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On the strong and extra strong approximation
of orthogonal series

L. LEINDLER and H. SCHWINN

In honour of Professor Béla Sz8kefalvi-Nagy on his seventieth birthday

1. Let {¢,(x)} be an orthonormal system on the finite interval (a, b). We
consider the orthogonal series

) S eon(9) with 3 e <o,
sl n=1
By the Riesz—Fischer theorem the series (1) converges in L? to a square-integrable
function f. Let us denote the partial sums of (1) by s,(x).
In [1] the first author proved that if 0<y<1 and
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then

c2n¥ <o

[
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1 n
— 3 (()—f() = 0,(n™)
k=1
almost everywhere (a.e.) in (a, b).

G. SunNoucH! [8] generalized this results to strong approximation, and his
result was generalized by one of us ([2]) to very strong approximation as follows:

Theorem A. Suppose that a=>0, 0<y<1, 0%p<y‘1, and that (2) is satisfied.
Then

; n 1/p
O  GUanimk 9={4 3 4@ =06

holds a.e. for any increasing sequence {m,}, where A:=(n;';a).

This theorem with m,=k reduces to that of Sunouchi.
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Recently the first author [3] showed that in the special case a=1 the restriction
y<1 can be omitted, i.e. if y>0 and O0<p<y~Y, then (2) implies that

1 n lp
@ {err Bt oo

holds a.e. in (a, b) for any increasing sequence {my}.

In the present work, among others, we prove that the restriction y<1 from
the assumptions of Theorem A can be omitted for any a>0 and not only for
a=1 alone. '

Namely we have

Theorem 1. If a and y are positive numbers and O0<py<1 then condition
(2) implies that (3) holds a.e. in (a, b) for any increasing sequence {m,}.

We mention that Theorem 3 of [6] made a moderate step towards this result,
namely it states that (3) holds for any positive y if a=py.

Two further generalizations of (4) were given in the papers [4] and [5], from them
we can unify the following o £

Theorem B. Suppose that y>0, 0<py<f, and that (2) holds Moreover if
(i) B=2 or B=>2 but at least either y<1 or p=2;

(it) p=2 and Z'c?,n27+1‘2/1’<oo;
n=1

then
n ’ 1/p
® hlh B s D= [+ D 3 Ger D Us W] = 0

holds a.e. in (a, b) for any increasing sequence. {m,}.

To help the lucidity of fulfilment of the assumptions we define certain, ranges
of the positive parameters p and y. Let us denote by A(B) the range of the positive
parameters p and y determined by the condition py<§, ie. '

AP) = {pv|p>0 y=>0 and pv<f>’}
moreover let .
B(ﬁ)=={p,vlp>2, y=1 and py<§}

Theorem B shows that if (p, y)€ A(B)N\B(B) then (2) implies (5), but if (p, y)€
€B(f) then we can only prove (5) under an additional condition.

This phenomenon ‘is curious, and we have had the conjecture (see [4]) that con-
dition (2) implies (5) for any (p, 7)€ A(f). Now we shall verify this conjecture,
namely we prove 4 . o
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Theorem 2. If y=0 and O<p<p then condmon (2) implies (5) a.e. in (a; b)
for any increasing sequence {m}. .

In connection with the extra strong approximation we shall i improve the following
theorems given in [3] and [6].

Theorem C. Suppose that y=>0,0<p<y~! and p=2, that a>p max (1/2, y);
orif p=2 then az=1; moreover that (2) holds. Then

1 n 1/p
©  GUhnn ik 9={4 3 @0} =06
holds a.e. in (a,b) for any (not necessarily monotone) sequence {u,} of distinct
positive integers.

Theorem D. Suppose that y>0, p=2, and that py<min (x, 1). Then
(7) Sv cﬁn2y+1—(2/P)min(a,1) < oo
n=1

implies (6) a.e. in (a,b) for any sequence {u} of distinct positive integers.

The next two theorems are certain analogues of Theorems C and D with the
means h,(f, B, p, {u.}; x)-

Theorem C’. Suppose that y=0,0<p=2 'and py<min (B, 1), moreover
that (2) holds. Then

(8) hn(f;ﬂ’ p, {Auk}, x) =. Ox(n_r)
holds a.e. in (a,b) for any sequence {u} of distinct positive integers.

We mention that this theorem is a collected form of Theorem 1 and 'PropositionA
of [6).

Theorem D’. Suppose that y>0, p=2, and that py<min (B,1). Then
©) 3 Entrti-or <o
n=1

implies (8) a.e. in (a,b) for any sequence {u,} of distinct positive integers.
Our two new theorems including these results read as follows:

Theorem 3. If y=0 and O<py<min (a, 1) then (2) implies (6) a.e. in (a, b)
for any sequence {u} of distinct positive integers.
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*. Theorem4. If y>0 and O<py<min (8, 1) then (2) implies (8) a.e. in (a, b)
for any sequence {i;} of distinct positive integers.

2. In order to prove the theorems we require some lemmas.

Lemma 1 ([2], Lemma S). Let {,} be a monotone sequence of positive numbers
such that

3% = Kk )
n=1

Then the condition

Ms

272
c”j,” < 0O

Il
-~

implies that

s (X) /(%) = 0, ()
holds a.e. in (a, b).

Lemma 2 ((7], Lemma 2). If Z‘,'cﬁ<eo then for any positive o. and p
n=0

1=p<oco k=0

f { sup [ Alz > A::ilsk(x)—ak(x)lv)w}z dx =A@ p) 3,

where ay(x)=(k+1)~* Ss(x).
<o

Lemma 3 ([5], Lemma 3). Let x>0 and {,} be an arbitrary sequence of
positive numbers. Assuming that the condition

@.1) g A, {2 c,%}x <o

implies a “‘certain property T=T({s.(x)})” of the partial sums s,(x) of (1) for
any orthonormal system, then (2.1) implies that the partial sums sm (%) of (1) also
have the same property T for any increasing sequence {m.}, i.e.

if QD=T({s.(x)}) then (2.1)=T({s,(x)}) for any increasing sequence {m}.
Lemma 4. We have for any positive p and m=1
b 1 om+1_1 2/p om+1

) [l 2 s@-sw@-der} d=ke) 3

=gm n=2m41

*) K, K,, K,, ... denote positive constants not necessarily the same at each occurrence.
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. where
CoPo(X) if n=0,

* J— n
== n ;”'——1 2 (e()—sm(@®) i 2"=n<2""m=0,1,....
- k=2m

Proof. Using Lemma 2 with a=1 for the following partial sums and (C, 1)-
means

2.3)

and

1 n
2.4 o, (x) == - g’ sp(x) = {

, {0 if 0sn=2"1
) Spram-1{X)—Sgm(x) if 2™l < p < 2m¥1_2m-1.

if 0=n=2"",
Onpam-1(x) if 2"l <p < 2mtl_Qm-1

where m is an arbitrary fixed natural number, we obtain (2.2) immediately, which
completes the proof.
Lemma 5. Let y=>0, and p=2. Then under condition (2) we have that the sum
oo gm+1_

u@= 2’ (k+1)”‘1[s,‘(x)—szm(x)—a,f(x)|"

m=1 k N

- Is finite a.e. in (a, b).
Proof. By p=2 and Lemma 4 we have that

ogm+l_q 2/p

b
[ w@yrrax=x, f 3o {2-'" 2, n@-sw()-ci (P} dx=

P om4+1
=K 22" 3 =k 202 7 <o,
m=0 k=2™m+41
whence by B. Levi’s theorem the.statement of Lemma 5 follows.

Lemma 6. Let y=>0 and p=2. Then condition (2) implies that

() = 3 kP ot (P <o
k=1

a.e. in (a, b).
Proof. An elementary consideration shows that

gm+l_y 2/p

@.5) f (s (D)7 dx = K f 2 z%v{z—m > |a;:(x)|P} dx =

=K f 2 22"'7{2"&,«2,“1 lo¥ ()P} dx.
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If 2" <k<2™%1 then

0= s, 3 Gt1-Dap= 3 (1-E2 e

i=2m41

and ¢;-(x)=0, so using the following simple estimation

2= 2
2"'Sk<2"'“|ak (x)l 2"'sk 2m+1 Ia" (x)—om)P =
. J
om+1_7 2 am+1_q
= ("3 @-ata@l) =2 T3 e e—at el
k=2 k=2m41
we obtain that .
4 ;Zm om+l_q k

o [{ mox @ dr =y 3 X (-1 =

mdp <t =241 §=2m41

gm+l_y
=22 3
i=2m+1
Hence, by (2.5), we get that
b P om+1 oo \
[ (@yrdi=K J 2™ 3 &=k 3 dEn® <o,
s m=0 n=2m+41 n=1

and this proves Lemma 6.

Lemma 7. Condition (2) with any positive y implies that

@7 0, (x) = 0,(n"7)
holds a.e. in (a, b).

Proof. Using estimation (2.6) we immediately obtain that

b L -] -]
f 2‘ (2™ o A lo¥ (x))2dx = K, ng'l e2n® <o,
whence (2.7) follows, which ends the proof.

Lemma 8. Let y>0, p=2 and py<]1. For a given sequence {u} of dzstmct
positive integers we define another sequence {m,} as follows: m,=2" if 2™=p, <2™+1,
Then (2) implies that the sum

(%) = g (k+ 1P [5,, (¥)— S, () — 0% ()P

is finite a.e. in (@, b).
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Proof. Choosing g such that 1<g<(l1—py)~! and applying Holder’s in-
equality with this ¢ and ¢’=¢/(g—1) we obtain that
S 3 D, () —sm () ok (P =

m(x) =
m=0 2M=py, <2m+1
153, (¥) = S, (¥) — 0, ()P PT =

S k+ D@r-nali/af.
2 el

=
- m§0{2’"§uk<2m
w [ 2m 1gpom+1_1q g
2 {2 k(”—l)"} {.2 lsa(x)—sw(x)—a?(X)l’""} =
oo 2m+1_1 1/‘1’
=K 3 2mer i) { s —sm(x)—o? <x)|"‘~"} -

Hence, by Lemma 4 and p=2, we get that

T gm+1l

Juoprasr g 5 e

which proves Lemma 8.
Lemma9. Let y>0, p=2 and py<]1. .Then, for any given sequence {u}
of distinct positive integers, the sum :

pa(x) = kg (k+1)P1+1]6% ()P

is finite a.e. in (a, b) if (2) holds.
Proof. In a similar way as in the proof of Lemma 8 we obtain with Holder’s

inequality (1<g<(1—py)~* and 1/g+1/g’=1) that
(k+ 17" ok ()PP dx =

f (koG dx = f AP

b o om+1_ 71 2/pg’
= f > 2m(pv—1/q’)(2lp){ 2 Io;*(x)]p_q’} dx =
a i=2m

2 22my f { 1 2".221'—1[0 (x)|re }2/”’ dx.

m—O
From this step we can continue the proof as in Lemma 6, and so we obtain the

conclusion.
3. Proof of Theorem 1. Putting
C.(x) = C,(fs o, p, {k}; x),
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and if 2"=n<2"+! (m=2) holds, then

. 1 2t IIP.
G c.0 = K{{ e At —roor) +

1/p
e 3 st —ser} ]=: K(CO@+CP ()
Ay ko1

m-1

Here the first term C®(x), by (4); has the order o,(n™"), nam‘ely it is known
A8 .
that for any f>—1, 0<K1<—;<K2.
n
Next we estimate C®(x) as follows:

1 em—1

ijp
¢y crw=k(g T atn@-se@-d@r +

a
AL k=214

gm_y* 1/p n 1/p
Ha 3 allea—for) +Hg 3 At -se-ot@r} +
n i/p n 1p 5
i 2 actbe@—sor) Ha 2 st r} )=k 300w,

An easy consideration shows in view of Lemma 1 and Lemma 7 that
(33) D (x)+DP () +DP () = 0,(n ™).

To estimate D®P(x) and D®(x) we use again Holder’s inequality with such
a g to be chosen so that ¢g>1 and (¢—1)g >—1. Then

1 om_y 1/pg om_1 1/pq’
- *(pa’
D,(ll)(X) = W{ Z A:_,l‘)q} { 2 Isk—szm—l—dklpq} =
n k k

=2m-141 =2m-141
1 2m-1 i/py
= k{3 W@-sra@-t@r} T =i,

whence by Lemma 4 we obtain that

co b ) ' 2m
(3.9 > [@Drpdx=K J 22 3 <o,
m=1 4 m=1 n=gm-141

which implies that
(3.5 DV (x) = 0,(n™?)
also holds a.e. in (q, b).
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Similarly
pag p 1/pq’
DA (x) = (Aa)UP { Z (4; } {kgzlm Ik () — sgm () — U:(x)lpq,} =

1 gmiia 1/pq’
= Klpmr 2 W5 -a P} = Dhuio)
and so : :
(3.6) _ D) (x) = 0. (n™")
also holds a.e. in (a, b) by (3.4).

Collecting the estimates given under (3.1), (3.2), (3.3), (3.5) and (3.6) we obtain
that

C.(f, o p, {k}; %) = 0. (n7)
a.e. in (a,b). Hence, using Lemma 3 with x=1, 4,=n""1 and T({s,(x)}):=
=C,(f,a,p, {k}; x)=0(n"?), the statement of Theorem 1 follows obviously.
The proof is complete.

Proof of Theorem 2. Denote

h,(x) = h,(f, B, p, {k}; x).

By Theorem B we can assume that p=2, namely otherwise (5) holds. Then with
M=p<2mt?

m ov+l_1 }I/P

&) me) = ki 37 3 00—l

[

= &(frs 375 0w -se-aieor] +

v=0 k=

+{n -5 3 2“3'_1 k8 1[0 (x) — f(X)I”}I/p N {n s 2211 - (x)]"}llp] _

v=0 k=2V
3 e
= K; 2 d®(x).
i=1
By Lemma 1 and B=>py it is easy to show that d®(x)=o0,(n"?), namely

m 1/p
(3.8) d®(x) = {n -5 > 2Vﬂox(2—vvv)} = 0,(n").

But if we observe that Lemma 5 and Lemma 6 imply that, as m— o,

om(py—1) MZ: [$5 () — sgm (x) or (0P = 0,(1)
and

om+1

2mer=1 3 gk (x)]P = o,(1)
-g=gm
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hold a.e. in (a, b), then by the use of these estimates we can easily verify that

40 () +dD (%) = 0,(n=)

also holds a.e. in (g, b).
Indeed; by B=py, we have that

m Yp
a0 = {rs 32000, @e-ml” < 0 )
v=0

and similarly

m 2v+l 1/p
0@ = 33 vk} = o0,
v=0k=2v
‘Summing up our partial estimations we get that

hn(f; o, p, {k}a x) = ox(n—"),
whence Lemma 3, as in the proof of Theorem 1, conveys the assertion of Theorem 2.

Proof of Theorem 3. At first we prove the special case a=1. Then, for
0<p=2, Theorem C gives (6), so we assume that p>2. Next {m;} denotes the
sequence defined in Lemma 8. Using this notation we have

1/p

= 3, (S Y=k 3 o0 =sm (- I} +
n+1 .5 n+1

69 s o)+ Sw-rer] ) -

n+1y

=: K(u® () + P () + 1 (%))
Lemma 8 and Lemma 9 prove that

P () =0, (n7") and  pP(x) = 0 (n77)

a.e. in (a,b). .

To prove the same estimation for u®(x) we define a new sequence {N,(m)}.
Let N,(m) denote the number of y, lying in the interval [2™,2"+Y) and k=n+1.
It is obvious that

N,m) = min(n+1,2") and 5 Nu(m) = n+1.
m=0
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If 2!71=n<2', then we obtain with the aid of Lemma 1 and py<1 that

n

WO = g 2 omi™) = —— 3 N,mo, 2" =

= nj—l { 2 20, (27" + Z (n+1)ox(2-'"w)} = 042" 'vv) = 0, (n~7),

which proves
wA (x) = 0, (n™"),
and thus by (3.9) )

. 1/p
— 14 = =7
(3.10) 5 3 bu@—rwpr} =067
holds a.e. in (a, b). '
If a=1 then (6) is an immediate consequence of (3.10) because of the relation
1
Ay o= ( ] O=k=n).

If 0<a<1 we can choose g such that py<711-<a. Then with q’=q—z—1 the
inequality (x—1)g’>—1 is fulfilled.

Now using Hélder’s inequality we obtain that

1pg

Gt i 9 = { i Stz {3 sworeor] =

sk S.w-rer]

Hence, by pgy<1, using (3.10) we get the assertion of Theorem 3.

Proof of Theorem 4. The case f=1 is identical with the special case
a=1 of Theorem 3. The cases f=1 and O<f<1 may be proved similarly to

the cases a>1 and O<a<1 above, choosing g such that py < %< B for B<l.

We omit the proof.
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