On the strong and extra strong approximation of orthogonal series

L. LEINDLER and H. SCHWINN
In honour of Professor Béla Szókefalvi-Nagy on his seventieth birthday

1. Let $\left\{\varphi_{n}(x)\right\}$ be an orthonormal system on the finite interval (a, b). We consider the orthogonal series

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} \varphi_{n}(x) \text { with } \sum_{n=1}^{\infty} c_{n}^{2}<\infty \tag{1}
\end{equation*}
$$

By the Riesz-Fischer theorem the series (1) converges in L^{2} to a square-integrable function f. Let us denote the partial sums of (1) by $s_{n}(x)$.

In [1] the first author proved that if $0<\gamma<1$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}^{2} n^{2 \gamma}<\infty \tag{2}
\end{equation*}
$$

then

$$
\frac{1}{n} \sum_{k=1}^{n}\left(s_{k}(x)-f(x)\right)=o_{x}\left(n^{-\gamma}\right)
$$

almost everywhere (a.e.) in (a, b).
G. Sunouchi [8] generalized this results to strong approximation, and his result was generalized by one of us ([2]) to very strong approximation as follows:

Theorem A. Suppose that $\alpha>0,0<\gamma<1,0<p<\gamma^{-1}$, and that (2) is satisfied. Then

$$
\begin{equation*}
\dot{C}_{n}\left(f, \alpha, p,\left\{m_{k}\right\} ; x\right):=\left\{\frac{1}{A_{n}^{\alpha}} \sum_{k=0}^{n} A_{n-k}^{\alpha-1}\left|s_{m_{k}}(x)-f(x)\right|^{p^{2}}\right\}^{1 / p}=o_{x}\left(n^{-\gamma}\right) \tag{3}
\end{equation*}
$$

holds a.e. for any increasing sequence $\left\{m_{k}\right\}$, where $A_{n}^{\alpha}=\binom{n+\alpha}{n}$.
This theorem with $m_{k}=k$ reduces to that of Sunouchi.

Recently the first author [3] showed that in the special case $\alpha=1$ the restriction $\gamma<1$ can be omitted, i.e. if $\gamma>0$ and $0<p<\gamma^{-1}$, then (2) implies that

$$
\begin{equation*}
\left\{\frac{1}{n+1} \sum_{k=0}^{n}\left|s_{m_{k}}(x)-f(x)\right|^{p}\right\}^{1 / p}=o_{x}\left(n^{-\gamma}\right) \tag{4}
\end{equation*}
$$

holds a.e. in (a, b) for any increasing sequence $\left\{m_{k}\right\}$.
In the present work, among others, we prove that the restriction $\gamma<1$ from the assumptions of Theorem A can be omitted for any $\alpha>0$ and not only for $\alpha=1$ alone.

Namely we have
Theorem 1. If α and γ are positive numbers and $0<p \gamma<1$ then condition (2) implies that (3) holds a.e. in (a, b) for any increasing sequence $\left\{m_{k}\right\}$.

We mention that Theorem 3 of [6] made a moderate step towards this result, namely it states that (3) holds for any positive γ if $\alpha>p \gamma$.

Two further generalizations of (4) were given in the papers [4] and [5], from them we can unify the following

Theorem B. Suppose that $\gamma>0,0<p \gamma<\beta$, and that (2) holds. Moreover if
(i) $\beta \leqq 2$ or $\beta>2$ but at least either $\gamma<1$ or $p \leqq 2$;
(ii) $p \geqq 2$ and $\sum_{n=1}^{\infty} c_{n}^{2} n^{2 \gamma+1-2 / p}<\infty$;
then

$$
\begin{equation*}
h_{n}\left(f, \beta, p,\left\{m_{k}\right\} ; x\right):=\left\{(n+1)^{-\beta} \sum_{k=0}^{n}(k+1)^{\beta-1}\left|s_{m_{k}}(x)-f(x)\right|^{p}\right\}^{1 / p}=o_{x}\left(n^{-\gamma}\right) \tag{5}
\end{equation*}
$$

holds a.e. in (a, b) for any increasing sequence. $\left\{m_{k}\right\}$.
To help the lucidity of fulfilment of the assumptions we define certain ranges of the positive parameters p and γ. Let us denote by $A(\beta)$ the range of the positive parameters p and γ determined by the condition $p \gamma<\beta$, i.e.

$$
A(\beta):=\{p, \gamma \mid p>0, \quad \gamma>0 \quad \text { and } \quad p \gamma<\beta\}
$$

moreover let

$$
B(\beta):=\{p, \gamma \mid p>2, \quad \gamma \geqq 1 \quad \text { and } \quad p \gamma<\beta\} .
$$

Theorem B shows that if $(p, \gamma) \in A(\beta) \backslash B(\beta)$ then (2) implies (5), but if $(p, \gamma) \in$ $\epsilon B(\beta)$ then we can only prove (5) under an additional condition.

This phenomenon is curious, and we have had the conjecture (see [4]) that condition (2) implies (5) for any $(p, \gamma) \in A(\beta)$. Now we shall verify this conjecture, namely we prove

Theorem 2. If $\gamma>0$ and $0<p<\beta$ then condition (2) implies (5) a.e. in ($a ; b$) for any increasing sequence $\left\{m_{k}\right\}$. .

In connection with the extra strong approximation we shall improve the following theorems given in [3] and [6].

Theorem C. Suppose that $\gamma>0,0<p<\gamma^{-1}$ and $p \leqq 2$, that $\alpha>p \max (1 / 2, \gamma)$; or if $p=2$ then $\alpha \geqq 1$; moreover that (2) holds. Then

$$
\begin{equation*}
C_{n}\left(f, \alpha, p,\left\{\mu_{k}\right\} ; x\right):=\left\{\frac{1}{A_{n}^{\alpha}} \sum_{k=0}^{n} A_{n-k}^{\alpha-1}\left|s_{\mu_{k}}(x)-f(x)\right|^{p}\right\}^{1 / p}=o_{x}\left(n^{-\gamma}\right) \tag{6}
\end{equation*}
$$

holds a.e. in (a, b) for any (not necessarily monotone) sequence $\left\{\mu_{k}\right\}$ of distinct positive integers.

Theorem D. Suppose that $\gamma>0, p \geqq 2$, and that $p \gamma<\min (\alpha, 1)$. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}^{2} n^{2 \gamma+1-(2 / p) \min (\alpha, 1)}<\infty \tag{7}
\end{equation*}
$$

implies (6) a.e. in (a, b) for any sequence $\left\{\mu_{k}\right\}$ of distinct positive integers.
The next two theorems are certain analogues of Theorems C and D with the means $h_{n}\left(f, \beta, p,\left\{\mu_{k}\right\} ; x\right)$.

Theorem \mathbf{C}^{\prime}. Suppose that $\gamma>0,0<p \leqq 2$ and $p \gamma<\min (\beta, 1)$, moreover that (2) holds. Then

$$
\begin{equation*}
h_{n}\left(f, \beta, p,\left\{\mu_{k}\right\} ; x\right)=\dot{o}_{x}\left(n^{-\gamma}\right) \tag{8}
\end{equation*}
$$

holds a.e. in (a, b) for any sequence $\left\{\mu_{k}\right\}$ of distinct positive integers.
We mention that this theorem is a collected form of Theorem 1 and Proposition A of [6].

Theorem D^{\prime}. Suppose that $\gamma>0, p \geqq 2$, and that $p \gamma<\min (\beta, 1)$. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}^{2} n^{2 \gamma+1-2 / p}<\infty \tag{9}
\end{equation*}
$$

implies (8) a.e. in (a, b) for any sequence $\left\{\mu_{k}\right\}$ of distinct positive integers.
Our two new theorems including these results read as follows:
Theorem 3. If $\gamma>0$ and $0<p \gamma<\min (\alpha, 1)$ then (2) implies (6) a.e. in (a,b) for any sequence. $\left\{\mu_{k}\right\}$ of distinct positive integers.

1. Theorem 4. If $\gamma>0$ and $0<p \gamma<\min (\beta, 1)$ then (2) implies (8) a.e. in (a,b) for any sequence $\left\{\mu_{k}\right\}$ of distinct positive integers.
2. In order to prove the theorems we require some lemmas.

Lemma 1 ([2], Lemma 5). Let $\left\{\lambda_{n}\right\}$ be a monotone sequence of positive numbers such that

$$
\left.\sum_{n=1}^{m} \lambda_{2^{n}}^{2} \leqq K \lambda_{2^{m}}^{2} .^{*}\right)
$$

Then the condition

$$
\sum_{n=1}^{\infty} c_{n}^{2} \lambda_{n}^{2}<\infty
$$

implies that

$$
s_{2^{n}}(x)-f(x)=o_{x}\left(\lambda_{2^{n}}^{-1}\right)
$$

holds a.e. in (a,b).
Lemma 2 ([7], Lemma 2). If $\sum_{n=0}^{\infty} c_{n}^{2}<\infty$ then for any positive α and p

$$
\int_{a}^{b}\left\{\sup _{1 \leqq n<\infty}\left(\frac{1}{A_{n}^{\alpha}} \sum_{k=0}^{n} A_{n-k}^{\alpha-1}\left|s_{k}(x)-\sigma_{k}(x)\right|^{p}\right)^{1 / p}\right\}^{2} d x \leqq A(\alpha, p) \sum_{n=0}^{\infty} c_{n}^{2}
$$

where $\sigma_{k}(x):=(k+1)^{-1} \sum_{i=0}^{k} s_{i}(x)$.
Lemma 3 ([5], Lemma 3). Let $x>0$ and $\left\{\lambda_{n}\right\}$ be an arbitrary sequence of positive numbers. Assuming that the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}\left\{\sum_{k=n}^{\infty} c_{k}^{2}\right\}^{x}<\infty \tag{2.1}
\end{equation*}
$$

implies a "certain property $T=T\left(\left\{s_{n}(x)\right\}\right)$ " of the partial sums $s_{n}(x)$ of (1) for any orthonormal system, then (2.1) implies that the partial sums $s_{m_{k}}(x)$ of (1) also have the same property T for any increasing sequence $\left\{m_{k}\right\}$, i.e.
if $(2.1) \Rightarrow T\left(\left\{s_{n}(x)\right\}\right)$ then $(2.1) \Rightarrow T\left(\left\{s_{m_{k}}(x)\right\}\right)$ for any increasing sequence $\left\{m_{k}\right\}$.
Lemma 4. We have for any positive p and $m \geqq 1$

$$
\begin{equation*}
\int_{a}^{b}\left\{\frac{1}{2^{m}} \sum_{k=2^{m}}^{2^{m+1}-1}\left|s_{k}(x)-s_{2^{m}}(x)-\sigma_{k}^{*}(x)\right|^{p}\right\}^{2 / p} d x \leqq K(p) \sum_{n=2^{m}+1}^{2^{m+1}} c_{n}^{2} \tag{2.2}
\end{equation*}
$$

$\left.{ }^{*}\right) K, K_{1}, K_{2}, \ldots$ denote positive constants not necessarily the same at each occurrence.
where

$$
\sigma_{n}^{*}(x)= \begin{cases}c_{0} \varphi_{0}(x) & \text { if } n=0 \\ \frac{1}{n-2^{m-1}} \sum_{k=2^{m}}^{n}\left(s_{k}(x)-s_{2^{m}}(x)\right) & \text { if } 2^{m} \leqq n<2^{m+1} ; m=0,1, \ldots\end{cases}
$$

Proof. Using Lemma 2 with $\alpha=1$ for the following partial sums and ($C, 1$)means

$$
s_{n}^{\prime}(x):=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leqq n \leqq 2^{m-1} \tag{2.3}\\
s_{n+2^{m-1}}(x)-s_{2^{m}}(x) & \text { if } & 2^{m-1}<n<2^{m+1}-2^{m-1}
\end{array}\right.
$$

and

$$
\sigma_{n}^{\prime}(x):=\frac{1}{n} \sum_{k=1}^{n} s_{k}^{\prime}(x)=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leqq n \leqq 2^{m-1} \tag{2.4}\\
\sigma_{n+2^{m-1}}^{*}(x) & \text { if } & 2^{m-1}<n<2^{m+1}-2^{m-1}
\end{array}\right.
$$

where m is an arbitrary fixed natural number, we obtain (2.2) immediately, which completes the proof.

Lemma 5. Let $\gamma>0$, and $p \geqq 2$. Then under condition (2) we have that the sum

$$
\tau_{1}(x):=\sum_{m=1}^{\infty} \sum_{k=2^{m}}^{2^{m+1}-1}(k+1)^{p y-1}\left|s_{k}(x)-s_{2^{m}}(x)-\sigma_{k}^{*}(x)\right|^{p}
$$

is finite a.e. in (a, b).
Proof. By $p \geqq 2$ and Lemma 4 we have that

$$
\begin{aligned}
\int_{a}^{b}\left(\tau_{1}(x)\right)^{2 / p} d x & \leqq K_{1} \int_{a}^{b} \sum_{m=0}^{\infty} 2^{m 2 \gamma}\left\{2^{-m} \sum_{k=2^{m}}^{2^{m+1}-1}\left|s_{k}(x)-s_{2^{m}}(x)-\sigma_{k}^{*}(x)\right|^{p}\right\}^{2 / p} d x \leqq \\
& \leqq K_{2} \sum_{m=0}^{\infty} 2^{2 m \gamma} \sum_{k=2^{m}+1}^{2^{m+1}} c_{k}^{2} \leqq K_{2} \sum_{n=1}^{\infty} c_{n}^{2} n^{2 \gamma}<\infty
\end{aligned}
$$

whence by B. Levi's theorem the statement of Lemma 5 follows.
Lemma 6. Let $\gamma>0$ and $p \geqq 2$. Then condition (2) implies that

$$
\tau_{2}(x):=\sum_{k=1}^{\infty} k^{p y-1}\left|\sigma_{k}^{*}(x)\right|^{p}<\infty
$$

a.e. in (a, b).

Proof. An elementary consideration shows that

$$
\begin{gather*}
\int_{a}^{b}\left(\tau_{2}(x)\right)^{2 / p} d x \leqq K \int_{a}^{b} \sum_{m=0}^{\infty} 2^{2 m \gamma}\left\{2^{-m} \sum_{k=2^{m}}^{2^{m+1}-1}\left|\sigma_{k}^{*}(x)\right|^{p^{2 / p}}\right\}^{2 / p} d x \leqq \tag{2.5}\\
\leqq K \int_{a}^{b} \sum_{m=0}^{\infty} 2^{2 m \gamma}\left\{\max _{2^{m} \leqq k<2^{m+1}}\left|\sigma_{k}^{*}(x)\right|^{2}\right\} d x .
\end{gather*}
$$

If $2^{m}<k<2^{m+1}$ then

$$
\sigma_{k}^{*}(x)=\frac{1}{k-2^{m-1}} \sum_{i=2^{m}+1}^{k}(k+1-i) c_{i} \varphi_{i}(x)=\sum_{i=2^{m}+1}^{k}\left(1-\frac{i-2^{m-1}-1}{k-2^{m-1}}\right) c_{i} \varphi_{i}(x)
$$

and $\sigma_{2^{m}}^{*}(x)=0$, so using the following simple estimation

$$
\begin{gathered}
\max _{2^{m} \leqq k<2^{m+1}}\left|\sigma_{k}^{*}(x)\right|^{2}=\max _{2^{m} \leqq k<2^{m+1}}\left|\sigma_{k}^{*}(x)-\sigma_{2^{m}}^{*}(x)\right|^{2} \leqq \\
\leqq\left(\sum_{k=2^{m}+1}^{2^{m+1}-1}\left|\sigma_{k}^{*}(x)-\sigma_{k-1}^{*}(x)\right|\right)^{2} \leqq 2^{m} \sum_{k=2^{m}+1}^{2^{m+1}-1}\left|\sigma_{k}^{*}(x)-\sigma_{k-1}^{*}(x)\right|^{2}
\end{gathered}
$$

we obtain that

$$
\begin{align*}
\int_{a}^{b}\left\{2_{2^{m} \equiv k<2^{m+1}}\left|\sigma_{k}^{*}(x)\right|^{2}\right\} d x & \leqq \frac{\mid 2^{m}}{2^{4(m-1)}} \sum_{k=2^{m}+1}^{2^{m+1}-1} \sum_{i=2^{m}+1}^{k}\left(i-2^{m-1}-1\right)^{2} c_{i}^{2} \leqq \tag{2.6}\\
& \leqq 2^{6} \sum_{i=2^{m}+1}^{2^{m+1}-1} c_{i}^{2}
\end{align*}
$$

Hence, by (2.5), we get that

$$
\int_{a}^{b}\left(\tau_{2}(x)\right)^{2 / p} d x \leqq K_{1} \sum_{m=0}^{\infty} 2^{2 m y} \sum_{n=2^{m}+1}^{2^{m+1}} c_{n}^{2} \leqq K_{1} \sum_{n=1}^{\infty} c_{n}^{2} n^{2 \gamma}<\infty,
$$

and this proves Lemma 6.
Lemma 7. Condition (2) with any positive γ implies that

$$
\begin{equation*}
\sigma_{n}^{*}(x)=o_{x}\left(n^{-y}\right) \tag{2.7}
\end{equation*}
$$

holds a.e. in (a, b).
Proof. Using estimation (2.6) we immediately obtain that

$$
\int_{a}^{b} \sum_{m=0}^{\infty}\left(2^{m \gamma} \max _{2^{m}<n<2^{m+1}}\left|\sigma_{n}^{*}(x)\right|\right)^{2} d x \leqq K_{2} \sum_{n=1}^{\infty} c_{n}^{2} n^{2 \gamma}<\infty,
$$

whence (2.7) follows, which ends the proof.
Lemma 8. Let $\gamma>0, p \geqq 2$ and $p \gamma<1$. For a given sequence $\left\{\mu_{k}\right\}$ of distinct positive integers we define another sequence $\left\{m_{k}\right\}$ as follows: $m_{k}=2^{m}$ if $2^{m} \leqq \mu_{k}<2^{m+1}$. Then (2) implies that the sum

$$
\mu_{1}(x):=\sum_{k=0}^{\infty}(k+1)^{p y-1}\left|s_{\mu_{k}}(x)-s_{m_{k}}(x)-\sigma_{\mu_{k}}^{*}(x)\right|^{p}
$$

is finite a.e. in (a, b).

Proof. Choosing q such that $1<q<(1-p \gamma)^{-1}$ and applying Hölder's inequality with this q and $q^{\prime}=q /(q-1)$ we obtain that

$$
\begin{gathered}
\mu_{1}(x)=\sum_{m=0}^{\infty} \sum_{2^{m} \leqq \mu_{k}<2^{m+1}}(k+1)^{p y-1}\left|s_{\mu_{k}}(x)-s_{m_{k}}(x)-\sigma_{\mu_{k}}^{*}(x)\right|^{p} \leqq \\
\leqq \sum_{m=0}^{\infty}\left\{\sum_{2^{m} \leqq \mu_{k}<2^{m+1}}(k+1)^{(p y-1) q}\right\}^{1 / q}\left\{\sum_{2^{m} \leqq \mu_{k}<2^{m+1}}\left|s_{\mu_{k}}(x)-s_{m_{k}}(x)-\sigma_{\mu_{k}}^{*}(x)\right|^{p q^{\prime}}\right\}^{1 / q^{\prime}} \leqq \\
\leqq K \sum_{m=0}^{\infty}\left\{\sum_{k=1}^{2^{m}} k^{(p y-1) q}\right\}^{1 / q}\left\{\sum_{i=2^{m}}^{2^{m+1}-1}\left|s_{i}(x)-s_{2^{m}}(x)-\sigma_{i}^{*}(x)\right|^{p q^{\prime}}\right\}^{1 / q^{\prime}} \leqq \\
\leqq K_{1} \sum_{m=0}^{\infty} 2^{m\left(p y-1 / q^{\prime}\right)}\left\{\sum_{i=2^{m}}^{2^{m+1-1}}\left|s_{i}(x)-s_{2^{m}}(x)-\sigma_{i}^{*}(x)\right|^{p q^{\prime}}\right\}^{1 / q^{\prime}}
\end{gathered}
$$

Hence, by Lemma 4 and $p \geqq 2$, we get that

$$
\int_{a}^{b}\left(\mu_{1}(x)\right)^{2 / p} d x \leqq K_{2} \sum_{m=0}^{\infty} 2^{m 2 \gamma} \sum_{n=2^{m}+1}^{2^{m+1}} c_{n}^{2}<\infty,
$$

which proves Lemma 8.
Lemma 9. Let $\gamma>0, p \geqq 2$ and $p \gamma<1$. Then, for any given sequence $\left\{\mu_{k}\right\}$ of distinct positive integers, the sum

$$
\mu_{2}(x):=\sum_{k=0}^{\infty}(k+1)^{p \gamma+1}\left|\sigma_{\mu_{k}}^{*}(x)\right|^{p}
$$

is finite a.e. in (a, b) if (2) holds.
Proof. In a similar way as in the proof of Lemma 8 we obtain with Hölder's inequality $\left(1<q<(1-p \gamma)^{-1}\right.$ and $\left.1 / q+1 / q^{\prime}=1\right)$ that

$$
\begin{gathered}
\int_{a}^{b}\left(\mu_{2}(x)\right)^{2 / p} d x \leqq \int_{a}^{b} \sum_{m=0}^{\infty}\left\{\sum_{2^{m} \leqq \mu_{k}<2^{m+1}}(k+1)^{p y-1}\left|\sigma_{\mu_{k}}^{*}(x)\right|^{p}\right\}^{2 / p} d x \leqq \\
\leqq \int_{a}^{b} \sum_{m=0}^{\infty} 2^{m\left(p y-1 / q^{\prime}\right)(2 / p)}\left\{\sum_{i=2^{m}}^{2^{m+1}-1}\left|\sigma_{i}^{*}(x)\right|^{p q^{\prime}}\right\}^{2 / p q^{\prime}} d x \leqq \\
\leqq \sum_{m=0}^{\infty} 2^{2 m y} \int_{a}^{b}\left\{\frac{1}{2^{m}} \sum_{k=2^{m}}^{2^{m+1}-1}\left|\sigma_{k}^{*}(x)\right|^{p q^{\prime}}\right\}^{2 / p q^{\prime}} d x .
\end{gathered}
$$

From this step we can continue the proof as in Lemma 6, and so we obtain the conclusion.
3. Proof of Theorem 1. Putting

$$
C_{n}(x):=C_{n}(f, \alpha, p,\{k\} ; x)
$$

and if $2^{m} \leqq n<2^{m+1}(m \geqq 2)$ holds, then

$$
\begin{gather*}
C_{n}(x) \leqq K\left(\left\{\frac{1}{A_{n}^{\alpha}} \sum_{k=0}^{2^{m-1}} A_{n-k}^{\alpha-1}\left|s_{k}(x)-f(x)\right|^{p}\right\}^{1 / p}+\right. \tag{3.1}\\
\left.+\left\{\frac{1}{A_{n}^{\alpha}} \sum_{k=2^{m-1}+1}^{n} A_{n-k}^{\alpha-1}\left|s_{k}(x)-f(x)\right|^{p}\right\}^{1 / p}\right)=: K\left(C_{n}^{(1)}(x)+C_{n}^{(2)}(x)\right)
\end{gather*}
$$

Here the first term $C_{n}^{(1)}(x)$, by (4); has the order $o_{x}\left(n^{-v}\right)$, namely it is known that for any $\beta>-1,0<K_{1}<\frac{A_{n}^{\beta}}{n^{\beta}}<K_{2}$.

Next we estimate $C_{n}^{(2)}(x)$ as follows:

$$
\begin{equation*}
C_{n}^{(2)}(x) \leqq K\left(\left\{\frac{1}{A_{n}^{\alpha}} \sum_{k=2^{m-1}+1}^{2^{m}-1} A_{n-k}^{\alpha-1}\left|s_{k}(x)-s_{2^{m-1}}(x)-\sigma_{k}^{*}(x)\right|^{p}\right\}^{1 / p}+\right. \tag{3.2}
\end{equation*}
$$

$$
+\left\{\frac{1}{A_{n}^{\alpha}} \sum_{k=2^{m-1}+1}^{2^{m}-1^{\beta}} A_{n-k}^{\alpha-1}\left|s_{2^{m-1}}(x)-f(x)\right|^{p}\right\}^{1 / p}+\left\{\frac{1}{A_{n}^{\alpha}} \sum_{k=2^{m}}^{n} A_{n-k}^{a-1}\left|s_{k}(x)-s_{2^{m}}(x)-\sigma_{k}^{*}(x)\right|^{p}\right\}^{1 / p}+
$$

$$
\left.+\left\{\frac{1}{A_{n}^{\alpha}} \sum_{k=2^{m}}^{n} A_{n-k}^{\alpha-1}\left|S_{2^{m}}(x)-f(x)\right|^{p}\right\}^{1 / p}+\left\{\frac{1}{A_{n}^{\alpha}} \sum_{k=2^{m-1}+1}^{n} A_{n-k}^{\alpha-1}\left|\sigma_{k}^{*}(x)\right|^{p}\right\}^{1 / p}\right)=: K \sum_{i=1}^{5} D_{n}^{(i)}(x)
$$

An easy consideration shows in view of Lemma 1 and Lemma 7 that

$$
\begin{equation*}
D_{n}^{(2)}(x)+D_{n}^{(4)}(x)+D_{n}^{(5)}(x)=o_{x}\left(n^{-\gamma}\right) \tag{3.3}
\end{equation*}
$$

To estimate $D_{n}^{(1)}(x)$ and $D_{n}^{(3)}(x)$ we use again Hölder's inequality with such a q to be chosen so that $q>1$ and $(\alpha-1) q>-1$. Then

$$
\begin{aligned}
D_{n}^{(1)}(x) & \leqq \frac{1}{\left(A_{n}^{\alpha}\right)^{1 / p}}\left\{\sum_{k=2^{m-1}+1}^{2^{m-1}}\left(A_{n-k}^{\alpha-1}\right)^{q}\right\}^{1 / p q}\left\{\left.\sum_{k=2^{m-1}+1}^{2^{m-1}}\left|s_{k}-s_{2^{m-1}}-\sigma_{k}^{*}\right|\right|^{p q^{\prime}}\right\}^{1 / p q^{\prime}} \leqq \\
& \leqq K\left\{\frac{1}{2^{m}} \sum_{k=2^{m-1}}^{2^{m}-1}\left|s_{k}(x)-s_{2^{m-1}}(x)-\sigma_{k}^{*}(x)\right|^{p q^{\prime}}\right\}^{1 / p q^{\prime}}=: D_{m}^{*}(x),
\end{aligned}
$$

whence by Lemma 4 we obtain that

$$
\begin{equation*}
\sum_{m=1}^{\infty} \int_{a}^{b}\left(2^{m \gamma} D_{m}^{*}(x)\right)^{2} d x \leqq K_{1} \sum_{m=1}^{\infty} 2^{2 m y} \sum_{n=2^{m-1}+1}^{2 m} c_{n}^{2}<\infty, \tag{3.4}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
D_{n}^{(1)}(x)=o_{x}\left(n^{-y}\right) \tag{3.5}
\end{equation*}
$$

also holds a.e. in (a, b).

Similarly

$$
\begin{aligned}
D_{n}^{(3)}(x) & \leqq \frac{1}{\left(A_{n}^{\alpha}\right)^{1 / p}}\left\{\sum _ { k = 2 ^ { m } } ^ { n } \left(A_{\left.\left.n-\frac{1}{\alpha}\right)^{q}\right\}^{1 / p q}\left\{\sum_{k=2^{m}}^{n}\left|s_{k}(x)-s_{2^{m}}(x)-\sigma_{k}^{*}(x)\right|^{p q^{\prime}}\right\}^{1 / p q^{\prime}} \leqq} \leqq\right.\right. \\
& \leqq K\left\{\frac{1}{2^{m+1}} \sum_{k=2^{m}}^{2^{m+1}-1}\left|s_{k}(x)-s_{2^{m}}(x)-\sigma_{k}^{*}(x)\right|^{p q^{\prime}}\right\}^{1 / p q^{\prime}}=D_{m+1}^{*}(x)
\end{aligned}
$$

and so

$$
\begin{equation*}
D_{n}^{(3)}(x)=o_{x}\left(n^{-\gamma}\right) \tag{3.6}
\end{equation*}
$$

also holds a.e. in (a, b) by (3.4).
Collecting the estimates given under (3.1), (3.2), (3.3), (3.5) and (3.6) we obtain that

$$
C_{n}(f, \alpha, p,\{k\} ; x)=o_{x}\left(n^{-\gamma}\right)
$$

a.e. in (a, b). Hence, using Lemma 3 with $x=1, \lambda_{n}=n^{2 y-1}$ and $T\left(\left\{s_{n}(x)\right\}\right):=$ $:=C_{n}(f, \alpha, p,\{k\} ; x)=o\left(n^{-\gamma}\right)$, the statement of Theorem 1 follows obviously.

The proof is complete.
Proof of Theorem 2. Denote

$$
h_{n}(x):=h_{n}(f, \beta, p,\{k\} ; x) .
$$

By Theorem B we can assume that $p>2$, namely otherwise (5) holds. Then with $2^{m} \leqq n<2^{m+1}$

$$
\begin{gather*}
h_{n}(x) \leqq K\left\{n^{-\beta} \sum_{v=0}^{m} \sum_{k=2^{v}}^{2^{v+1}-1} k^{\beta-1}\left|s_{k}(x)-f(x)\right|^{p}\right\}^{1 / p} \leqq \tag{3.7}\\
\leqq K_{1}\left(\left\{n^{-\beta} \sum_{v=0}^{m} \sum_{k=2^{v}}^{2^{v+1}-1} k^{\beta-1}\left|s_{k}(x)-s_{2^{v}}(x)-\sigma_{k}^{*}(x)\right|^{p}\right\}^{1 / p}+\right. \\
\left.+\left\{n^{-\beta} \sum_{v=0}^{m} \sum_{k=2^{v}}^{2^{v+1}-1} k^{\beta-1}\left|s_{2^{v}}(x)-f(x)\right|^{p}\right\}^{1 / p}+\left\{n^{-\beta} \sum_{k=1}^{2^{m+1}} k^{\beta-1}\left|\sigma_{k}^{*}(x)\right|^{p}\right\}^{1 / p}\right)= \\
=: K_{1} \sum_{i=1}^{3} d_{n}^{(i)}(x) .
\end{gather*}
$$

By Lemma 1 and $\beta>p \gamma$ it is easy to show that $d_{n}^{(2)}(x)=o_{x}\left(n^{-\gamma}\right)$, namely

$$
\begin{equation*}
d_{n}^{(2)}(x)=\left\{n^{-\beta} \sum_{v=0}^{m} 2^{\nu \beta} o_{x}\left(2^{-v \gamma p}\right)\right\}^{1 / p}=o_{x}\left(n^{-\gamma}\right) \tag{3.8}
\end{equation*}
$$

But if we observe that Lemma 5 and Lemma 6 imply that, as $m \rightarrow \infty$,

$$
2^{m(p y-1)} \sum_{k=2^{m}}^{2^{m+1}}\left|s_{k}(x)-s_{2^{m}}(x)-\sigma_{k}^{*}(x)\right|^{p}=o_{x}(1)
$$

and

$$
2^{m(p \gamma-1)} \sum_{k=2^{m}}^{2^{m+1}}\left|\sigma_{k}^{*}(x)\right|^{p}=o_{x}(1)
$$

hold a.e. in (a, b), then by the use of these estimates we can easily verify that

$$
d_{n}^{(1)}(x)+d_{n}^{(3)}(x)=o_{x}\left(n^{-\gamma}\right)
$$

also holds a.e. in (a, b).
Indeed; by $\beta>p \gamma$, we have that

$$
d_{n}^{(1)}(x)=\left\{n^{-\beta} \sum_{v=0}^{m} 2^{v(\beta-1)} o_{x}\left(2^{v(1-p y)}\right)\right\}^{1 / p}=o_{x}\left(n^{-\gamma}\right)
$$

and similarly

$$
d_{n}^{(3)}(x) \leqq\left\{n^{-\beta} \sum_{v=0}^{m} \sum_{k=2^{v}}^{2^{v+1}} k^{\beta-1}\left|\sigma_{k}^{*}(x)\right|^{p}\right\}^{1 / p}=o_{x}\left(n^{-\gamma}\right)
$$

Summing up our partial estimations we get that

$$
h_{n}(f, \alpha, p,\{k\} ; x)=o_{x}\left(n^{-\gamma}\right),
$$

whence Lemma 3, as in the proof of Theorem 1, conveys the assertion of Theorem 2.
Proof of Theorem 3. At first we prove the special case $\alpha=1$. Then, for $0<p \leqq 2$, Theorem C gives (6), so we assume that $p>2$. Next $\left\{m_{k}\right\}$ denotes the sequence defined in Lemma 8. Using this notation we have

$$
\begin{gathered}
\left\{\frac{1}{n+1} \sum_{k=0}^{n}\left|s_{\mu_{k}}(x)-f(x)\right|^{p}\right\}^{1 / p} \leqq K\left(\left\{\frac{1}{n+1} \sum_{k=0}^{n}\left|s_{\mu_{k}}(x)-s_{m_{k}}(x)-\sigma_{\mu_{k}}^{*}(x)\right|^{p}\right\}^{1 / p}+\right. \\
\left.+\left\{\frac{1}{n+1} \sum_{k=0}^{n}\left|\sigma_{\mu_{k}}^{*}(x)\right|^{p}\right\}^{1 / p}+\left\{\frac{1}{n+1} \sum_{k=0}^{n}\left|s_{m_{k}}(x)-f(x)\right|^{p}\right\}^{1 / p}\right\}= \\
=: K\left(\mu_{n}^{(1)}(x)+\mu_{n}^{(2)}(x)+\mu_{n}^{(3)}(x)\right)
\end{gathered}
$$

Lemma 8 and Lemma 9 prove that

$$
\mu_{n}^{(1)}(x)=o_{x}\left(n^{-\gamma}\right) \quad \text { and } \quad \mu_{n}^{(2)}(x)=o_{x}\left(n^{-\gamma}\right)
$$

a.e. in (a, b).

To prove the same estimation for $\mu_{n}^{(3)}(x)$ we define a new sequence $\left\{N_{n}(m)\right\}$. Let $N_{n}(m)$ denote the number of μ_{k} lying in the interval $\left[2^{m} ; 2^{m+1}\right.$) and $k \leqq n+1$. It is obvious that

$$
N_{n}(m) \leqq \min \left(n+1,2^{m}\right) \quad \text { and } \quad \sum_{m=0}^{\infty} N_{n}(m)=n+1
$$

If $2^{1-1} \leqq n<2^{l}$, then we obtain with the aid of Lemma 1 and $p \gamma<1$ that

$$
\begin{gathered}
\left(\mu_{n}^{(3)}(x)\right)^{p}=\frac{1}{n+1} \sum_{k=0}^{n} o_{x}\left(m_{k}^{-\gamma p}\right)=\frac{1}{n+1} \sum_{m=0}^{\infty} N_{n}(m) o_{x}\left(2^{-m p \gamma}\right)= \\
=\frac{1}{n+1}\left\{\sum_{m=0}^{l-1} 2^{m} o_{x}\left(2^{-m p \gamma}\right)+\sum_{m=l}^{\infty}(n+1) o_{x}\left(2^{-m p \gamma}\right)\right\}=o_{x}\left(2^{-l p y}\right)=o_{x}\left(n^{-p y}\right),
\end{gathered}
$$

which proves
and thus by (3.9)

$$
\mu_{n}^{(3)}(x)=o_{x}\left(n^{-\gamma}\right),
$$

holds a.e. in (a, b).
If $\alpha>1$ then (6) is an immediate consequence of (3.10) because of the relation $A_{n-k}^{\alpha-1} / A_{n}^{\alpha}=O\left(\frac{1}{n}\right)(0 \leqq k \leqq n)$.

If $0<\alpha<1$ we can choose q such that $p \gamma<\frac{1}{q}<\alpha$. Then with $q^{\prime}=\frac{q}{q-1}$ the inequality $(\alpha-1) q^{\prime}>-1$ is fulfilled.

Now using Hölder's inequality we obtain that

$$
\begin{aligned}
C_{n}\left(f, \alpha, p,\left\{\mu_{k}\right\} ; x\right) & \leqq\left\{\frac{1}{\left(A_{n}^{\alpha}\right)^{q^{\prime}}} \sum_{k=0}^{n}\left(A_{n-k}^{\alpha-1}\right)^{q^{\prime}}\right\}^{1 / p q^{\prime}}\left\{\sum_{k=0}^{n}\left|s_{\mu_{k}}(x)-f(x)\right|^{p q}\right\}^{1 / p q} \leqq \\
& \leqq K\left\{\frac{1}{n+1} \sum_{k=0}^{n}\left|s_{\mu_{k}}(x)-f(x)\right|^{p q}\right\}^{1 / p q} .
\end{aligned}
$$

Hence, by $p q \gamma<1$, using (3.10) we get the assertion of Theorem 3.
Proof of Theorem 4. The case $\beta=1$ is identical with the special case $\alpha=1$ of Theorem 3. The cases $\beta>1$ and $0<\beta<1$ may be proved similarly to the cases $\alpha>1$ and $0<\alpha<1$ above, choosing q such that $p \gamma<\frac{1}{q}<\beta$ for $\beta<1$. We omit the proof.

References

[1] L. Leindler, Über die Rieszschen Mittel allgemeiner Orthogonalreihen, Acta Sci. Math., 24 (1963), 129-138.
[2] -, On the strong approximation of orthogonal series, Acta Sci, Math., 32 (1971), 41-50.
[3] - On the extra strong approximation of orthogonal series, Anal. Math., 8 (1982), 125-133.
[4] —_ On the very strong approximation of orthogonal series, Mitteilungen Math. Seminar Giessen, 147 (1981), 131-140.
[5] -_, On the strong approximation of orthogonal series with large exponent, Anal. Math., 8 (1982), 173-179.
[6] , Some additional results on the strong approximation of orthogonal series, Acta Math. Acad. Sci. Hungar., 40 (1982), 93-107.
[7] G. Sunouchi, On the strong summability of orthogonal series, Acta Sci. Math., 27 (1966), 71-76.
[8] ——, Strong approximation by Fourier series and orthogonal series, Indian J. Math., 9 (1967), 237-246.
(L. L.)

BOLYAI INSTITUTE
JOZSEF ATTILA UNIVERSITY
ARADI VERTANÚK TERE 1
6720 SZEGED, HUNGARY
(H. SCH.)

MATHEMATISCHES INSTITUT
ARNDTSTRASSE 2
6300 GIESSEN, GERMANY

