On the homotopy type of some spaces occurring in the calculus of variations

A. KÓSA

Dedicated to Professor B. Sz.-Nagy on the occasion of his 70th birthday

1. Let $n \in \mathbb{N}$ and let $D \subset \mathbb{R} \times \mathbb{R}^n$ be an open region. Suppose $\xi_0, \xi_1 \in \mathbb{R}^n$ are given such that $(0, \xi_0), (1, \xi_1) \in D$. Denote by M(D) the class of continuous functions $x: [0, 1] \to \mathbb{R}^n$ such that

(1)
$$x(0) = \xi_0, x(1) = \xi_1, \text{ and } \Gamma(x) := \{(t, x(t)) | t \in [0, 1]\} \subset D.$$

The space of \mathbb{R}^n -valued continuous functions over [0, 1] will be denoted by $C_n[0, 1]$. Thus M(D) is a subspace of $C_n[0, 1]$. Endow M(D) with the relative topology of $C_n[0, 1]$.

The global methods of the calculus of variations (see [1], [3], [5] and [6]) lead us to the following problem: how can the homotopy type of M(D) be described from that of D? In this paper we establish a connection between the homotopy types of the spaces D and M(D) for a rather wide class of regions D. We shall define a class of admissible regions and for this class we shall prove the following theorem.

Theorem. Suppose $D \subset \mathbb{R} \times \mathbb{R}^n$ is an admissible region and its homotopy type is the one point union $S^{r_1} \vee S^{r_2} \vee \ldots \vee S^{r_k}$ of the spheres S^{r_i} of dimension $r_i \ge 1$ $(i=1, 2, \ldots, k)$. Then the homotopy type of M(D) is the one point union $S^{r_1-1} \vee S^{r_2-1} \vee \ldots \vee S^{r_k-1}$ of the spheres S^{r_i-1} $(i=1, 2, \ldots, k)$.

2. In this section the necessary definitions and constructions will be given.

Definition 1. The regions $D_1, D_2 \subset \mathbb{R}^{n+1}$ satisfying (1) will be called *t*-invariantly homeomorphic, if there exists a uniformly continuous homeomorphism $\varphi: D_1 \rightarrow D_2$ such that

a)
$$\varphi(0, \xi_0) = (0, \xi_0), \ \varphi(1, \xi_1) = (1, \xi_1),$$

Receidev October 19, 1982.

274

A. Kósa

b) the diagram

$$\varphi: D_1 \to D_2$$

$$pr_1 \qquad pr_1$$

$$\mathbf{R}$$

is commutative where $pr_1: \mathbb{R}^1 \times \mathbb{R}^n \to \mathbb{R}^1$ is the projection of the space $\mathbb{R}^1 \times \mathbb{R}^n$ onto the first factor.

Denote by $I_n \subset \mathbb{R}^n$ the *n*-dimensional open unit interval $\underset{i=1}{\times} [0, 1[$. Let k, i $(i \leq k)$ and $r \ (r \leq n)$ be positive integers and $\delta \in [0, 1/2[$ a real number. For the ordered quadruple (k, i, r, δ) define the set $Q(k, i, r, \delta)$ as the product

$$\left(\bigotimes_{j=1}^{n-r} \left[0, 1 \right] \right) \times \left(\bigotimes_{j=n-r+1}^{n-1} \left[\frac{1}{2} - \delta, \frac{1}{2} + \delta \right] \right) \times \left[\frac{2i - 1 - \delta}{2k}, \frac{2i - 1 + \delta}{2k} \right].$$

Now, suppose that the positive integers n, k are given. Let $r = (r_1, r_2, ..., r_k) \in \mathbb{N}^k$ $(r_i \leq n \text{ for } i = 1, 2, ..., k), \alpha, \beta, \delta \in I_k$. Suppose that $\alpha_i < \beta_i$ for all i = 1, 2, ..., kand $2\delta \in I_k$. The set $D(k, r, \alpha, \beta, \delta) \subset \mathbb{R} \times \mathbb{R}^n$ will be given in the following manner: $D(k, r, \alpha, \beta, \delta) := \{(t, x) \in \mathbb{R} \times \mathbb{R}^n | t \in [0, 1], x \in I_n, \text{ and if } t \in [\alpha_i, \beta_i] \text{ then} \}$

 $x \notin Q(k, i, r_i, \delta_i)$

Definition 2. A region $D \subset \mathbb{R}^{n+1}$ is said to be admissible if there exist $k \in \mathbb{N}$, $r \in \mathbb{N}^k$ $(r_i \leq n, i = 1, 2, ..., k)$, $\alpha, \beta, \delta \in I_k$ $(\alpha_i < \beta_i, i = 1, 2, ..., k, 2\delta \in I_n)$, such that the intersection $\bigcap_{i=1}^{k} |\alpha_i, \beta_i|$ is nonempty, and D and $D(k, r, \alpha, \beta, \delta)$ are *t*-invariantly homeomorphic regions.

Remark. It can be easily seen that the homotopy type of the regions $D(k, r, \alpha, \beta, \delta)$ (and thus that of D) is the one point union $S^{r_1} \lor S^{r_2} \lor \ldots \lor S^{r_k}$.

Now, choose real numbers α_0 , β_0 , α' , β' , t_0 such that $0 < \alpha' < \alpha_0 < t_0 < \beta_0 < \beta' < 1$. Define the function $f: [0, 1] \rightarrow [0, 1]$ in the following way:

$$f(t) := \begin{cases} t, & t \in [0, \alpha'] \cup [\beta', 1], \\ \alpha' - \frac{t - \alpha'}{\alpha_0 - \alpha'} (t_0 - \alpha'), & t \in [\alpha', \alpha_0], \\ t_0, & t \in [\alpha_0, \beta_0], \\ t_0 + \frac{t - \beta_0}{\beta' - \beta_0} (\beta' - t_0), & t \in [\beta_0, \beta']. \end{cases}$$

The restriction of f to the set $[0, \alpha_0] \cup]\beta_0$, 1[is invertible and the inverse also can be easily given:

$$(f|_{[0,\alpha_0]\cup[\beta_0,1]})^{-1}(t) = \begin{cases} t, & t\in[0,\alpha']\cup[\beta',1], \\ \alpha'+\frac{t-\alpha'}{t_0-\alpha'}(\alpha_0-\alpha'), & t\in[\alpha',t_0], \\ \beta_0+\frac{t-t_0}{\beta'-t_0}(\beta'-\beta_0), & t\in]t_0,\beta']. \end{cases}$$

Let $k \in \mathbb{N}$, $r \in \mathbb{N}^k$ $(r_i \leq n, i = 1, 2, ..., k)$, $\alpha', \beta' \in]0, 1[(\alpha' < \beta'), \delta \in \mathbb{R}^k (2\delta \in I_k)$ be given. Define the subspace $M(k, r, \alpha', \beta', \delta) \subset C_n[0, 1]$ as follows:

$$M(k, r, \alpha', \beta', \delta) := \{x \in C_n[0, 1] \mid x|_{[\alpha', \beta']} \quad \text{const.}, \quad \xi(x) = : x(\alpha'), \\ \xi(x) \in I_n \setminus \bigcap_{i=1}^k Q(k, i, r, \delta), \quad x(t) = \xi_0 + \frac{t}{\alpha'} (\xi(x) - \xi_0) \quad (t \in [0, \alpha']), \\ x(t) = \xi(x) + \frac{t - \beta'}{1 - \beta'} (\xi_1 - \xi(x)) \quad (t \in [\beta', 1]) \}.$$

Finally, denote by j the identity map of [0, 1].

3. We start with a simple observation.

Lemma 1. If the regions $D_1, D_2 \subset \mathbb{R}^{n+1}$ satisfying the condition (1) are t-invariantly homeomorphic, then $M(D_1)$ and $M(D_2)$ are homeomorphic.

Proof. Let $\varphi: D_1 \rightarrow D_2$ be a *t*-invariant homeomorphism (in this case, obviously, the inverse $\varphi^{-1}: D_2 \rightarrow D_1$ is also a *t*-invariant homeomorphism). Define the desired homeomorphism $\Phi: M(D_1) \rightarrow M(D_2)$ as follows:

$$(\Phi(x))(t) := \operatorname{pr}_2 \varphi(t, x(t)) \quad (t \in [0, 1]),$$

where $pr_2: \mathbb{R}^1 \times \mathbb{R}^n \to \mathbb{R}^n$ is the projection of the product space $\mathbb{R}^1 \times \mathbb{R}^n$ onto the second factor. From the *t*-invariance of the homeomorphism φ it follows immediately, that Φ is a homeomorphism. It is also clear that Φ^{-1} has a form similar to that of Φ :

$$(\Phi^{-1}(x))(t) = \operatorname{pr}_2 \varphi^{-1}(t, x(t)) \quad (t \in [0, 1]).$$

From Lemma 1 it follows that it is sufficient to determine the homotopy type of the spaces $M(D(k, r, \alpha, \beta, \delta))$. We now turn to the calculation of the homotopy type of the space $M(k, r, \alpha', \beta', \delta)$. For this purpose we shall prove the following

Lemma 2. The homotopy type of the space $M(k, r, \alpha', \beta', \delta)$ is the one point union $S^{r_1-1} \vee S^{r_2-1} \vee ... \vee S^{r_k-1}$ of the spheres S^{r_1-1} (i=1, 2, ..., k).

Proof. It is obvious that the space $M(k, r, \alpha', \beta', \delta)$ is homeomorphic to the *n*-dimensional region $I_n \setminus \bigcup_{i=1}^n Q(k, i, r, \delta)$. The desired homeomorphism Ψ can be

18*

5 2

given by $(\xi|_{M(k,r,\alpha',\beta',\delta)})^{-1}$, where ξ is the function from the end of the 2nd point. Now, by the definition of the sets $Q(k, i, r, \delta)$ the region $I_n \bigvee_{i=1}^k Q(k, i, r, \delta)$ is homotopically equivalent to the one point union $S^{r_1-1} \lor S^{r_2-1} \lor \ldots \lor S^{r_k-1}$ of the spheres $S^{r_i-1}(i=1, 2, ..., k)$.

Choose numbers $t_0 \in \bigcap_{i=1}^{k}]\alpha_i, \beta_i$ and $\alpha_0, \beta_0, \alpha', \beta' \in]0, 1$ such that the inequalities

$$0 < \alpha' < \alpha_0 < \min_{1 \leq i \leq k} \{\alpha_i\} < \max_{1 \leq i \leq k} \{\beta_i\} < \beta_0 < \beta' < 1$$

are satisfied.

Lemma 3. The space $M(k, r, \alpha', \beta', \delta)$ is a deformation retract of the space $M(D(k, r, \alpha, \beta, \delta))$.

Proof. A homotopy

 $F: [0, 1] \times M(D(k, r, \alpha, \beta, \delta)) \rightarrow M(D(k, r, \alpha, \beta, \delta))$

is defined by

$$F(\tau, x) := \begin{cases} x \circ (2\tau f + (1 - 2\tau)j), & \tau \in [0, 1/2], \\ (2 - 2\tau) x \circ f + (2\tau - 1) \Psi(x(t_0)), & \tau \in [1/2, 1], \end{cases}$$

where ψ is the function from the preceding proof.

The restriction of $x \mapsto F(\tau, x)$ to $M(k, r, \alpha', \beta', \delta)$ is the identity, because the elements of $M(k, r, \alpha', \beta', \delta)$ are constant over $[\alpha', \beta']$ and linear over the rest of [0, 1], consequently

$$\begin{aligned} x \circ (2\tau j + (1 - 2\tau)f)|_{[\alpha',\beta']} &= \xi(x) = x|_{[\alpha',\beta']}, \\ x \circ (2\tau j + (1 - 2\tau)f)|_{[0,\alpha'] \cup [\beta',1]} = x \circ (2\tau j + (1 - 2\tau)j)|_{[0,\alpha'] \cup [\beta',1]} = x|_{[0,\alpha'] \cup [\beta',1]} \end{aligned}$$

for $\tau \in [0, 1/2]$, and

$$[(2-2\tau)x \circ f + (2\tau-1)\Psi(x(t_0)]_{[\alpha',\beta']} = (2-2\tau)x(t_0) + (2\tau-1)x(t_0) = x|_{[\alpha',\beta']},$$

$$[(2-2\tau)x \circ f + (2\tau-1)\Psi(x(t_0)]_{[0,\alpha']\cup[\beta',1]} = [(2-2\tau)x + (2\tau-1)x]|_{[0,\alpha']\cup[\beta',1]} = x|_{[0,\alpha']\cup[\beta',1]},$$

for $\tau \in [1/2, 1]$.

The function $x \mapsto F(0, x)$ is the identity over $M(D(k, r, \alpha, \beta, \delta))$. The function $x \mapsto F(1, x)$ is a retract of $M(D(k, r, \alpha, \beta, \delta))$ onto $M(k, r, \alpha', \beta', \delta)$. The proof of Theorem follows immediately from Lemmas 1—3.

If n=2 and the region D is $I_3 \setminus \{(t, 1/2, 1/2) | t \in [0, 1]\}$, furthermore $\xi_0 = \xi_1 = (1/2, 1/3)$, then the homotopy type of M(D) is the one point union $\bigvee_{i=-\infty}^{\infty} S^0$ of infinitely many 0-dimensional spheres. There are as many spheres as there are different ways to wind the graphs of the functions around the omitted segment.

276

References

- M. MORSE, The calculus of variations in the large, Amer. Math. Soc. Colloquium Publ., vol. 18, Amer. Math. Soc. (New York, 1934).
- [2] SZE-TSEN HU, Homotopy Theory, Pure and Applied Mathematics, vol. 8, Academic Press (New York-London, 1959).
- [3] J. MILNER, Morse Theory, Princeton University Press (Princeton, R. I., 1963).
- [4] R. S. PALAIS, Morse theory on Hilbert manifolds, Topology, 2 (1963), 299-340.
- [5] J. T. SCHWARTZ, Nonlinear functional analysis, Gordon and Breach (New York-London-Paris, 1969).
- [6] А. Коша, О многообразии управляемых процессов в задаче Лагранжа, Дифференциальные уравнения, in print.

DEPARTMENT OF ANALYSIS II EÖTVÖS LORÁND UNIVERSITY MÚZEUM KRT. 6—8 1088 BUDAPEST, HUNGARY