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On the strong and extra strong approximation 
of orthogonal series 

L. LEINDLER and H. SCHWINN 

In honour of Professor Bila Szokefalvi-Nagy on his seventieth birthday 

1. Let {<?„(*)} be an orthonormal system on the finite interval (a, b). We 
consider the orthogonal series 

(1) Zc„<p„(x) with 
•»1 B=1 

By the Riesz—Fischer theorem the series (1) converges in L2 to a square-integrable 
function f . Let us denote the partial sums of (1) by s„(x). 

In [1] the first author proved that if 0 < y < l and 

(2) 
n=1 

then 

i i&(x)-f(x)) = ox(n-y) n *=1 

almost everywhere (a.e.J in (a, b). 
G. SUNOUCHI [8] generalized this results to strong approximation, and his 

result was generalized by one of us ([2]) to very strong approximation as follows: 

Theorem A. Suppose that a>0 , 0 < y < l , and that (2) is satisfied. 
Then 

[ i n IP 
(3) Cn(f, a, p, {mk}; x) := — 2" Alz\\smk(x)-f(x)\A = ox(n->) 

An k=0 ' 

holds a.e. for any increasing sequence {mk}, where 

This theorem with mk=k reduces to that of Sunouchi. 
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Recently the first author [3] showed that in the special case a = 1 the restriction 
y < l can be omitted, i.e. if y>0 and 0</7<y - 1 , then (2) implies that 

(4) { - ^ Y i I v W - Z W I " } 1 " ' = ox(n-y) 

holds a.e. in (a, b) for any increasing sequence {mt}. 
In the present work, among others, we prove that the restriction y < l from 

the assumptions of Theorem A can be omitted for any a > 0 and not only for 
a = l alone. 

Namely we have 

T h e o r e m l . If a and y are positive numbers and 0 < />y< 1 then condition 
(2) implies that (3) holds a.e. in (a, b) for any increasing sequence {mk}. 

We mention that Theorem 3 of [6] made a moderate step towards this result, 
namely it states that (3) holds for any positive y if a>py. 

Two further generalizations of (4) were given in the papers [4] and [5], from them 
we can unify the following -' " ~~" 

Theorem B. Suppose that y>0, 0<py~=:ß, and that (2) holds. Moreover if 
(i) j?s2 or ß>2 but at least either y < l or p^2\ 

(ii) ps=2 and 2 c2
nn**+1-2lp<°°; 

n=1 
then 

r n 1 l/p 
(5) K ( f , ß, P, W ; x) := (« + 1)"" 2 (* + l ) " " 1 ! ^ (*)-/(*)!" = ox(n~*) 

y k=0 J 

holds a.e. in (a, b) for any increasing sequence• {mk}. 

To help the lucidity of fulfilment of the assumptions we define certain, ranges 
of the positive parameters p and y. Let us denote by A(j3) the range of the positive 
parameters p and y determined by the condition py<ß, i.e. 

A(ß) := {p, y\p > 0 , y > 0 and py < ß), 
moreover let 

Biß) := {p, y\p > 2, y s l and py < ß}. 

Theorem B shows that if (/?, y)£A(ß)\B(ß) then (2) implies (5), but if (p, 
£B(ß) then we can only prove (5) under an additional condition. 

This phenomenon is curious, and we have had the conjecture (see [4]) that con-
dition (2) implies (5) for any (p,y)£A(ß). Now we shall verify this conjecture, 
namely we prove 
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T h e o r e m 2. If y > 0 and 0 < t h e n condition (2) implies (5) a.e. in (a,b) 
for any increasing sequence {mk}. 

In connection with the extra strong approximation we shall improve the following 
theorems given in [3] and [6]. 

T h e o r e m C. Suppose that 0 a n d p=2, that a>p max (1/2, y)\ 
or if p=2 then a S l ; moreover that (2) holds. Then 

( 1 » l1 / p 

(6) Cn(f, a, P, K } ; *) := I T 2 An~lK(x)-/WIP = ox(n->) 
*=o J 

holds a.e. in (a,b) for any (not necessarily monotone) sequence {j^} of distinct 
positive integers. 

T h e o r e m D. Suppose that y>0, p^2, and that /?y<min (a, 1). Then 

( 7 ) £ C 2 „ 2 , + l - ( 2 / p ) m i n ( a , l ) ^ ^ 
n = 1 

implies (6) a.e. in (a, b) for any sequence {/xk} of distinct positive integers. 

The next two theorems are certain analogues of Theorems C and D with the 
means hn(f fi,p, {pk}\ x). 

T h e o r e m C'. Suppose that y >0, 0 < p ^ 2 and py<mm (ft 1), moreover 
that (2) holds. Then 
(8) K(f,fi>P. K > ; x) = ox(n~y) 

holds a.e. in (a, b) for any sequence {fik} of distinct positive integers. 

We mention that this theorem is a collected form of Theorem 1 and Proposition A 
of [6]. 

T h e o r e m D'. Suppose that y>0, p^2, and that py<min (ft 1). Then 

(9) 
n = 1 

implies (8) a.e. in (a, b) for any sequence {pk} of distinct positive integers. 
Our two new theorems including these results read as follows: 

T h e o r e m 3. If y > 0 and 0</>y<min (a, 1) then (2) implies (6) a.e. in (a,b) 
for any sequence {nk} of distinct positive integers. 



296 L. Leindler and H. Schwinn 

T h e o r e m 4. If y > 0 and 0 < ^ v < m i n 0?, 1) then (2) implies (8) a.e. in (a, b) 
for any sequence {pk} of distinct positive integers. 

2. In order to prove the theorems we require some lemmas. 

L e m m a 1 ([2], Lemma 5). Let {A„} be a monotone sequence of positive numbers 
such that 

m 2 2 2 X.2" — KX2m. ) 
n = l 

Then the condition 

n = l 

implies that 
s2 «(x)-f(x) = ox(k2n) 

holds a.e. in (a, b). 
oo 

L e m m a 2 ([7], Lemma 2). If 2cl< °° then for any positive a and p 
n = 0 

ri ( I " \1/P12 

/ I sup b r 2 dx s A(a, p) 2 

where a^-^ik + l)'12s,{x). 
i = 0 

L e m m a 3 ([5], Lemma 3). Let and {A„} be an arbitrary sequence of 
positive numbers. Assuming that the condition 

(2.D i U l 4 * < c o 
n=1 U=n > 

implies a "certain property 7 ,=7 ,({j„(x)})" of the partial sums of (1) for 
any orthonormal system, then (2.1) implies that the partial sums smpc) of (1) also 
have the same property T for any increasing sequence {m*}, i.e. 

if (2.1)=>r({i-n(x)}) then (2.1)=>-r({jmt(x)}) for any increasing sequence {mj. 

L e m m a 4. We have for any positive p and m ^ l 

b f 1 2m + 1—1 I 2 ' ' 2m + 1 

(2.2) f \ 4 r 2 \sk(x)-s^(x)-oUx)n dx ^ K(p) 2 4, 
; k = 2m ) n=2m + l 

denote positive constants not necessarily the same at each occurrence. 
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where 

<(x) = 
CoVo(x) if n = 0, 

1 
n-2m ~ 2 («*(*)-«*»(*)) if 2m n < 2m+1; m = 0,1, .... 

P roof . Using Lemma 2 with a=l for the following partial sums and (C, 1)-
means 

fO if O s n ^ 2m~\ 
(2.3) 5 " ( * ) : = t s , + * - i ( * ) - s * . ( x ) if 2—1 < n < 2 m + 1 -2 m - 1 ; 
and 

(2.4) = if O S i l S 2m-1, 
(x) if 2m _ 1 < 7» < 2m+1—2m_1, 

where m is an arbitrary fixed natural number, we obtain (2.2) immediately, which 
completes the proof. 

Lemma 5. Let y>0, and p^2. Then under condition (2) we have that the sum 

CO 2m + 1 — l 

ti(*):= 2 2 (fc+l)py-1|s*(*)-V-(*)-<r**(*)lp 
m=1 k=2m 

£y finite a.e. in (a, b). 

Proof . By /?S2 and Lemma 4 we have that 
b b „ 2 m + l _ l 2 lp 

f(r1(x)Y"'dx^K1f 2 2m2y \2~m 2 K(*)-V-(x)-<7**(x)|'l dx*> 
; ; m=o L t=2m J 

OO 2 m +
 1 s o 

m=0 k = 2 m + 1 n = l 

whence by B. Levi's theorem the.statement of Lemma 5 follows. 

Lemma 6. Let y >0 and /?s2. Then condition (2) implies that 

t=i 
o.e. in (a, ¿). 

Proof . An elementary consideration shows that 
fc » OO , 2 m + 1—1 ->2/P 

(2.5) / (t a ( x ) Y » d x * K f 2 2 ^ 2 - ^ K(*)IP 

a „ m=0 l fc=2m J 

-
^K f 2 22my{ max >**(x)|2}dx. ' 
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If 2 m <) t<2 m + 1 then 

^(*) = t4s=t. 2 (k+l-i)ci(Pi{x)= 2 [ l - ' - ^ ^ A c ^ i x ) K — Z I = 2 m 4 - 1 i = 2 m + l v K — z / 

and o2m(x)=0, so using the following simple estimation 

max >**0)l 2 = max , !<£(*)-<£.(*)|" =S 
P i t * ! ™ * 1 2 m 5*-=2" 1 + 1 

• •> 

/ 2 m + 1 - l \ Z 2m + , - l 

Vfc=2 m +1 ' fc=2m+l we obtain that 

j yn 2m + 1—1 * 
2„ maxm t i K w p } i i x ^ - ^ j t ; ( / - 2 - - l ) 2 c 2

 S ; 

2 m + 1 — 1 
S 2 S 2 Cf. 

>=2m + l 
Hence, by (2.5), we get that 

b oo 2m+l co ^ 
/ ( t • (*))»"<& ^ 2 22n"' c 2 ^ A i c * n 2 y < o o , . 
; m = 0 n = 2 m + X n = l 

and this proves Lemma 6. 

L e m m a 7. Condition (2) with any positive y implies that 

(2.7) a*(x) = ox(n~*) 
holds a.e. in (a, b). 

P r o o f . Using .estimation (2.6) we immediately obtain that 

/ j o i 2 " r - S S - i K W D 2 ^ = K> J C«"2y ^ ~> 

whence (2.7) follows, which ends the proof. 

L e m m a 8. Let y > 0 , / ? s 2 and py< 1. For a given sequence {fik} of distinct 
positive integers we define another sequence {mk} asfollows: mk=2m if 2m^pk<2m+1. 
Then (2) implies that the sum 

fh(x) := 2 1)"'-1 K(x)-smk(x)-o*k(x)\^ 
*=o 

wfinite a.e. in (a, b). 
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Proof . Choosing q such that 1<<7<(1 — py)~l and applying Holder's in-
equality with this q and q'=ql(q — 1) we obtain that 

№(*)= 2 2• (fc+ir -1 |sMt (X) - smk (x) - < (x)|p == 
m = 0 2" ,=5 i,k«=2m + 1 

s 2{ 2 21 |s,k(x)-Smk(*)-<(*)lpT8'^ 
m = 0 2" l 3/ i k -e2" , + 1 2 m S ( i k < 2 m + 1 

oo ( 2 m - j l / 9 f 2 m , " - 1 - l 2 kM-s^w-arwr == m = 0 tfc = l > I i=2m ' 
oo f2m + 1 —1 lW 

2 h (*) - s*» (x) - at (x)\"' . 
m = 0 t i = 2 m J 

Hence, by Lemma 4 and p^2, we get that 
6 OO 2m + 1 

f (fi^yiP dx ^ K2 z 2m2i 2" <i < 
0 m=.0 n=2", + l 

which proves Lemma 8. 

Lemma 9. y>0, p=2 and py-^l. Then, for any given sequence {¡ik} 
of distinct positive integers, the sum 

k=0 
is finite a.e. in (a, b) if (2) /¡o/i/j. 

Proof . In a similar way as in the proof of Lemma 8 we obtain with Holder's 
inequality — />y)-1 and l/<?+l/g'= l) that 

f(Mx))2/pdx^ j 2{ 2 (k + iy/-1Kk(x)\pyipdx^ 
a a m= 0 2mSpfc-=2"' + 1 

6 oo f 2 m + 1 - l •|2/P9/ 

f 2 2" K W r j dx%i 
/ m=0 t i = 2 m J 

oo * f 1 2m + 1 - l •»2/p4/ 

^ 2 2^ f y 2 \<{x)r'\ dx. 
m = 0 / k = 2m > 

From this step we can continue the proof as in Lemma 6, and so we obtain the 
conclusion. 

3. P roof of Theo rem 1. Putting 

C„0) := Cn(f, a, p, {k};x), 
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and if 2ms=H<2m+1 (ms2) holds, then 

(r 1 2--1 \UP 
(3.1) C „ ( i ) s i [ j - k2Alz\\sk(x)-f{x)\*\ + 

+ i =: K(C«(x)+Cn<2>(*)). 
l ^ n * = 2 m " 1 + l •> J 

Here the first term C^\x), by (4); has the order ox(n~y), namely it is known 
Ae 

that for any /?> - 1 , 
nr 

Next we estimate C®(;c) as follows : 

/ r 1 2m—1 ix/p 
(3.2) C f W i i — 2 + 

{1 2 " , - i > I 1 / ? ( | „ - | l / p 

• A n k = 2 m " 1 + l J fc = 2 m J 

2 2 ^^^KWI"}1'! =-.K 2DiHx). 

k=2m J fc=2m-1+l J / ¡=1 

An easy consideration shows in view of Lemma 1 and Lemma 7 that 
(3.3) Dp(x)+Dp(x)+Dp(x) = ox(n~y). 

To estimate D^\x) and we use again Holder's inequality with such 
a q to be chosen so that q>\ and (a — — 1 . Then 

1 f 2 m — 1 " | l / P i f 2 m —1 - | 1 / P 9 ' 

\An) U = 2m-1 + 1 > U = 2m-1 + 1 ) 

{1 2 m - l I 1 tPf 

^ 2 |s»(x)-s2m-i(x)-ai(x)r =: D*(x), 
i- k=2m~l i 

whence by Lemma 4 we obtain that 

CO £ CO 2 m 

(3.4) 2 f ( 2 m y K ( x ) ) 2 d x s K , 2 22my 2 c2 < =o, 
m = l „ m = 1 n = 2 m " 1 + l 

which implies that 
(3.5) D(V(X) = ox(n-v) 
also holds a.e. in (a, b). 
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Similarly 
1 f n -|1/P4( „ ll/p«' 

- ^ - p \ k 2 m (A*ziy\ [k2m sg 

{1 2m + 1—1 ll/P«' 

^r+T k2m k t o - ^ W - ^ W r j =D*+1(x), 
and so 
(3.6) i)W(*) = ox(n~y) 
also holds a.e. in (a, b) by (3.4). 

Collecting the estimates given under (3.1), (3.2), (3.3), (3.5) and (3.6) we obtain 
that 

C„(/, P, W; x) = ox(n~y) 

a.e. in (a, b). Hence, using Lemma 3 with x=l, X„=n2y~1 and r d ^ ( * ) } ) : = 
:=C„(f, a, p, {A:}; x)—o(n~r), the statement of Theorem 1 follows obviously. 

The proof is complete. 

P r o o f of T h e o r e m 2. Denote 

K(x) := K ( f , P, P, {fc}; x). 
By Theorem B we can assume that p>2, namely otherwise (5) holds. Then with 
2 m S « < 2 m + 1 

{ m 2 v + ! - 1 1 1 / P 

n-> 2 2 fcM*(*)-/(*)l'[ S 
» = 0 k=2v ' 

V I v = 0 k=2V J 

{ m 2V + 1—1 I1/? f 2m + ! l!/P\ 

n-K 2 2 k"-i\sAx)-f(.x)\>>\ + n-' 2 ^ K M I " = v = 0 fc = 2 v > l k = 1 > ' 

Ki 2 d(
nHx). 

1 = 1 

By Lemma 1 and P>py it is easy to show that d^\x)=ox(n~y), namely 

{m "I VP 

n~> 2 2"pox(2~np)\ = ox(n~y). v = 0 J 

But if we observe that Lemma 5 and Lemma 6 imply that, as m— 

2 m +1 

i = 2m 

and 
2m + 1 

2 - ( „ - i , 2 K*(*)lp = 0,(1) 
k = 2m 
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hold a.e. in (a, b), then by the use of these estimates we can easily verify that 

also holds a.e. in (a, b). 
Indeed; by P>py, we have that 

f m l 1 / p 

</«(*) = \n~' 2 2 v ( P - 1 )o I(2 v ( 1 - p , , )) | = o x (n -0 
I v=0 J 

and similarly 
f m 2V + 1 "I1/'' 

d(»(x) ^ {n-e 2 2 lp = 
l v = 0 fc=2v J 

Summing up our partial estimations we get that 

M/> a> A x) = ox(n~y), 

whence Lemma 3, as in the proof of Theorem 1, conveys the assertion of Theorem 2. 

P r o o f of T h e o r e m 3. At first we prove the special case a = l . Then, for 
0 < / ? s 2 , Theorem C gives (6), so we assume that 2. Next {mk} denotes the 
sequence defined in Lemma 8. Using this notation we have 

(3-9> + {̂ T ¿0 Wl'f+{«tt A|s- w
 ~ f ( x ) l T ) = 

Lemma 8 and Lemma 9 prove that 

№ ( x ) = ox(n-y) and №{x) = ox(n-y) 

a.e. in (a, fc). 
To prove the same estimation for nf\x) we define a new sequence {Nn(m)}. 

Let Nn(m) denote the number of pk lying in the interval [2m;2",+1) and k ^ n + 1 . 
It is obvious that 

Nn(m) S min (« +1 , 2m) and 2 N*(.m) = » + 1-
m = 0 
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If 2 ' " 1 ё л < 2 ' , then we obtain with the aid of Lemma 1 and py< 1 that 

W3)(*))" = zbr 2 <>XW) = -J-r 2 Nn(rn)ox(2~mpy) = /1+1 *=0 /1 + 1 m—0 

= J - { 2 2mox(2~mpy) + 2 (« + = ox(2~lpy) = ox(n~py), 
Л + 1 lm=0 m = I J 

which proves 
- ox(n-y), 

and thus by (3.9) 
f 1 " l1 /p 

(3.10) — r 2 = ox(n~y) 
l/J+I k=0 > 

holds a.e. in (a, b). 
If c o l then (6) is an immediate consequence of (3.10) because of the relation 

If 0 < a < 1 we can choose q such that zn><—<a. Then with q'——the 
Ч Я~ 1 

inequality (a—l)q' > — 1 is fulfilled. 
Now using Holder's inequality we obtain that 

С i „ "|1 Ipi'r n -tVpi 
Cn{f,«, P, Ы;*) ^ {щ*к2(¿xn-l)q'\ \2o М*)-Д*)1И) ^ 

f 1 „ ¡pa 

Hence, by pqy<\, using (3.10) we get the assertion of Theorem 3. 

P r o o f o f T h e o r e m 4 . The case /?=1 is identical with the special case 
a = 1 of Theorem 3. The cases 1 and 0< /?< 1 may be proved similarly to 

the cases a > l and 0-=a< 1 above, choosing q such that py < /? for /?< 1. 
4 

We omit the proof. 
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