Extension of Banach's principle for multiple sequences of operators

F. MÓRICZ
Dedicated to Professor Béla Sz.-Nagy on his 70th birthday

1. Introduction

Let (X, \mathscr{F}) be a measurable space with a positive finite measure μ. Denote by $S=S(X, \mathscr{F})$ the set of the a.e. finite real-valued functions on X measurable with respect to \mathscr{F}. As is well-known, X endowed with the distance notion

$$
d(\varphi, \psi)=\int_{x} \frac{|\varphi(x)-\psi(x)|}{1+|\varphi(x)-\psi(x)|} d \mu(x) \quad(\varphi, \psi \in S)
$$

is a complete metric space (a so-called Frèchet space), and the convergence notion induced by d is equivalent with the convergence in measure.

Let B be a Banach space and let $T: B \rightarrow S$ be an operator. As usual, T is said to be subadditive if
(i) $|T(f+g)(x)| \leqq|T f(x)|+|T g(x)|$ a.e. on X for every $f, g \in B$, and positive homogeneous if
(ii) $|T(\alpha f)(x)|=|\alpha T f(x)|$ a.e. on X for every $\alpha \geqq 0$ and $f \in B$.

We shall deal only with subadditive and positive homogeneous operators T on B (sometimes these operators are said to be convex, too) for which the following condition is also satisfied:
(iii) T is continuous in measure, i.e. if $f_{n}, f \in B$ and $\left\|f_{n}-f\right\| \rightarrow 0$ as $n \rightarrow \infty$, then for every $\varepsilon>0$ we have

$$
\mu\left\{x:\left|T f_{n}(x)-T f(x)\right|>\varepsilon\right\} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

In certain cases we shall need a further property of the operators T, namely
(iv) $|T f(x)-T g(x)| \leqq x\{|T(f-g)(x)|+|T(g-f)(x)|\}$ a.e. on X for every $f, g \in B$, where x is a positive constant.

It is clear that if T is a linear operator, then (iv) is satisfied with $x=1 / 2$. Another example is the following: If T is an operator with properties (i) and
(v) T is positive, i.e. $T f(x) \geqq 0$ a.e. on X for every $f \in B$, then T possesses property (iv). In fact, now

$$
T f(x)=T(f-g+g)(x) \leqq T(f-g)(x)+T g(x)
$$

and similarly

$$
T g(x) \leqq T(g-f)(x)+T f(x)
$$

whence (iv) follows with $x=1$.
We note that if we replace property (ii) by
$\overline{(i i)}|T(\alpha f)(x)|=|\alpha T f(x)|$ a.e. on X for every real number α and $f \in B$, then we can replace property (iv) by

$$
\text { (iv) }|T f(x)-T g(x)| \leqq 2 x|T(f-g)(x)| \text { a.e. on } X \text { for every } f, g \in B
$$

Now, it is not hard to check that $\overline{\text { (iv) }}$ in the special case $2 x=1$ implies property (i). So, if (ii) and (v) are satisfied, then properties (i) and (iv) with $2 \varkappa=1$ are equivalent to each other.

2. Banach's principle for single series

Given an ordinary sequence $\left\{T_{n}: n=1,2, \ldots\right\}$ of operators, we shall put, for every $f \in B$,

$$
T^{*} f(x)=\sup _{n \geqq 1}\left|T_{n} f(x)\right|
$$

It is obvious that if the sequence $\left\{T_{n} f(x)\right\}$ is convergent a.e. on X for every $f \in B$, then a fortiori we also have that

$$
\begin{equation*}
T^{*} f(x)<\infty \text { a.e. on } X \text { for every } f \in B \tag{1}
\end{equation*}
$$

The following results are well-known (see [1] and also [2, pp. 1-4], where the operators T_{n} are supposed to be linear, but the proofs apply, after some simple modifications, to the more general operators indicated in Section 1).

Theorem 0. Let the operators T_{n} possess properties (i)—(iv). If condition (1) is satisfied, then the set of those $f \in B$ for which the sequence $\left\{T_{n} f(x)\right\}$ is a.e. convergent is closed.

This immediately yields
Corollary. Let the operators T_{n} possess properties (i)-(iv). If condition (1) is satisfied and the sequence $\left\{T_{n} f(x)\right\}$ is a.e. convergent for a set of $f \in B$ which is dense in B, then $\left\{T_{n} f(x)\right\}$ is a.e. convergent for every $f \in B$.

The next lemma plays a decisive role in the proof of Theorem 0 and sometimes is called Banach's principle in a strict sense.

- Lemma 0. Let the operators T_{n} possess properties (i)—(iii). If condition (1) is satisfied, then there exists a positive, nonincreasing function $C(\lambda)$, defined for $\lambda>0$ and tending to zero as $\lambda \rightarrow \infty$ such that

$$
\mu\left\{x: T^{*} f(x)>\lambda\|f\|\right\} \leqq C(\lambda) \text { for every } \lambda>0 \text { and } f \in B .
$$

A simple consequence is the following
Corollary. Let the operators T_{n} possess properties (i)-(iii). If condition (1) is satisfied, then T^{*} is continuous in measure, even uniformly in f.

3. Extension to multiple sequences using the convergence notion in Pringsheim's sense

Let \mathscr{N}^{d} be the set of all d-tuples $\mathbf{k}=\left(k_{1}, \ldots, k_{d}\right)$ with positive integers for coordinates, where $d \geqq 1$ is a fixed integer. As usual, put

$$
\mathbf{k}=\left(k_{1}, \ldots, k_{d}\right) \leqq\left(m_{1}, \ldots, m_{d}\right)=\mathbf{m} \quad \text { iff } \quad k_{j} \leqq m_{j} \quad(j=1, \ldots, d)
$$

$$
\mathbf{k} \pm \mathbf{m}=\left(k_{1} \pm m_{1}, \ldots, k_{d} \pm m_{\mathrm{d}}\right), \mathbf{k} \mathbf{m}=\left(k_{1} m_{1}, \ldots, k_{d} m_{\mathrm{d}}\right), \quad \text { and } \quad \mathbf{1}=(1, \ldots, 1)
$$

We recall that a d-multiple sequence $\left\{t_{\mathrm{m}}: \mathrm{m} \in \mathcal{N}^{d}\right\}$ of real numbers is said to be convergent in Pringsheim's sense if for every $\varepsilon>0$ there exists an $M=M(\varepsilon)$ so that $\left|t_{\mathrm{k}}-t_{\mathrm{m}}\right|<\varepsilon$ whenever

$$
\begin{equation*}
\min \left(k_{1}, \ldots, k_{d}\right) \geqq M \quad \text { and } \quad \min \left(m_{1}, \ldots, m_{d}\right) \geqq M \tag{2}
\end{equation*}
$$

We consider a d-multiple sequence $\left\{T_{\mathbf{k}}: \mathbf{k} \in \mathscr{N}^{d}\right\}$ of operators having properties (i)-(iii) or (i)-(iv) enumerated in Section 1. It is a simple fact that the sequence $\left\{T_{\mathrm{k}} f(x)\right\}$ is convergent a.e. on X in Pringsheim's sense for a given $f \in B$ if and only if

$$
\lim _{M \rightarrow \infty} \sup _{\text {under }(2)}\left|T_{\mathrm{k}} f(x)-T_{\mathrm{m}} f(x)\right|=0 \quad \text { a.e. on } X
$$

or equivalently, for every $\varepsilon>0$,

$$
\begin{equation*}
\mu\left\{x: \sup _{\text {under }(2)}\left|T_{\mathrm{k}} f(x)-T_{\mathrm{m}} f(x)\right|>\varepsilon\right\} \rightarrow 0 \quad \text { as } \quad M \rightarrow \infty . \tag{3}
\end{equation*}
$$

On the other hand, it is clear that if $\left\{T_{\mathrm{k}} f(x)\right\}$ is convergent a.e. on X in Pringsheim's sense for every $f \in B$, then we also have

$$
\begin{equation*}
T_{*} f(x)=\inf _{M=1,2, \ldots \min \left(k_{1}, \ldots, k_{d}\right) \geqq M}\left|T_{\mathrm{k}} f(x)\right|<\infty \quad \text { a.e. on } X \quad \text { for every } \quad f \in B \tag{4}
\end{equation*}
$$

For the sake of brevity, we write

$$
T_{*_{M}} f(x)=\sup _{\min \left(k_{1}, \ldots, k_{d}\right) \geq M}\left|T_{\mathrm{k}} f(x)\right| \quad(M=1,2, \ldots)
$$

The basic fact is again that condition (4) itself already implies the continuity of the operator T_{*} in measure, uniformly in f. Vice versa, it will be also seen that in certain cases such a continuity property for T_{*} is all that is needed to establish the a.e. convergence of the d-multiple sequence $\left\{T_{\mathbf{k}} f(x)\right\}$ in Pringsheim's sense for every $f \in B$.

The following theorem extends Theorem 0 .
Theorem 1. Let the operators $T_{\mathbf{k}}, \mathbf{k} \in \mathscr{N}^{d}$, possess properties (i)-(iv). If condition (4) is satisfied, then the set of those $f \in B$ for which the d-multiple sequence $\left\{T_{\mathrm{k}} f(x)\right\}$ is á.e. convergent in Pringsheim's sense is closed.

This implies the next
Corollary 1. Let the operators $T_{\mathbf{k}}$ possess properties (i)-(iv). If condition (4) is satisfied and the d-multiple sequence $\left\{T_{\mathrm{k}} f(x)\right\}$ is a.e. convergent in Pringsheim's sense for a set of $f \in B$ which is dense in B, then $\left\{T_{\mathbf{k}} f(x)\right\}$ is a.e. convergent in Pringsheim's sense for every $f \in B$.

The continuity property of T_{*} mentioned above is expressed in the following
Lemma 1. Let the operators $T_{\mathbf{k}}, \mathbf{k} \in \mathscr{N}^{d}$, possess properties (i)-(iii). If condition (4) is satisfied, then there exists a positive, nonincreasing function $C(\lambda)$, defined for $\lambda>0$ and tending to zero as $\lambda \rightarrow \infty$ such that

$$
\begin{equation*}
\mu\left\{x: \sup _{\min \left(k_{1}, \ldots, k_{d}\right) \geq \lambda}\left|T_{\mathrm{k}} f(x)\right|>\lambda\|f\|\right\} \leqq C(\lambda) \quad \text { for every } \quad \lambda>0 \quad \text { and } \quad f \in B . \tag{5}
\end{equation*}
$$

This immediately yields $\mu\left\{x: T_{*} f(x)>\lambda\|f\|\right\} \equiv C(\lambda)$, which can be reformulated as follows:

Corollary 2. Let the operators $T_{\mathbf{k}}$ possess properties (i)-(iii). If condition (4) is satisfied, then T_{*} is continuous in measure, even uniformly in f.

Proof of Lemma 1. It is modelled upon the proof of Lemma 0 (see in [2, pp. 2-3]).

By (ii), we need only establish (5) for $\|f\|=1$. Let an $\varepsilon>0$ be given. Owing to (4) for every $f \in B$ there exists an M, possibly depending on ε and f, such that

$$
\mu\left\{x: T_{* M} f(x)>M\right\} \leqq \varepsilon
$$

In other words, this means that

$$
B=\bigcap_{M=1}^{\infty}\left\{f: \mu\left\{x: T_{*_{M}} f(x)>M\right\} \leqq \varepsilon\right\}
$$

We shall show that each set on the right of the last equality is closed. To this effect, observe that for each M,

$$
\begin{equation*}
\left\{f: \mu\left\{x: T_{* M} f(x)>M\right\} \leqq \varepsilon\right\}=\bigcap_{N=M}^{\infty}\left\{f: \mu\left\{x: T_{* M N} f(x)>M\right\} \leqq \varepsilon\right\} \tag{6}
\end{equation*}
$$

where

$$
T_{* M N} f(x)=\max _{\substack{M \leq \min \left(k_{1}, \ldots, k_{d}\right) \leq \\ \leqq \max \left(k_{1}, \ldots, k_{d}\right) \leqq N}}\left|T_{\mathrm{k}} f(x)\right| \quad(M, N=1,2, \ldots ; M \leqq N)
$$

By (i), for every f and g in B we have

$$
\left|T_{* M N} f(x)-T_{* M N} g(x)\right| \leqq T_{*_{M N}}(f-g)(x)+T_{* M N}(g-f)(x)
$$

Consequently, for every $\delta>0$,

$$
\begin{gathered}
\mu\left\{x:\left|T_{*_{M N}} f(x)-T_{*_{M N}} g(x)\right|>\delta\right\} \leqq \\
\leqq \sum_{k_{1}=M}^{N} \cdots \sum_{k_{d}=M}^{N}\left[\mu\left\{x:\left|T_{\mathbf{k}}(f-g)(x)\right|>\frac{\delta}{2}\right\}+\mu\left\{x:\left|T_{\mathbf{k}}(g-f)(x)\right|>\frac{\delta}{2}\right\}\right] .
\end{gathered}
$$

Since each operator $T_{\mathbf{k}}$ is continuous in measure (property (iii)), hence it follows that the operators ${ }^{\cdot} T_{* M N}$ are also continuous in measure. Therefore, each of the sets

$$
\left\{f: \mu\left\{x: T_{*_{M N}} f(x)>M\right\} \leqq \varepsilon\right\}
$$

is closed, and thus so is the set in (6).
Now we apply the Baire category theorem and conclude that one of the sets in (6) contains a closed ball, say with some center $f_{0} \in B$ and radius $\varrho>0$. This means that if $f \in B$ and $\left\|f-f_{0}\right\| \leqq \varrho$, then

$$
\mu\left\{x: T_{* M} f(x)>M\right\} \leqq \varepsilon
$$

In other words, if $g \in B$ and $\|g\| \leqq 1$, then

$$
\mu\left\{x: T_{*_{M}}\left(f_{0}+\varrho g\right)(x)>M\right\} \leqq \varepsilon .
$$

This yields
(7)

$$
\begin{gathered}
\mu\left\{x: T_{* M} g(x)>\frac{2 M}{\varrho}\right\} \leqq \mu\left\{x: T_{* M}\left(f_{0}+\varrho g\right)(x)>M\right\}+\mu\left\{x: T_{* M} f_{0}(x)>M\right\} \leqq 2 \varepsilon \\
\text { for every } \quad g \in B,\|g\| \leqq 1
\end{gathered}
$$

It is not hard to verify that (7) already implies (5) to be proved. In fact, put

$$
C(\lambda)=\sup _{\|\boldsymbol{\theta}\| \leq 1} \mu\left\{x: T_{*_{[\lambda]}} f(x)>\lambda\right\},
$$

where by [λ] we denote the integral part of $\lambda>0$. Inequality (7) shows that $C(\lambda) \leqq 2 \varepsilon$ if $\lambda \geqq \max (M, 2 M / \varrho)$. Thus we have

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} C(\lambda)=0 \tag{8}
\end{equation*}
$$

and our assertion is proved.
Proof of Theorem 1. Denote by \mathscr{C} the set of $f \in B$ for which the d-multiple sequence $\left\{T_{\mathrm{k}} f(x)\right\}$ is a.e. convergent in Pringsheim's sense. We are to show that if for a given $f \in B$ it is true that for every $\varepsilon>0$ there is a $g \in \mathscr{C}$ such that $\|f-g\|<\varepsilon$, then $f \in \mathscr{C}$ as well.

By (iv),

$$
\begin{aligned}
& \left|T_{\mathrm{k}} f(x)-T_{\mathrm{m}} f(x)\right| \leqq\left|T_{\mathrm{k}} f(x)-T_{\mathrm{k}} g(x)\right|+\left|T_{\mathrm{k}} g(x)-T_{\mathrm{m}} g(x)\right|+\left|T_{\mathrm{m}} g(x)-T_{\mathrm{m}} f(x)\right| \leqq \\
& \left.\leqq \nmid\left|T_{\mathrm{k}}(f-g)(x)\right|+\left|T_{\mathrm{k}}(g-f)(x)\right|+\left|T_{\mathrm{m}}(g-f)(x)\right|+\left|T_{\mathrm{m}}(f-g)(x)\right|\right]+\left|T_{\mathrm{k}} g(x)-T_{\mathrm{m}} g(x)\right| .
\end{aligned}
$$

Thus, for every $\lambda>0$ and $M \geqq 1$,

$$
\begin{gather*}
\mu\left\{x: \sup _{\text {under }(2)}\left|T_{\mathrm{k}} f(x)-T_{\mathrm{m}} f(x)\right|>\lambda\|f-g\|\right\} \leqq \tag{9}\\
\leqq \mu\left\{x: T_{*_{M}}(f-g)(x)>\frac{\lambda}{5 x}\|f-g\|\right\}+\mu\left\{x: T_{* M}(g-f)(x)>\frac{\lambda}{5 x}\|f-g\|\right\}+ \\
+\mu\left\{x: \sup _{\text {under }(2)}\left|T_{\mathrm{k}} g(x)-T_{\mathrm{m}} g(x)\right|>\frac{\lambda}{5}\|f-g\|\right\} .
\end{gather*}
$$

Let us fix a $\delta>0$ and an $\varepsilon>0$. In virtue of (5) and (8) we get

$$
\mu\left\{x: T_{*_{M}}(f-g)(x)>M\|f-g\|\right\} \leqq C(M) \leqq \frac{\delta}{3}
$$

if M is large enough, say $M \geqq M_{1}$, independently of $g \in \mathscr{C}$. Taking $\lambda=5 x M_{1}$; hence it follows

$$
\mu\left\{x: T_{* M}(f-g)(x)>\frac{\lambda}{5 \chi}\|f-g\|\right\}+
$$

$$
\begin{equation*}
+\mu\left\{x: T_{*_{M}}(g-f)(x)>\frac{\lambda}{5 \varkappa}\|f-g\|\right\} \leqq \frac{2 \delta}{3} \quad \text { for } \quad M \geqq M_{1} \tag{10}
\end{equation*}
$$

Now let us choose $g \in \mathscr{C}$ in such a way that $\lambda\|f-g\| \leqq \varepsilon$. Due to (3), there exists an M_{2} such that

$$
\begin{equation*}
\mu\left\{x: \sup _{\text {under }(2)}\left|T_{\mathrm{k}} g(x)-T_{\mathrm{m}} g(x)\right|>\frac{\lambda}{5}\|f-g\|\right\} \leqq \frac{\delta}{3} \quad \text { for } \quad M \geqq M_{2} . \tag{11}
\end{equation*}
$$

Collecting together (9)—(11), we can infer

$$
\mu\left\{x: \sup _{\text {under }(2)}\left|T_{\mathrm{k}} f(x)-T_{\mathrm{m}} f(x)\right|>\varepsilon\right\} \leqq \delta \quad \text { for } \quad M \geqq \max \left(M_{1}, M_{2}\right)
$$

Since δ and ε are arbitrary, we obtain relation (3). But this is equivalent to the a.e. convergence of the d-multiple sequence $\left\{T_{\mathrm{k}} f(x)\right\}$ in Pringsheim's sense.

4. Extension to multiple sequences using the notion of regular convergence

Following Hardy [3] (cf. [5]; where this kind of convergence was rediscovered and called "convergence in a restricted sense") we say that a d-multiple series

$$
\sum_{\mathbf{k} \in \mathcal{N}^{d}} b_{\mathbf{k}}=\sum_{k_{2}=1}^{\infty} \ldots \sum_{k_{d}=1}^{\infty} b_{k_{1}, \ldots, k_{d}}
$$

of real numbers is regularly convergent if for every $\varepsilon>0$ there exists an $M=M(\varepsilon)$ so that

$$
\begin{equation*}
\left|\sum_{\mathrm{m} \leq \mathrm{k} \leq \mathrm{n}} b_{\mathrm{k}}\right|=\left|\sum_{k_{1}=m_{1}}^{n_{1}} \ldots \sum_{k_{d}=m_{d}}^{n_{d}} b_{k_{1}, \ldots, k_{d}}\right|<\varepsilon \tag{12}
\end{equation*}
$$

whenever

$$
\begin{equation*}
\max \left(m_{1}, \ldots, m_{d}\right) \geqq M \quad \text { and } \quad \mathbf{n} \geqq \mathbf{m} . \tag{13}
\end{equation*}
$$

It is a trivial fact that the regular convergence of series (12) implies the convergence of the rectangular partial sums

$$
s_{\mathrm{m}}=\sum_{1 \leq \mathrm{k} \leq \mathrm{m}} b_{\mathrm{k}} \quad\left(\mathbf{m} \in \mathscr{N}^{d}\right)
$$

in Pringsheim's sense.
Given a d-multiple sequence $\left\{t_{\mathrm{m}}: m \in \mathscr{N}^{d}\right\}$ of real numbers, first we define the "total" finite differences Δt_{m} as follows

$$
\Delta t_{\mathrm{m}}=\sum_{\eta_{1}=0}^{1} \ldots \sum_{\eta_{d}=0}^{1}(-1)^{d-\eta_{1}-\ldots-\eta_{d}} t_{m_{1}-1+\eta_{1}, \ldots, m_{d}-1+\eta_{d}}
$$

with the agreement that $t_{k_{1}, \ldots, k_{d}}$ is taken to equal 0 if $k_{j}=0$ for at least one $\cdot j$, $1 \leqq j \leqq d$. Then we consider the d-multiple series

$$
\begin{equation*}
\sum_{\mathrm{m} \in \mathcal{N}^{d}} \Delta t_{\mathrm{m}} \tag{14}
\end{equation*}
$$

whose rectangular partial sums coincide with the t_{m}. Now we say that the d-multiple sequence $\left\{t_{\mathrm{m}}\right\}$ is regularly convergent if series (14) is regularly convergent. In other words, this requires that for every $\varepsilon>0$ there exists an $M=M(\varepsilon)$ so that

$$
\left|\sum_{\eta_{1}=0}^{1} \ldots \sum_{\eta_{d}=0}^{1}(-1)^{\eta_{1}+\ldots+\eta_{d} t_{\eta \mathrm{m}+(1-\eta) \mathrm{n}}}\right|<\varepsilon, \quad \eta=\left(\eta_{1}, \ldots, \eta_{d}\right),
$$

whenever (13) is satisfied. For brevity, denote by $\Delta_{\mathrm{m}, \mathrm{n}} t_{\mathrm{k}}$ the expression between the absolute signs.

After these preliminaries, consider again a d-multiple sequence $\left\{T_{\mathbf{k}}: \mathbf{k} \in \mathscr{N}^{d}\right\}$ of operators possessing properties (i)-(iv). The a.e. regular convergence can be characterized as follows. The d-multiple sequence $\left\{T_{\mathrm{k}} f(x)\right\}$ is regularly convergent a.e. on X for an $f \in B$ if and only if

$$
\lim _{M \rightarrow \infty} \sup _{\text {under }(13)}\left|\Delta_{\mathrm{m}, \mathrm{n}} T_{\mathrm{k}} f(x)\right|=0 \quad \text { a.e. on } X,
$$

or equivalently, for every $\varepsilon>0$,

$$
\begin{equation*}
\mu\left\{x: \sup _{\text {under }(13)}\left|\Delta_{\mathrm{m}, \mathrm{n}} T_{\mathrm{k}} f(x)\right|>\varepsilon\right\} \rightarrow 0 \quad \text { as } \quad M \rightarrow \infty . \tag{15}
\end{equation*}
$$

It is obvious that if $\left\{T_{\mathrm{k}} f(x)\right\}$ is regularly convergent a.e. on X for every $f \in B$, then a fortiori we also have that

$$
\begin{equation*}
T^{*} f(x)=\sup _{\mathrm{k} \in \cdot \mathcal{N}^{d}}\left|T_{\mathrm{k}} f(x)\right|<\infty \quad \text { a.e. on } X \text { for every } f \in B \tag{16}
\end{equation*}
$$

The fundamental fact is again that condition (16) itself already implies that the operator T^{*} is continuous in measure, uniformly in f. Indeed, both Lemma 0 and its Corollary are plainly true for the set $\left\{T_{\mathbf{k}}: \mathbf{k} \in \mathscr{N}^{d}\right\}$ of operators under properties (i)-(iii) and condition (16).

The extension of Theorem 0 reads as follows.
Theorem 2. Let the operators $T_{\mathbf{k}}, \mathbf{k} \in \mathscr{N}^{d}$, possess properties (i)-(iv). If condition (16) is satisfied, then the set \mathscr{C} of those $f \in B$ for which the d-multiple sequence $\left\{T_{\mathbf{k}} f(x)\right\}$ is a.e. regularly convergent is closed.

An immediate consequence is that if the a.e. regular convergence of $\left\{T_{\mathbf{k}} f(x)\right\}$ is established when f belongs to some special class which is dense in B, then the a.e. regular convergence of $\left\{T_{\mathrm{k}} f(x)\right\}$ for every $f \in B$ is completely equivalent to the fulfilment of inequality (16).

Proof of Theorem 2. We have to prove that if $f \in B$ is such that for every $\varepsilon>0$ there is a $g \in \mathscr{C}$ for which $\|f-g\|<\varepsilon$, then $f \in \mathscr{C}$ as well. To this end, we prove (15).

A simple estimation shows that

$$
\begin{gathered}
\mu\left\{x: \sup _{\text {under }(13)}\left|\Delta_{\mathrm{m}, \mathrm{a}} T_{\mathrm{k}} f(x)\right|>\lambda\|f-g\|\right\} \leqq \\
\leqq \mu\left\{x: \sup _{\text {under }(13)}\left|\Delta_{\mathrm{m}, \mathrm{n}} T_{\mathrm{k}} f(x)-\Delta_{\mathrm{m}, \mathrm{n}} T_{\mathrm{k}} g(x)\right|>\frac{\lambda}{2}\|f-g\|\right\}+ \\
+\mu\left\{x: \sup _{\text {under }(13)}\left|\Delta_{\mathrm{m}, \mathrm{n}} T_{\mathrm{k}} g(x)\right|>\frac{\lambda}{2}\|f-g\|\right\} .
\end{gathered}
$$

As to the first term on the right, we illuminate the situation in the particular case $d=2$:

$$
\begin{gathered}
\left|\Delta_{\mathrm{m}, \mathrm{n}} T_{\mathrm{k}} f(x)-\Delta_{\mathrm{m}, \mathrm{n}} T_{\mathrm{k}} g(x)\right| \leqq\left|T_{n_{1} n_{2}} f(x)-T_{n_{1} n_{2}} g(x)\right|+\left|T_{m_{1} n_{2}} f(x)-T_{m_{1} n_{2}} g(x)\right|+ \\
\quad+\left|T_{n_{1} m_{2}} f(x)-T_{n_{1} m_{2}} g(x)\right|+\left|T_{m_{1} m_{2}} f(x)-T_{m_{1} m_{2}} g(x)\right| \leqq \\
\leqq \chi\left[\left|T_{n_{1} n_{2}}(f-g)(x)\right|+\left|T_{n_{1} n_{2}}(g-f)(x)\right|+\ldots\right] \leqq 4 x\left[T^{*}(f-g)(x)+T^{*}(g-f)(x)\right] .
\end{gathered}
$$

So, it can be easily seen that

$$
\begin{gather*}
\leqq \mu\left\{x: T^{*}(f-g)(x)>\frac{\lambda}{2^{d+2} \varkappa}\|f-g\|\right\}+\mu\left\{x: T^{*}(g-f)(x)>\frac{\lambda}{2^{d+2} \varkappa}\|f-g\|\right\}+ \tag{17}\\
+\mu\left\{x: \sup _{\text {under }(13)}\left|A_{\mathrm{m}, \mathrm{n}} T_{\mathrm{k}} g(x)\right|>\frac{\lambda}{2}\|f-g\|\right\} .
\end{gather*}
$$

Owing to Lemma 0 , applied this time to $\left\{T_{\mathbf{k}}: \mathbf{k} \in \mathscr{N}^{d}\right\}$, we obtain

$$
\begin{equation*}
\mu\left\{x: T^{*}(f-g)(x)>\frac{\lambda}{2^{d+2} \chi}\|f-g\|\right\} \leqq C\left(\frac{\lambda}{2^{d+2} \chi}\right), \tag{18}
\end{equation*}
$$

independently of $g \in \mathscr{C}$. By choosing $\lambda=1 / \varepsilon \varepsilon_{1}$ and taking $\|f-g\| \leqq \varepsilon^{2} \varepsilon_{1}$, where $\varepsilon_{1}>0$ will be chosen later on, we get from (17) and (18) that

$$
\begin{gather*}
\mu\left\{x: \sup _{\text {under }(13)}\left|\Delta_{\mathrm{m}, \mathrm{n}} T_{\mathrm{k}} f(x)\right|>\varepsilon\right\} \leqq \tag{19}\\
\leqq 2 C\left(\frac{1}{2^{d+2} \chi \varepsilon \varepsilon_{1}}\right)+\mu\left\{x: \sup _{\text {under }(13)}\left|\Delta_{\mathrm{m}, \mathrm{n}} T_{\mathrm{k}} g(x)\right|>\frac{\varepsilon}{2}\right\} .
\end{gather*}
$$

By (8), the first term on the right tends to zero as $\varepsilon_{1} \rightarrow 0$. Given a $\delta>0$, we can fix $\varepsilon_{1}>0$ so that this term does not exceed $\delta / 2$. Then using the fact that $g \in \mathscr{C}$, the second term on the right-hand side of (19) can be made less than $\delta / 2$ by choosing M sufficiently large, say $M \geqq M_{0}$. To sum up, we conclude that

$$
\mu\left\{x: \sup _{\text {under }(13)}\left|\Delta_{\mathrm{m}, \mathrm{n}} T_{\mathbf{k}} f(x)\right|>\varepsilon\right\} \leqq \delta \quad \text { for } \quad M \geqq M_{0} .
$$

The proof of Theorem 2 is complete.

5. Application to a problem of summability of multiple orthogonal series

Let $\Phi=\left\{\varphi_{\mathbf{k}}(x): \mathbf{k} \in \mathscr{N}^{d}\right\}$ be an orthonormal system (in abbreviation: ONS) on X. We shall consider the d-multiple series

$$
\begin{equation*}
\sum_{\mathbf{k} \in \mathcal{N}^{d}} c_{\mathrm{k}} \varphi_{\mathrm{k}}(x) \tag{20}
\end{equation*}
$$

where $\left\{c_{\mathbf{k}}: \mathbf{k} \in \mathscr{N}^{d}\right\}$ is a d-multiple sequence of real numbers (coefficients) for which

$$
\begin{equation*}
\sum_{\mathbf{k} \in \mathbb{N}^{d}} c_{\mathbf{k}}^{2}<\infty . \tag{21}
\end{equation*}
$$

By the Riesz-Fischer theorem the sum of series (20) exists in the sense of the mean convergence in $L^{2}(X)$-metric. In the following we shall be interested in the pointwise summability of series (20).

Let $\mathscr{A}=\left\{a_{\mathrm{m}, \mathbf{k}}: \mathbf{m}, \mathbf{k} \in \mathscr{N}^{d}\right\}$ be a given " d-multiple matrix" of real numbers with the following two properties:

$$
\begin{equation*}
a_{\mathrm{m}, \mathrm{k}} \rightarrow a_{\mathrm{k}} \quad \text { as } \min \left(m_{1}, \ldots, m_{d}\right) \rightarrow \infty \quad \text { for every } \mathbf{k} \in \mathcal{N}^{d} \tag{22}
\end{equation*}
$$

and this convergence is regular in the sense of Section 4, and

$$
\begin{equation*}
\sum_{k \in N^{d}} a_{\mathrm{m}, \mathrm{k}}^{2}<\infty \quad \text { for every } \mathrm{m} \in \mathscr{N}^{d} \tag{23}
\end{equation*}
$$

The so-called \mathscr{A}-means of series (20) are formed as follows

$$
t_{\mathrm{m}}(x)=\sum_{\mathbf{k} \in \mathbb{N}^{d}} a_{\mathrm{m}, \mathrm{k}} c_{\mathrm{k}} \varphi_{\mathbf{k}}(x) \quad\left(\mathrm{m} \in \mathscr{N}^{d}\right)
$$

which results in a series-sequence transformation. By (21) and (23), the \mathscr{A}-means exist in the sense of $L^{2}(X)$-metric. Now, series (20) is said to be \mathscr{A}-summable (regularly or in Pringsheim's sense) if $\left\{t_{m}(x): \mathbf{m} \in \mathscr{N}^{d}\right\}$ as a d-multiple sequence is (regularly or in Pringsheim's sense, respectively) convergent.

We need the modified Lebesgue functions $L_{M}^{*}(\mathscr{A}, \Phi ; x)$ of the system Φ with respect to the summation method \mathscr{A} defined in the following way. We set

$$
K_{\mathrm{m}}(\mathscr{A}, \Phi ; x, y)=\sum_{\mathrm{k} \in \mathcal{N}^{d}} a_{\mathrm{m}, \mathrm{k}} \varphi_{\mathrm{k}}(x) \varphi_{\mathrm{k}}(y) \quad\left(\mathrm{m} \in \mathscr{N}^{d}\right)
$$

Again by (23), the kernel $K_{\mathrm{m}}(\mathscr{A}, \Phi ; x, y)$ as a function of y exists in the sense of $L^{2}(X)$-metric for almost every x. Consequently, the integral

$$
L_{M}^{*}(\mathscr{A}, \Phi ; x)=\int_{X}\left(\max _{\max \left(m_{1}, \ldots, m_{d}\right) \leqq M}\left|K_{\mathrm{m}}(\mathscr{A}, \Phi ; x, y)\right|\right) d \mu(y) \quad(M=1,2, \ldots)
$$

exists for almost every x and even belongs to $L^{2}(X)$.
Now we are ready to state
Theorem 3. Suppose that $\Phi=\left\{\varphi_{\mathbf{k}}(x): \mathbf{k} \in \mathscr{N}^{d}\right\}$ is an ONS on $X,\left\{c_{\mathbf{k}}: \mathbf{k} \in \mathscr{N}^{d}\right\}$ is a sequence of coefficients satisfying condition (21), and $\mathscr{A}=\left\{a_{\mathrm{m}, \mathbf{k}}: \mathbf{m}, \mathbf{k} \in \mathscr{N}^{d}\right\}$
is a matrix of real numbers satisfying conditions (22) and (23). If

$$
\begin{equation*}
L:=\int_{X}\left\{\sup _{M=1,2, \ldots} L_{M}^{*}(\mathscr{A}, \Phi ; x)\right\}^{2} d \mu(x)<\infty, \tag{24}
\end{equation*}
$$

then series (20) is regularly \mathscr{A}-summable a.e. on X.
This theorem in the special case $d=1$ is due to Tandori [6].
First we prove the following
Lemma 2. Under the conditions of Theorem 3, except (22), we have

$$
\begin{equation*}
\int_{X}\left(\sup _{\mathrm{m} \in \mathscr{N}^{d}}\left|t_{\mathrm{m}}(x)\right|\right) d \mu(x) \leqq\left\{2 L^{1 / 2}+\left(\sup _{\mathrm{k} \in \mathcal{N}^{d}} a_{1, \mathrm{k}}^{2}\right)^{1 / 2}\right\}\left\{\sum_{\mathrm{k} \in \mathcal{N}^{d}} c_{\mathrm{k}}^{2}\right\}^{1 / 2} . \tag{25}
\end{equation*}
$$

Proof of Lemma 2. It will be done by a modification of the well-known classical method (see, e.g. [4] and also [6]).

For every positive integer M and $x \in X$ define $\mathbf{M}(x)=\left(M_{1}(x), \ldots, M_{d}(x)\right) \in \mathcal{N}^{d}$ in a unique way such that $1 \leqq M_{j}(x) \leqq M$ for each $j=1, \ldots, d$ and

$$
t_{\mathbf{M}(x)}(x)=\max _{\max \left(m_{1}, \ldots, m_{d}\right) \leqq M} t_{\mathrm{m}}(x) \quad(M=1,2, \ldots)
$$

Using the representation

$$
t_{\mathbf{M}(x)}(x)=\int_{X}\left(\sum_{\mathbf{k} \in \mathcal{N}^{d}} c_{\mathbf{k}} \varphi_{\mathbf{k}}(y)\right)\left(\sum_{\mathbf{n} \in \mathcal{N}^{d}} a_{\mathbf{M}(x), \mathbf{n}} \varphi_{\mathbf{n}}(x) \varphi_{\mathbf{n}}(y)\right) d \mu(y),
$$

Fubini's theorem and the Schwarz inequality imply that

$$
\begin{gathered}
\int_{X} t_{M(x)}(x) d \mu(x)=\int_{X}\left\{\left(\sum_{\mathbf{k} \in \mathcal{N}^{d}} c_{\mathbf{k}} \varphi_{\mathbf{k}}(y)\right) \int_{X} \sum_{\mathbf{n} \in \mathcal{N}^{d}} a_{M(x), \mathrm{n}} \varphi_{\mathbf{n}}(x) \varphi_{\mathbf{n}}(y) d \mu(x)\right\} d \mu(y) \leqq \\
\leqq \int_{X}\left\{\left.\right|_{\mathbf{k} \in \mathcal{N}^{d}} c_{\mathbf{k}} \varphi_{\mathbf{k}}(y) \mid \int_{X}\left(\left.\max _{\max \left(m_{\mathbf{l}}, \ldots, m_{d}\right) \leqq M}\right|_{\mathbf{n} \in \mathcal{N}^{d}} a_{\mathrm{m}, \mathrm{n}} \varphi_{\mathbf{n}}(x) \varphi_{\mathbf{n}}(y) \mid\right) d \mu(x)\right\} d \mu(y)= \\
\left.=\int_{X}\left|\sum_{\mathbf{k} \in \mathcal{N}^{d}} c_{\mathbf{k}} \varphi_{\mathbf{k}}(y)\right| L_{M}^{*}(\mathscr{A}, \Phi ; y) d \mu(y) \leqq\left\{L_{\mathbf{k} \in \mathcal{N}^{d}} \sum_{\mathbf{k}}\right\}^{2}\right\}^{1 / 2},
\end{gathered}
$$

the last inequality is by (24). Applying Beppo Levi's theorem, hence it follows that

$$
\int_{X}\left\{\sup _{\mathrm{m} \in \mathcal{N}^{d}} t_{\mathrm{m}}(x)\right\} d \mu(x) \leqq\left\{L \sum_{\mathbf{k} \in \mathcal{N}^{d}} c_{\mathrm{k}}^{2}\right\}^{1 / 2}
$$

Repeating this argument for $-t_{\mathrm{m}}(x)$, which corresponds to the system $\left\{-\varphi_{\mathbf{k}}(x): \mathbf{k} \in \mathscr{N}^{d}\right\}$, we obtain

$$
\int_{X}\left\{\sup _{\mathrm{m} \in \mathscr{N}^{d}}\left(-t_{\mathrm{m}}(x)\right)\right\} d \mu(x) \leqq\left\{L \sum_{\mathbf{k} \in \mathcal{N}^{d}} c_{\mathbf{k}}^{2}\right\}^{1 / 2}
$$

Now, the wanted inequality (25) follows from the elementary relation

$$
\sup _{\mathbf{m} \in \mathscr{N}^{d}}\left|t_{\mathrm{m}}(x)\right| \leqq \sup _{\mathbf{m} \in \mathscr{N}^{d}} t_{\mathrm{m}}(x)+\sup _{\mathbf{k} \in \mathscr{N}^{d}}\left(-t_{\mathrm{m}}(x)\right)+\left|t_{\mathbf{1}}(x)\right|
$$

Proof of Theorem 3. We recall that the set $l^{2}\left(\mathscr{N}^{d}\right)$ of those d-multiple sequences $t=\left\{c_{\mathbf{k}}: \mathbf{k} \in \mathscr{N}^{d}\right\}$ for which condition (21) is satisfied, endowed with the usual vector operations and Euclidean norm, is a Banach space. The operators

$$
\mathfrak{c} \rightarrow T_{\mathrm{m}} \mathrm{c}(x)=t_{\mathrm{m}}(x): l^{2}\left(\mathcal{N}^{d}\right) \rightarrow L^{2}(X) \quad\left(\mathrm{m} \in \mathcal{N}^{d}\right)
$$

are clearly linear and continuous in $L^{2}(X)$-metric, a fortiori in measure. The continuity in $L^{2}(X)$-metric is shown by the estimate

$$
\int_{X} t_{\mathrm{m}}^{2}(x) d \mu(x)=\sum_{\mathbf{k} \in \mathcal{N}^{d}} a_{\mathrm{m}, \mathrm{k}}^{2} c_{\mathrm{k}}^{2} \leqq\left(\max _{\mathbf{k} \in \mathcal{N}^{d}} a_{\mathrm{m}, \mathrm{k}}^{2}\right) \sum_{\mathrm{k} \in \mathcal{N}^{d}} c_{\mathrm{k}}^{2}
$$

Due to Lemma 2, for every $c \in l^{2}\left(\mathcal{N}^{d}\right)$,

$$
\begin{equation*}
T^{*} c(x)=\sup _{\mathbf{m} \in \mathcal{N}^{d}}\left|t_{\mathrm{m}}(x)\right|<\infty \quad \text { a.e. } \quad \text { on } \quad X \tag{26}
\end{equation*}
$$

For every $\mathfrak{c} \in l^{2}\left(\mathscr{N}^{d}\right)$ and $M=1,2, \ldots$ define $c^{(M)}=\left\{c_{\mathbf{k}}^{(M)}: \mathbf{k} \in \mathscr{N}^{d}\right\}$ as follows

$$
c_{\mathbf{k}}^{(M)}= \begin{cases}c_{\mathbf{k}} & \text { if } \max \left(k_{1}, \ldots, k_{d}\right) \leqq M \\ 0 & \text { otherwise }\end{cases}
$$

It is also clear that these "finite sequences" $c^{(M)}$ constitute a dense subset in $l^{2}\left(\mathcal{N}^{d}\right)$. Furthermore, (22) yields

$$
\begin{gather*}
T_{\mathrm{m}} \mathrm{c}^{(M)}(x)=\sum_{k_{1}=1}^{M} \ldots \sum_{k_{d}=1}^{M} a_{\mathrm{m}, \mathrm{k}} c_{\mathrm{k}} \varphi_{\mathrm{k}}(x) \rightarrow \sum_{k_{\mathrm{t}}=1}^{M} \ldots \sum_{k_{d}=1}^{M} a_{\mathrm{k}} c_{\mathrm{k}} \varphi_{\mathrm{k}}(x) \tag{27}\\
\text { as } \min \left(m_{1}, \ldots, m_{d}\right) \rightarrow \infty \text { for every } M=1,2, \ldots
\end{gather*}
$$

and even this convergence is regular in the sense of Section 4.
On the basis of (26) and (27), Theorem 2 is applicable and results that the d-multiple sequence $T_{\mathrm{m}} \mathrm{c}(x)=t_{\mathrm{m}}(x)$ is regularly convergent a.e. on X for every $c \in l^{2}\left(\mathcal{N}^{d}\right)$. This finishes the proof of Theorem 3.

On closing, we formulate a slight generalization of Theorem 3. To this effect, let $\Lambda=\left\{\lambda_{\mathbf{k}}: \mathbf{k} \in \mathscr{N}^{d}\right\}$ be a d-multiple sequence of positive numbers, which is nondecreasing in the sense that $\lambda_{\mathrm{k}} \leqq \lambda_{\mathrm{m}}$ whenever $\mathbf{k} \leqq \mathbf{m}$. Denote by $\Phi / \sqrt{\Lambda}$ the system $\left\{\varphi_{\mathbf{k}}(x) / \sqrt{\lambda_{\mathbf{k}}}: \mathbf{k} \in \mathscr{N}^{d}\right\}$. Then

$$
L_{M}^{*}\left(\mathscr{A}, \frac{\Phi}{\sqrt{\Lambda}} ; x\right)=\int_{X}\left(\max _{\max \left(m_{1}, \ldots, m_{d}\right) \leqslant M}\left|K_{\mathrm{m}}\left(\mathscr{A}, \frac{\Phi}{\sqrt{\Lambda}} ; x, y\right)\right|\right) d \mu(y) \quad(M=1,2, \ldots)
$$

where

$$
K_{\mathrm{m}}\left(\mathscr{A}, \frac{\Phi}{\sqrt{\Lambda}} ; x, y\right)=\sum_{\mathrm{k} \in \mathcal{N}^{d}} a_{\mathrm{m}, \mathrm{k}} \frac{\varphi_{\mathrm{k}}(x) \varphi_{\mathrm{k}}(y)}{\lambda_{\mathrm{k}}} \quad\left(\mathrm{~m} \in N^{d}\right)
$$

The following theorem can be proved analogously to as Theorem 3 is proved.

