times \mathbf{R}^{n}$ onto the first factor.

Denote by $I_{n} \subset \mathbf{R}^{n}$ the n-dimensional open unit interval ${\underset{i}{X}}_{n}^{n}] 0,1[$. Let k, i $(i \leqq k)$ and $r(r \leqq n)$ be positive integers and $\delta \in] 0,1 / 2[$ a real number. For the ordered quadruple (k, i, r, δ) define the set $Q(k, i, r, \delta)$ as the product

$$
\left({\underset{j=1}{n-r}}_{X}\right] 0,1[) \times\left(\stackrel{n-1}{X}_{j=n-r+1}^{X}\left[\frac{1}{2}-\delta, \frac{1}{2}+\delta\right]\right) \times\left[\frac{2 i-1-\delta}{2 k}, \frac{2 i-1+\delta}{2 k}\right]
$$

Now, suppose that the positive integers n, k are given. Let $r=\left(r_{1}, r_{2}, \ldots, r_{k}\right) \in \mathbf{N}^{k}$ ($r_{i} \leqq n$ for $i=1,2, \ldots, k$), $\alpha, \beta, \delta \in I_{k}$. Suppose that $\alpha_{i}<\beta_{i}$ for all $i=1,2, \ldots, k$ and $2 \delta \in I_{k}$. The set $D(k, r, \alpha, \beta, \delta) \subset \mathbf{R} \times \mathbf{R}^{n}$ will be given in the following manner:

$$
D(k, r, \alpha, \beta, \delta):=\left\{(t, x) \in \mathbf{R} \times \mathbf{R}^{n} \mid t \in[0,1], x \in I_{n}, \text { and if } t \in\left[\alpha_{i}, \beta_{i}\right]\right. \text { then }
$$

$$
\left.x \notin Q\left(k, i, r_{i}, \delta_{i}\right)\right\}
$$

Definition 2. A region $D \subset \mathbf{R}^{\boldsymbol{n + 1}}$ is said to be admissible if there exist $k \in \mathbf{N}, r \in \mathbf{N}^{k}\left(r_{i} \leqq n, i=1,2, \ldots, k\right), \alpha, \beta, \delta \in I_{k}\left(\alpha_{i}<\beta_{i}, i=1,2, \ldots, k, 2 \delta \in I_{n}\right), \ldots$ such that the intersection $\left.\bigcap_{i=1}^{k}\right] \alpha_{i}, \beta_{i}[$ is nonempty, and D and $D(k, r, \alpha, \beta, \delta)$ are t-invariantly homeomorphic regions.

Remark: It can be easily seen that the homotopy type of the regions $D(k, r, \alpha, \beta, \delta)$ (and thus that of D) is the one point union $S^{r_{1}} \vee S^{r_{z}} \vee \ldots \vee S^{r_{k}}$.

Now, choose real numbers $\alpha_{0}, \beta_{0}, \alpha^{\prime}, \beta^{\prime}, t_{0}$ such that $0<\alpha^{\prime}<\dot{\alpha}_{0}<t_{0}<\beta_{0}<\beta^{\prime}<1$. Define the function $f:[0,1] \rightarrow[0,1]$ in the following way:

$$
f(t):= \begin{cases}t, & t \in\left[0, \alpha^{\prime}\right] \cup\left[\beta^{\prime}, 1\right] \\ \alpha^{\prime}-\frac{t-\alpha^{\prime}}{\alpha_{0}-\alpha^{\prime}}\left(t_{0}-\alpha^{\prime}\right), & t \in\left[\alpha^{\prime}, \alpha_{0}\right] \\ t_{0}, & t \in\left[\alpha_{0}, \beta_{0}\right] \\ t_{0}+\frac{t-\beta_{0}}{\beta^{\prime}-\beta_{0}}\left(\beta^{\prime}-t_{0}\right), & t \in\left[\beta_{0}, \beta^{\prime}\right]\end{cases}
$$

The restriction of f to the set $\left.\left[0, \alpha_{0}\right] \cup\right] \beta_{0}, 1[$ is invertible and the inverse also can be easily given:

$$
\left(\left.f\right|_{\left.\left.\left[0, \alpha_{0}\right] \cup\right] \beta_{0}, 1\right)}\right)^{-1}(t)= \begin{cases}t, & t \in[0, \alpha] \cup\left[\beta^{\prime}, 1\right] \\ \alpha^{\prime}+\frac{t-\alpha^{\prime}}{t_{0}-\alpha^{\prime}}\left(\alpha_{0}-\alpha^{\prime}\right), & t \in\left[\alpha^{\prime}, t_{0}\right] \\ \beta_{0}+\frac{t-t_{0}}{\beta^{\prime}-t_{0}}\left(\beta^{\prime}-\beta_{0}\right), & \left.t \in] t_{0}, \beta^{\prime}\right]\end{cases}
$$

Let $\left.k \in \mathbf{N}, r \in \mathbf{N}^{k}\left(r_{i} \leqq n, i=1,2, \ldots, k\right), \alpha^{\prime}, \beta^{\prime} \in\right] 0,1\left[\left(\alpha^{\prime}<\beta^{\prime}\right), \quad \delta \in \mathbf{R}^{k}\left(2 \delta \in I_{k}\right)\right.$ be given. Define the subspace $M\left(k, r, \alpha^{\prime}, \beta^{\prime}, \delta\right) \subset C_{n}[0,1]$ as follows:

$$
\begin{gathered}
M\left(k, r, \alpha^{\prime}, \beta^{\prime}, \delta\right):=\left\{x \in C_{n}[0,1]|x|_{\left[\alpha^{\prime}, \beta^{\prime}\right]} \quad \text { const., } \quad \xi(x)=: x\left(\alpha^{\prime}\right),\right. \\
\xi(x) \in I_{n} \backslash \bigcap_{i=1}^{k} Q(k, i, r, \delta), \quad x(t)=\xi_{0}+\frac{t}{\alpha^{\prime}}\left(\xi(x)-\xi_{0}\right) \quad\left(t \in\left[0, \alpha^{\prime}\right]\right) \\
\left.x(t)=\xi(x)+\frac{t-\beta^{\prime}}{1-\beta^{\prime}}\left(\xi_{1}-\xi(x)\right) \quad\left(t \in\left[\beta^{\prime}, 1\right]\right)\right\} .
\end{gathered}
$$

Finally, denote by j the identity map of $[0,1]$.
3. We start with a simple observation.

Lemma 1. If the regions $D_{1}, D_{2} \subset \mathbf{R}^{n+1}$ satisfying the condition (1) are t-invariantly homeomorphic, then $M\left(D_{1}\right)$ and $M\left(D_{2}\right)$ are homeomorphic.

Proof. Let $\varphi: D_{1} \rightarrow D_{2}$ be a t-invariant homeomorphism (in this case, obviously, the inverse $\varphi^{-1}: D_{2} \rightarrow D_{1}$ is also a t-invariant homeomorphism). Define the desired homeomorphism $\Phi: M\left(D_{1}\right) \rightarrow M\left(D_{2}\right)$ as follows:

$$
(\Phi(x))(t):=\operatorname{pr}_{2} \varphi(t, x(t)) \quad(t \in[0,1])
$$

where $\mathrm{pr}_{2}: \mathbf{R}^{\mathbf{1}} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is the projection of the product space $\mathbf{R}^{\mathbf{1}} \times \mathbf{R}^{n}$ onto the second factor. From the t-invariance of the homeomorphism φ it follows immediately, that Φ is a homeomorphism. It is also clear that Φ^{-1} has a form similar to that of Φ :

$$
\left(\Phi^{-1}(x)\right)(t)=\operatorname{pr}_{2} \varphi^{-1}(t, x(t)) \quad(t \in[0,1])
$$

From Lemma 1 it follows that it is sufficient to determine the homotopy type of the spaces $M(D(k, r, \alpha, \beta, \delta))$. We now turn to the calculation of the homotopy type of the space $M\left(k, r, \alpha^{\prime}, \beta^{\prime}, \delta\right)$. For this purpose we shall prove the following

Lemma 2. The homotopy type of the space $M\left(k, r, \alpha^{\prime}, \beta^{\prime}, \delta\right)$ is the one point union, $S^{r_{1}-1} \vee S^{r_{2}-1} \vee \ldots \vee S^{r_{k}-1}$ of the spheres $S^{r_{i}-1}(i=1,2, \ldots, k)$.

Proof. It is obvious that the space $M\left(k, r, \alpha^{\prime}, \beta^{\prime}, \delta\right)$ is homeomorphic to the n-dimensional region $I_{n} \backslash \bigcup_{i=1}^{n} Q(k, i, r, \delta)$. The desired homeomorphism Ψ can be
given by $\left(\left.\xi\right|_{M\left(k, r, \alpha^{\prime}, \beta^{\prime}, \delta\right)}\right)^{-1}$, where ξ is the function from the end of the $2^{\text {nd }}$ point. Now, by the definition of the sets $Q(k, i, r, \delta)$ the region $I_{n} \bigcup_{i=1}^{k} Q(k, i, r, \delta)$ is homotopically equivalent to the one point union $S^{r_{1}^{-1}} \vee S^{r_{1}^{-1}} \vee \ldots \vee S^{\mathbf{k}^{-1}}$ of the spheres $S^{r_{i}^{-1}}(i=1,2, \ldots, k)$.

Choose numbers $\left.t_{0} \in \bigcap_{i=1}^{k}\right] \alpha_{i}, \beta_{i}\left[\right.$ and $\left.\alpha_{0}, \beta_{0} ; \alpha^{\prime}, \beta^{\prime} \in\right] 0,1[$ such that the inequalities

$$
0<\alpha^{\prime}<\alpha_{0}<\min _{1 \leq i \leq k}\left\{\alpha_{i}\right\}<\max _{1 \leq i \leq k}\left\{\beta_{i}\right\}<\beta_{0}<\beta^{\prime}<1
$$

are satisfied.
Lemma 3. The space $M\left(k, r, \alpha^{\prime}, \beta^{\prime}, \delta\right)$ is a deformation retract of the space $M(D(k, r, \alpha, \beta, \delta))$.

Proof. A homotopy

$$
F:[0,1] \times M(D(k, r, \alpha, \beta, \delta)) \rightarrow M(D(k, r, \alpha, \beta, \delta))
$$

is defined by

$$
F(\tau, x):= \begin{cases}x \circ(2 \tau f+(1-2 \tau) j), & \tau \in[0,1 / 2] \\ (2-2 \tau) x \circ f+(2 \tau-1) \Psi\left(x\left(t_{0}\right)\right), & \tau \in[1 / 2,1]\end{cases}
$$

where ψ is the function from the preceding proof.
The restriction of $x \mapsto F(\tau, x)$ to $M\left(k, r, \alpha^{\prime}, \beta^{\prime}, \delta\right)$ is the identity, because the elements of $M\left(k, r, \alpha^{\prime}, \beta^{\prime}, \delta\right)$ are constant over $\left[\alpha^{\prime}, \beta^{\prime}\right]$ and linear over the rest of $[0 ; 1]$, consequently

$$
\begin{gathered}
\left.x \circ(2 \tau j+(1-2 \tau) f)\right|_{\left[\alpha^{\prime}, \beta^{\prime}\right]}=\xi(x)=\left.x\right|_{\left[\alpha^{\prime}, \beta^{\prime}\right]}, \\
\left.x \circ(2 \tau j+(1-2 \tau) f)\right|_{\left[0, \alpha^{\prime}\right] \cup\left[\beta^{\prime}, 1\right]}=\left.x \circ(2 \tau j+(1-2 \tau) j)\right|_{\left[0, \alpha^{\prime}\right] \cup\left[\beta^{\prime}, 1\right]}=\left.x\right|_{\left[0, \alpha^{\prime}\right] \cup\left[\beta^{\prime}, 1\right]}
\end{gathered}
$$

for $\tau \in[0,1 / 2]$, and

$$
\begin{gathered}
{\left[(2-2 \tau) x \circ f+(2 \tau-1) \Psi\left(x\left(t_{0}\right)\right]_{\left[a^{\prime}, \beta^{\prime}\right]}=(2-2 \tau) x\left(t_{0}\right)+(2 \tau-1) x\left(t_{0}\right)=\left.x\right|_{\left[\alpha^{\prime}, \beta^{\prime}\right]},\right.} \\
{\left[(2-2 \tau) x \circ f+(2 \tau-1) \Psi\left(x\left(t_{0}\right)\right]_{\left[0, \alpha^{\prime}\right] \cup\left[\beta^{\prime}, 1\right]}=\left.[(2-2 \tau) x+(2 \tau-1) x]\right|_{\left[0, a^{\prime}\right] \cup\left[\beta^{\prime}, 1\right]}=\right.} \\
=\left.x\right|_{\left[0, \alpha^{\prime}\right] \cup\left[\beta^{\prime}, 1\right]}
\end{gathered}
$$

for $\tau \in[1 / 2,1]$.
The function $x \mapsto F(0, x)$ is the identity over $M(D(k, r, \alpha, \beta, \delta))$. The function $x \mapsto F(1, x)$ is a retract of $M(D(k, r, \alpha, \beta, \delta))$ onto $M\left(k, r, \alpha^{\prime}, \beta^{\prime}, \delta\right)$. The proof of Theorem follows immediately from Lemmas 1-3.

If $n=2$ and the region D is $I_{3} \backslash\{(t, 1 / 2,1 / 2) \mid t \in[0,1]\}$, furthermore $\xi_{0}=\xi_{1}=$ $=(1 / 2,1 / 3)$, then the homotopy type of $M(D)$ is the one point union $\bigvee_{i=-\infty}^{\infty} S^{0}$ of infinitely many 0 -dimensional spheres. There are as many spheres as there are different ways to wind the graphs of the functions around the omitted segment.

References

[1] M. Morse, The calculus of variations in the large, Amer. Math. Soc. Colloquium Publ., vol. 18, Amer. Math. Soc. (New York, 1934).
[2] Sze-tsen Hu, Homotopy Theory, Pure and Applied Mathematics, vol. 8, Academic Press (New York-London, 1959).
[3] J. Milner, Morse Theory, Princeton University Press (Princeton, R. I., 1963).
[4] R. S. Palais, Morse theory on Hilbert manifolds, Topology, 2 (1963), 299-340.
[5] J. T. Schwartz, Nonlinear functional analysis, Gordon and Breach (New York-LondonParis, 1969).
[6] А. Кота, О многообразии управляемых процессов в задаче Лагранжа, Дифференциальные уравнения, in print.

DEPARTMENT OF ANALYSIS II
EOTVOS LORÁND UNIVERSITY
MUZEUM KRT. 6-8
1088 BUDAPEST, HUNGARY

