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1. Introduction 

Let (X, be a measurable space with a positive finite measure /¿. Denote 
by S = S(X,@r) the set of the a.e. finite real-valued functions on X measurable 
with respect to SF. As is well-known, X endowed with the distance notion 

is a complete metric space (a so-called Frechet space), and the convergence notion 
induced by d is equivalent with the convergence in measure. 

Let B be a Banach space and let T: B-»S be an operator. As usual, T is 
said to be subadditive if 

and positive homogeneous if 

(ii) \T(af)(x)\ = \aTf(x)\ a.e. on X for every aSO and f£B. 

We shall deal only with subadditive and positive homogeneous operators 
T on B (sometimes these operators are said to be convex, too) for which the follow-
ing condition is also satisfied: 

(iii) T is continuous in measure, i.e. if fn, f£B and 11/, — /||-*-0 as 
then for every s > 0 we have 

(i) | r ( /+£)M|S |77(x) |+ |7£(x) | a.e. on Z for every / , g£B, 

p{x: \Tfn(x) — Tf(x)\ > e} - 0 as n -

Received August 4, 1982. 
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In certain cases we shall need a further property of the operators T, namely 

(iv) \Tf(x)-Tg(x)\sx{\T(f-g)(x)\ + | T ( g - / ) 0 ) | } a.e. o n * for every / , g£B, 

where x is a positive constant. 

It is clear that if T is a linear operator, then (iv) is satisfied with x —1/2. 
Another example is the following: If T is an operator with properties (i) and 

(v) T is positive, i.e. Tf(x)^0 a.e. on X for every f(LB, 

then T possesses property (iv). In fact, now 

Tf(x) = T(f-g+g)(x) ^ T(f-g)(x)+Tg(x) 
and similarly 

Tg(x) ^ T(g-f)(x) + Tf(x), 

whence (iv) follows with x=1 . 

We note that if we replace property (ii) by 

(ii) \T(a.f)(x)\ = \oLTf(x)\ a.e. on X for every real number a and f£B, 

then we can replace property (iv) by 

(iv) | T f ( x ) - T g ( x ) \ ^ 2 x \ T ( f - g ) ( x ) \ a.e. on X for every / , gdB. 
Now, it is not hard to check that (iv) in the special case 2x = 1 implies property (i). 

So, if (ii) and (v) are satisfied, then properties (i) and (iv) with 2x = 1 are equivalent 
to each other. 

2. Banach's principle for single series 

Given an ordinary sequence {Tn: «=1 ,2 , ...} of operators, we shall put, for 
every f£B, 

• T*f(x) = s u p \ T J ( x ) \ . 
ni 1 

It is obvious that if the sequence {T„f(x)} is convergent a.e. on X for every f£B, 
then a fortiori we also have that 

(1) r * / ( x ) < °° a.e. on X for every f£B. 

The following results are well-known (see [1] and also [2, pp. 1—4], where the 
operators T„ are supposed to be linear, but the proofs apply, after some simple 
modifications, to the more general operators indicated in Section 1). 
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T h e o r e m 0. Let the operators T„ possess properties (i)—(iv). If condition (1) 
is satisfied, then the set of those f£B for which the sequence {Tnf(x)} is a.e. con-
vergent is closed. 

This immediately yields 

Coro l l a ry . Let the operators Tn possess properties (i)—(iv). If condition (1) 
is satisfied and the sequence {T„f(x)} is a.e. convergent for a set of f£B which is 
dense in B, then {Tnf(x)} is a.e. convergent for every ff_B. 

The next lemma plays a decisive role in the proof of Theorem 0 and sometimes 
is called Banach's principle in a strict sense. 

• Lemma 0. Let the operators T„ possess properties (i)—(iii). If condition (1) 
is satisfied, then there exists a positive, nonincreasing function C(A), defined for 
2 > 0 and tending to zero as such that 

p{x: T * / ( * ) > A | | / | | } S C ( A ) for every A > 0 and feB. 

A simple consequence is the following 

Coro l la ry . Let the operators T„ possess properties (i)—(iii). If condition (1) 
is satisfied, then T* is continuous in measure, even uniformly in f . 

3. Extension to multiple sequences using the convergence notion 
in Pringsheim's sense 

Let J f d be the set of all ¿-tuples k=(/c l5 ..., kd) with positive integers for 
coordinates, where d 'S 1 is a fixed integer. As usual, put 

k = (/q, ..., kd) {mi, ..., md) = m iff k}^m} ( j = l,...,d), 

k±m = (/cximi, ..., kd±md), km = (/qmj, ..., kdmd), and 1 = (1, ..., 1). 

We recall that a ¿-multiple sequence {/m: m£jVd} of real numbers is said 
to be convergent in Pringsheim's sense if for every e>0 there exists an M=M(e) 
so that [fk—im|<e whenever 

(2) min (fcj, ..., fcd) s M and min (m1, ..., md) ^ M. 

We consider a ¿-multiple sequence {Tk: kajV1} of operators having prop-
erties (i)—(iii) or (i)—(iv) enumerated in Section 1. It is a simple fact that the 
sequence {T^fix)} is convergent a.e. on X in Pringsheim's sense for a given f£B 
if and only if 

lim sup \Tkf(x)-Tmf(x)\ = 0 a.e. on X, 
under(2) 
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or equivalently, for every e>0, 

(3) n{x: sup \Tkf(x)-TJ-(x)\>e}~Q as M —. 
under(2) 

On the other hand, it is clear that if {rk /(x)} is convergent a.e. on X in 
Pringsheim's sense for every f£B, then we also have 

(4) 
T*f(x) = inf sup \Tkf (JC)| < a.e. on X for every f£B. 

M=l,2 , . . . min(*, k a ) s M 

For the sake of brevity, we write 

W ( * ) = sup |rk /(x) | ( M = 1,2,. . .) . mini*, kd)sM 

The basic fact is again that condition (4) itself already implies the continuity 
of the operator T* in measure, uniformly in / . Vice versa, it will be also seen that 
in certain cases such a continuity property for T+ is all that is needed to establish 
the a.e. convergence of the ¿/-multiple sequence {rk /(x)} in Pringsheim's sense for 
every f€B. 

The following theorem extends Theorem 0. 

Theo rem 1. Let the operators Tk, possess properties (i)—(iv). If 
condition (4) is satisfied, then the set of those f£B for which the d-multiple sequence 
{Tkf(x)} is a.e. convergent in Pringsheim's sense is closed. 

This implies the next 

Coro l l a ry 1. Let the operators Tk possess properties (i)—(iv). If condition (4) 
is satisfied and the d-multiple sequence {Tkf(x)} is a.e. convergent in Pringsheim's 
sense for a set of fdB which is dense in B, then {Tkf(x)} is a.e. convergent in 
Pringsheim's sense for every f£B. 

The continuity property of T* mentioned above is expressed in the following 

Lemma 1. Let the operators Tk, possess properties (i)—(iii). If con-
dition (4) is satisfied, then there exists a positive, nonincreasing function C(A), defined 
for 1>0 and tending to zero as such that 

(5) 
p{x: sup \Tkf(x)\ > ;.||/||} C(A) for every A > 0 and f(¿B. 

min( k 1 , . . . , k a ) ^ X 

This immediately yields ¡i{x : T'+/(x)>A||/||}^C(A), which can be reformulated 
as follows: 

Coro l l a ry 2. Let the operators Tk possess properties (i)—(iii). If condition (4) 
is satisfied, then T^ is continuous in measure, even uniformly in f . 
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P r o o f of L e m m a 1. It is modelled upon the proof of Lemma 0 (see in 
[2, pp. 2 -3 ] ) . 

By (ii), we need only establish (5) for | | / | | = 1. Let an £ > 0 be given. Owing 
to (4) for every f£B there exists an M, possibly depending on e and / , such that 

n{x: T ^ f ( x ) > M) ^ e. 

In other words, this means that 

B= 0 {/: /*{*: T,Mf(x) > M) e}. 
M = 1 

We shall show that each set on the right of the last equality is closed. To this • 
effect, observe that for each M, 

(6) { / : n{x: W ( x ) > M) ^ e} = f ) {/• = T*MNf(x) > M) =s e}, 
N=M 

where 
' T,MNf(x) = max | r k / ( x ) | (M, N = 1, 2, ...; M ^ N). 

Smax(fc[ kd)^N 

By (i), for. every / and g in B we have 

\T*MNfix)-T^MNg(x)\ ^ r*M f fc/--g)(*) + r + M W (g - / ) (* ) . 

Consequently, for every ¿ > 0 , 

\T*MNf(x)-T*MNg(x)\ > <5} si 

^ k 2 M - k 2 M I W - * ) ( * ) | > 4 } + / l { x : > 4 } ] -

Since each operator Tk is continuous in measure (property (iii)), hence it follows 
that the operators T*MN are also continuous in measure. Therefore, each of the sets 

{/: n{x: T,MNf{x) > M) e} 

is closed, and thus so is the set in (6). 
Now we apply the Baire category theorem and conclude that one of the sets 

in (6) contains a closed ball, say with some center f0£B and radius 0. This 
means that if f£B and \\f— f0\\ = Q, then 

H {x: T*Mf(x) > M) « e. 

In other words, if g£B and then 

fi{x: T*M(fa+eg)(x) > M) e. 

22 
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This yields 

(7) 

fi{x: T,Mg(x) > tk n{x: r* M ( / 0 + gg)(x) > M} + pi{x: T*Mf0(x) > M) 2c 

for every g£B, ||g|| S 1. 

It is not hard to verify that (7) already implies (5) to be proved. In fact, put 

C(A) = sup n{x: 7. [ A ] /(x) >A}, 
nail s i 

whereby [A] we denote the integral part of A>0. Inequality (7) shows that C(A)^2e 
if A^max (M, 2M/Q). Thus we have 

(8) ]im C(A) = 0 

and our assertion is proved. 

P r o o f of T h e o r e m 1. Denote by ^ the set of f £ B for which the ¿-multiple 
sequence { T k f ( x ) } is a.e. convergent in Pringsheim's sense. We are to show that 
if for a given fdB it is true that for every s > 0 there is a g ^ such that | | /—g| |<£, 
then as well. 

By (iv), 

\Tkf(x)-TJ-(x)\ § |rk/(x)-Tkg(x)| + |rkg(x)-Tmg(x)\ + |rmg(x)-Tmf(x)\ ^ 

3= x[\Tk ( / - g ) M | + | r k ( g - / ) ( x ) | + | r m (g - / ) (x ) | + | r m ( / -g ) (x ) | ] + \Tkg(x)-Tmg(x)\. 

Thus, for every A>0 and M ^ 1, 

(9) fi{x: sup \Tkf(x)-Tmf(x)\>X\\f-g\\}^ 
under (2) 

n { x : w / - g ) ( * ) ^ A n z - g i i J + ^ J ^ ; F * M ( g - / ) ( * ) > - A . ||/-,g||} + 

+ Jx: sup | r k g(x) -r m g(*) | > i | | / - g | | } . 
I under (2) J J 

Let us fix a ¿ > 0 and an e > 0 . In virtue of (5) and (8) we get 

M{x: r*M(f-g)(x) > M\\f-g\\} ^ C(M) ^ 

if M is large enough, say M^.MX, independently of Taking A=5xM1 ; 
hence it follows 

(10) 

+ f i { x - . n M ( g - f ) ( x ) ^ ~ \ \ f - g \ \ } ^ ~ for M ^ M X . 
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Now let us choose g d ^ in such a way that /—gU^e. Due to (3), there exists 
an M2 such that 

(11) Jx: sup | r k g ( ; t ) - r m g ( * ) | > 4 l l / - s l l } ^ 4 f o r M = 
<• under(2) J J J 

Collecting together (9)—(11), we can infer 

n{x: sup \Tkf(x)-Tmf(x)\ > e } for M S max(Mx, M2). 
under (2) 

Since 5 and e are arbitrary, we obtain relation (3). But this is equivalent to the 
a.e. convergence of the ¿-multiple sequence {^ / (x )} in Pringsheim's sense. 

4. Extension to multiple sequences using the notion of regular convergence 

Following HARDY [ 3 ] (cf. [ 5 ] , where this kind of convergence was rediscovered 
and called "convergence in a restricted sense") we say that a ¿-multiple series 

2 K = 2 ••• 2 bkl kd 

of real numbers is regularly convergent if for every £>0 there exists an M=M(e) 
so that 

ni nd 
2 ••• 2 bkl kd fc1=ml kd=md 

(12) I 2 bk\ 

whenever 
(13) max (mj, ..., md) s M and n m. 

It is a trivial fact that the regular convergence of series (12) implies the con-
vergence of the rectangular partial sums 

sm= 2 bk (m£ jVd) lSkim 
in Pringsheim's sense. 

Given a ¿-multiple sequence {/m: m£J r d } of real numbers, first we define 
the "total" finite differences Atm as follows 

Atm= 2 - ¿(-1 
</l = 0 >id=0 

with the agreement that tk^ kd is taken to equal 0 if kj=0 for at least one j, 
l ^ j ^ d . Then we consider the ¿-multiple series 

(14) 2 ¿tm, 
me^1 

22* ' 
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whose rectangular partial sums coincide with the tm. Now we say that the ¿/-multiple 
sequence {/m} is regularly convergent if series (14) is regularly convergent. In other 
words, this requires that for every e>0 there exists an M=M(e) so that 

2 ••• Z (-1),i+-+'MWi -n)n >», = 0 It,1 = 0 
n = Oh, id), 

whenever (13) is satisfied. For brevity, denote by Am ntk the expression between 
the absolute signs. 

After these preliminaries, consider again a ¿-multiple sequence {Tk: k £ J r d } 
of operators possessing properties (i)—(iv). The a.e. regular convergence can be 
characterized as follows. The ¿-multiple sequence {Tk/(x)} is regularly convergent 
a.e. on X for an f£B if and only if 

lim sup \Am,nTkf(x)\ = 0 a.e. on X, 
M — ~ under(13) 

or equivalently, for every £>0, 

(15) n{x: sup \Am>nTkf(x)\ > £} - 0 as M — 
under(13) 

It is obvious that if {rk /(x)} is regularly convergent a.e. on X for every fdB, 
then a fortiori we also have that 

(16) T*f(x) = sup |Tk/(x)| <oo a.e. on X for every f£B. 
k<iSd 

The fundamental fact is again that condition (16) itself already implies that the 
operator T* is continuous in measure, uniformly in / . Indeed, both Lemma 0 
and its Corollary are plainly true for the set {T"k: k£^Vd} of operators under prop-
erties (i)—(iii) and condition (16). 

The extension of Theorem 0 reads as follows. 

Theorem 2. Let the operators Tk, possess properties (i)—(iv). If 
condition (16) is satisfied, then the set of those f£B for which the d-multiple 
sequence {^/(x)} is a.e. regularly convergent is closed. 

An immediate consequence is that if the a.e. regular convergence of {Tkf{x)} 
is established when / belongs to some special class which is dense in B, then the 
a.e. regular convergence of {rk/(x)} for every f£B is completely equivalent to 
the fulfilment of inequality (16). 

P roo f of Theo rem 2. We have to prove that if f £ B is such that for every 
£>0 there is a g f o r which ||/— g\\<e, then f ^ as well. To this end, we 
prove (15). 
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A simple estimation shows that 

H{x: sup M m , n r u / ( x ) | > A | | / - g [ | } s 
under(13) * 

s J x : sup M m , o r k / ( x ) - J n l , I i r k g ( x ) | > 4 l l / - ^ } + 
<• under(13) L J 

+ Ax: sup M m , n r k g ( x ) | > A | | / - g | | } . 
I under(13) L > 

As to the first term on the right, we illuminate the situation in the particular case d=2: 
\Am,aTkf(x)-AmiaTkg(x)\^ | r n i„ 2 / (x)-r n i„ 2g(x) | + | rm i„ 2 / (x)-Jm i n 2g(x) | + 

+ \T„imJ(x)-Tnim2g(x)\+ \TmimJ(x)-TmiI111g(x)\ 

^ K[\Tnini<J-g)(x)\ + \T„in^g~f)(x)\+ •••] ^ 4x[T*(f-g)(x) + T*(g-f)(x)]. 

So, it can be easily seen that 

(H) 4 x : sup M m , n T k / ( x ) | > A | | / - g | | } ^ 
under(13) 

T*(f-g)(x) > ^ i - | | / - g | | } + / i{x: T*(g-f)(x) > ^ l f ~ «ll} + 

+ti\x: sup Mm ,nrug(*)| > A | | / _ g | | } . 
I under(13) L > 

Owing to Lemma 0, applied this time to {Tk: kf we obtain 

(18) /*{*: T*(f-g)(x) > ^ I I / - gll} ^ , 

independently of gC/3. By choosing A = l/ee1 and taking \\f— g | , where 
£!>0 will be chosen later on, we get from (17) and (18) that 

(19) fi{x: sup Mm ,nTk/(x)| 
under(13) 

By (8), the first term on the right tends to zero as fij—0. Given a <5>0, we 
can fix £!>0 so that this term does not exceed <5/2. Then using the fact that gi'i?, 
the second term on the right-hand side of (19) can be made less than 5/2 by choosing 
M sufficiently large, say M ^ M0. To sum up, we conclude that 

n{x: sup \Am,nTkf{x)\ 5 for M ^ M0. 
under(13) 

The proof of Theorem 2 is complete. 
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5. Application to a problem of summability of multiple orthogonal series 

Let $ = {<pk(;t); be an orthonormal system (in abbreviation: ONS) 
on X. We shall consider the ¿-multiple series 

(20) 2 ckcpk(x), 
k iJT* 

where {ck: kdjV1} is a ¿-multiple sequence of real numbers (coefficients) for which 

(21) 2 4 < kê t"1 

By the Riesz—Fischer theorem the sum of series (20) exists in the sense of the mean 
convergence in L2(Z)-metric. In the following we shall be interested in the point-
wise summability of series (20). 

Let si={amk: m, k b e a given "¿-multiple matrix" of real numbers with 
the following two properties: 

(22) am k — ak as min(m1 , . . . , md) oo for every k^Jfd 

and this convergence is regular in the sense of Section 4, and 
(23) 2 < , k < M for every m^Jf*. 

ke^f" 

The so-called j^-means of series (20) are formed as follows 

tm(x) = 2 a
m,kck<Pu(x) (m£jr<>), kĝ T" 

which results in a series-sequence transformation. By (21) and (23), the si-means 
exist in the sense of L2(Ar)-metric. Now, series (20) is said to be si-summable 
(regularly or in Pringsheim's sense) if {tm(x): m£jfd} as a ¿-multiple sequence is 
(regularly or in Pringsheim's sense, respectively) convergent. 

We need the modified Lebesgue functions <P; x) of the system with 
respect to the summation method si defined in the following way. We set 

Km(si,<P;x,y) = 2 amik<pk(x)<pk(y) (m^"). kes* 

Again by (23), the kernel Km{si, <P; x, y) as a function of y exists in the sense of 
L2(Ar)-metric for almost every x. Consequently, the integral 

L*M(si, <P;x) = /(max(mmaxmd)^M \Km(st, 4>; x, y)|)d^y) (M = 1, 2, ...) 

exists for almost every x and even belongs to L%X). 
Now we are ready to state 

Theo rem 3. Suppose that $={<pk(x): k£^d} is an ONS on X, {ck: ke^d} 
is a sequence of coefficients satisfying condition (21), and {am k: m, k£J/"1'} 
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is a matrix of real numbers satisfying conditions (22) and (23). If 

(24) L - = f { SUP L*M(si,1>-,x)ydn(x)^^, 

then series (20) is regularly si-summable a.e. on X. 

This theorem in the special case d = 1 is due to T A N D O R I [ 6 ] . 

First we prove the following 

Lemma 2. Under the conditions of Theorem 3, except (22), we have 

( 2 5 ) / ( sup \tn(x)\)dii(x) S { 2 L 1 / 2 + ( sup 2 4 } 1 / 2 -
x me/" kiSd 

P r o o f of Lemma 2. It will be done b y a modification of the well-known 
classical method (see, e.g. [4] and also [6]). 

For every positive integer M and x£X define M ( x ) = ( M 1 ( x ) , . . . , M/x^jV1 

in a unique way such that 1 for each j = 1, ...,d and 

' m w W = , max im(x) ( M = 1,2, . . . ) . maxCm, md)SM 
Using the representation 

' m m M = / ( 2 Ck<PkO0)( 2 (x)(pn(y))dtx(y), x k£Jfd 

Fubini's theorem and the Schwarz inequality imply that 

f'm(X)(x) dfi(x) = f{( 2 ck(Pk(y)) f 2 aM(xha(pa(x)<pn(y) dn(x)} dn(y) 
X X X 

- \B2dam,Bcpa(x)cpa(y)\)d^x)}d^y) = 

= / | 2 ckcpk(y)\Lti(^,<P;y)dfi(y)^{L 2 4}1/2> 

x k t s d k e ^ 

the last inequality is b y (24). Applying Beppo Levi's theorem, hence it follows that 

/ { s u p tm(x)}dn(x)^{L 2 el}112-
Repeating this argument for — tm(x), which corresponds to the system 

{ — (pk(x): we obtain 

/ { sup {-ta(x))}dn(x) S {L 2 4 } 1 / 2 -£ mE/" k£Sd 

Now, the wanted inequality (25) follows from the elementary relation 

sup | / M ( X ) | =§ sup I M ( * ) + sup (-*„(*))+l'I(*)l-
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Proof of Theo rem 3. We recall that the set / o f those ¿/-multiple 
sequences c = {ck: k£jVd} for which condition (21) is satisfied, endowed with the 
usual vector operations and Euclidean norm, is a Banach space. The operators 

c - Tmc(x) = tm(x): l2(JTd) - L\X) (meJ">) 

are clearly linear and continuous in L2(X)-metric, a fortiori in measure. The conti-
nuity in L\X)-metric is shown by the estimate 

f t l ( x ) d ^ x ) = 2 ( m a x < k ) 2 4 -

Due to Lemma 2, for every c£l2(Jrd), 

(26) T*c(x) = sup |tm(x)[ < °° a.e. on X. 
m ZJT* 

For every c£l2(Jrd) and M = 1,2, . . . define c ( M )={4M ) : keJri) as follows 

c(m> = Jck i f m a x > • • •> kd) = M, 
k lO otherwise. 

It is also clear that'these "finite sequences" c(M) constitute a dense subset in l2(jVd). 
Furthermore, (22) yields 

MM M M 
Tmc<M>(x) = 2 - 2 am,kckq>k(x) - 2 - 2 akck<pk(x) 

(27) fc,=1 kd=1 *,= 1 ka=1 
as min(m1; ..., wd) — oo for every M = 1, 2, ... 

and even this convergence is regular in the sense of Section 4. 
On the basis of (26) and (27), Theorem 2 is applicable and results that the 

¿/-multiple sequence Tmc(x) = tm(x) is regularly convergent a.e. on X for every 
c € / V * ) . This finishes the proof of Theorem 3. 

On closing, we formulate a slight generalization of Theorem 3. To this effect, 
let A — {Ak: k£J r d } be a ¿/-multiple sequence of positive numbers, which is non-
decreasing in the sense that whenever k s m . Denote by the system 
{<P k (*)№ T h e n 

M ^ W ' x ) = / ( - d ^ n H ' - W ' x 4 d K y ) ( M = 1 ' 2 > 

where 

U x,y) = 2 
I \A ) ktJT* ¿k 

The following theorem can be proved analogously to as Theorem 3 is proved. 

\ 


