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Non-horizontal geodesies of a Riemannian submersion 
P. T. N A G Y 

Dedicated to Professor B. Szókefalvi-Nagy on his 70th birthday 

1. Introduction. For Riemannian manifolds M and P, a submersion n:P—M 
is a smooth mapping of P onto M which has maximal rank and preserves the 
length of horizontal vectors. A tangent vector to P at x is called horizontal if 
it is orthogonal to the fiber n~1on(x) through x, vertical if it is tangent to the 
fiber. The fundamental concepts of a Riemannian submersion were introduced by 
B. O'NEILL [2]. The horizontal geodesies of P were studied in [3]. 

Our aim here is to investigate the non-horizontal geodesies of P and to charac-
terize them with their "projections" on the basic manifold M and on the fibers 
through their points. As an application we shall get a stability property of some 
fibers with respect to the geodesic flow of a class of Riemannian submersions. 

We use the method of moving frame; for the notation and the basic relations 
of the invariants of a submersion we refer to [1]. 

The paper is organised as follows. Section 2 is devoted to the basic concepts 
of a Riemannian submersion. In Section 3 we discuss the translation of fibers, 
along a curve of M defined by the horizontal subspaces and the relation of this 
translation to the Riemannian parallel translation. In Section 4 we treat the equation 
of geodesies as we need. In Section 5 we apply our result in a special class of Rie-
mannian submersions where the translation of fibers is homothetic transformation. 
Finally in Section 6 we investigate the stability of fibers with respect to the geodesic 
flow in the above discussed class of submersions. 

Throughout this paper the indices i,j,k, ...,a,b,c, ... and a, /?, y, ... will 
run from 1 to n+k, form 1 to n and from « + 1 to n+k, respectively, where 
n=dim M, M+/c = dim P. The summation convention will be adopted. 
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2. Adapted frames. Let {L(P) , p, P} and {L(M), q, M} denote the principal 
fiber bundle of linear frames of P and M, respectively. The bundle of adapted 
frames {LM(P),p, P) over P of the submersion n :P-*M is defined as a sub-
bundle of {L(P),p, P} consisting of frames {x; ex, ..., en+k}£Lx(P) such that 
the vectors ex, ...,en are horizontal and the vectors en+1,..., en+k are vertical. 
The structure group of the adapted frame bundle is isomorphic to the group GL(n)X 
X GL(k) c GL(n + k). 

Let <w and <p denote the R"+k-valued canonical form and the gl(«+k)-valued 
Riemannian commection form on L(P). to and (p satisfy the structure equation 

dco = —(pA(a or dco* = — (p'kAcok 

where co1 and (p'k are the components of the forms a> and <p with respect to the 
canonical bases of R"+k and gl(«+/c). 

The fundamental tensors of the submersion are of the form 

A = Ae"cea®(op®af, T = Tp"yea<g>o/ <gKWy 

where {et, ..., en+k) is an adapted frame and {co1, ..., a>n+k} is its dual coframe. 
The Riemannian metric tensor of P can be written as 

g = gabtoa®(ob+gC[fco'®o/ 
on the adapted frame bundle. The metric tensor of the basic manifold is 
g=gab&" ®a>b, where (o"=n*a>". The Riemannian connection form f of M 
defines a form on LM(P) in a natural way whose components are denoted also by t . 

P ropos i t i on 1. The fundamental tensors A, T of the submersion and the 
Riemannian connection forms of P and M are related by the equations 

(1) <pi = rb+(m)Ay\m\ 
(2) cpi = (1/2) Ap"c of + (1/2) Tp"y ojy, 

(3) <Pl = -(ll2)A%ca><-(l/2)T*by(0y, 
where 

git A °'be — gabAfi'c, g*0 TX
by — gab Tpa

y , 

and the tensors A and T satisfy 
(4) Ayab + Ayba = 0, Tp"y = Ty

a
b, 

Proof . The more detailed description of the adapted frame bundle and the 
proof of equations (1), (2), (4) can be found in [1], pp. 155—158 (orthonormed 
frames are used). 

To prove the equation (3) we note that the Riemannian metric tensor satisfies 

dgij-<Phkj-<Pjgik = o. 
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Since gap=0, we have 
0 = dgap = gacVp+gpyVa-

Using (2) we get 

g,r<Pl=-8ac<Pe
f=-gac(.№(Af°iri> + Tll

e
ia]P) = -gfl{l l2)(A?adCDd + T?aSCDS). 

This completes the proof. 

3. Translation of fibers. Let be given a curve y(t) of the basic manifold M 
defined on an open interval i £ / c R . If X0£TI 1(j;(io))> there is a unique 
horizontal curve x(x0, t) (t£I) of P satisfying x(x0, t0)=x0 and nox(x0, t) = y(t). 
These curves define a 1-parameter family of maps r, 7r_ 1(j(i)) 
along the curve y(t),t£l, such that 

This map is called translation of fibers along the curve y(t) of M. The derivative 
map xt u induces a translation of vertical vectors along horizontal curves. A verti-
cal vectorfield Z on P is constant with respect to this translation if and only if 
the Lie derivative ¿?yZ=[Y,Z]=0, where Y is a horizontal vectorfield defined 
in a neighbourhood of 7c_1(j(i)) ( '€ / ) satisfying 7 ( X ( / ) ) = X ( / ) for the horizontal 
lifts x(t) of y(t). Here the dot denotes the derivation by t. 

P r o p o s i t i o n 2. If Y~ Yaea and Z =Z"ea are horizontal and vertical vector-
fields on P then the expression VyZ—Jz?yZ is a (1,1 )-type tensorfield satisfying 

VYZ-SeYZ = (1/2) Ay
a
cY°Zyea — (1/2) T*cy YcZyea. 

Proo f . We fix a point x0£P. Let UczM be a neighbourhood of y0=Tz(x0)€M, 
and t£l^+y(t)£M is a curve in U such that J(/0)=J>0 (t0dl) and y(to)=n*Y(xo)-
Let Y be a horizontal vectorfield defined on a neighbourhood of X0 such that 
Y(x(t))=x(t) for horizontial lifts x(t) of y(t). Let be given a frame field 
{A(>0, ^n(j)} on U and an adapted frame field {ex(x), ...,en+k(x)} on a 
neighbourhood of X0 such that ni:ea{x)=ea(ii(xj). For a smooth function / on 
P we denote the components of its differential with respect to the adapted coframe 
{«'} dual to {<?;} by d j , i.e., df=(dJ)co'. We can write for Y=Y"ea 

VYZ-SeYZ = VZY= ((dy 7")Z' + <p° (Z) Y<)eu + <p°c(Z) Ycea. 

Since the components Y" are constant on the fiber we have dyY"=0. By Proposi-
tion 1 we get 

V7Z-SCYZ = V Z F = # ( Z ) F e « a + # ( Z ) 7 e e . = (i/2)Ay
a
cZyYcea-(il2)Tx

cyZyYcea, 

since the forms t¡/ac are lifted from a form on L(M) and therefore \j/a
c(Z)=0. 

At the point x0 , y(x0)=F(x0) , and the proof is complete. 



350 P. T. Nagy 

4. Equation of geodesies. Let x(s) be an arc-length parametrized curve 
in P, is its projection curve in the basic manifold M and z(s)= 
=tSi ax{s) is its development in the fiber 7i~1(>'(Jo)). s^I. Comma denotes the 
derivation by s. The tangent vector x'(V) can be written as x(s)=Y(s)+Z(s), 
where Y(s) is its horizontal part and Z(s) is its vertical part. The curve x(s) 
is a geodesic if and only if the equations 

Y-' + tfWY' + v'WZy = 0, Z" + (p'c(xn)Yc + (p"y(jS)Zy = 0 

are satisfied, where Y = Y"ea, Z=Z*eaL for an adapted frame field along 
x(y). By Proposition 1 these equations can be written in the form 

(5) Y"' + ipa
c(Y)Yc + Ap"cZfiYc+(il2)Tpa

yZfiZy = 0, 

(6) Za' + <p^x')Zy-OI2)Ax
icYbYc-(,íl2)T%pYcZ^ = 0. 

We know • A"bcYbYc=0 by the skew symmetry of A. The tangent vector y' of 
the projection curve has the components Y" with respect to the frame ea=nifea 

hence the equations (5) are equivalent to 

(7) V , / - ^(Aí¡
a

cZ''Yc + (\/2)Tl¡%Z'!Zy)ea. 

From the equations (6) and (7) it follows immediately that the horizontal lifts of 
geodesies of M are geodesies of P (in this case Z'=0). 

It is also clear that if a geodesic x(j) of P is horizontal at s0£l then it is 
horizontal for all s£J. 

We investigate here the non-horizontal geodesies of P. If is a non-
horizontal curve then (rs JC(J))'?*0 for all s£I. Let us denote by xa(s) the hori-
zontal lift of y(s)=7iox(s) through x(a) that is xa(p)=x(p) Let Y(x) 
be a horizontal vectorfield defined in a neighbourhood of the curve such that 
y(x„(j))=3c^(j) for all a, s£l. Let Z(x) be a vertical vectorfield defined in a 
neighbourhood of the curve x(s) such that Z ( X < J ( J 1 ) ) = T S J s^Z(xa(s2)) is satisfied 
for all s1,si£I, where is the translation n^1 ( J>(JI))—7t(y(s2)) along X^)-
From the definition of the vectorfields Y and Z we get ££YZ=0. It follows from 
(6) that 

0 = {dbZ')Yh + qfy(Y)Z* + {d,Z^Z> + (ft(,Z)Zi-{ll2)T?aZ>Ye. 
Since 

((dbZ*)Y» + <p*y(Y)Zy)ea = WrZ—<py(Y)Zyea, 

and by Proposition 2, 

V Y Z = JÍFY Z + ( l / 2 ) A r
a

c Y°Zyea — (1/2) T*cy YcZyea, 

which together with ¿¡?rZ=0 imply 

{{dpZ*)Zl>+(p*y(Z)Zy)ea-<p°y(Y)ZyeaHm)Ay°cYcZyea-T«cyYcZyea = 0. 
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By Proposition 1 <p°(Y)Zy=(\l2)Ay
a
cYcZy, we find 

(8) (dpZx)Zp + (p'y(Z)Zy = Tx
cyYcZy. 

Now, we fix a parameter s0£I. If we map the fibers onto J r - 1 ^ ^ ) ) 
using the translation T along y(s), we get the curve Z ( J ) : = T X ( I ) on 
7r_1(j(j0)). The vertical vectors {e„+1(j),..., £„+*(.?)} of the adapted frame field 
{^¡(i)} are mapped into the vertical frame field eJs):=Ts ^ea(s) along z(s); the 
vertical vectors Z(x(s)) and Z(z(s)) have the same components with respect 

* 

to the corresponding frames. Thus the left hand side of the equation (8) is (Vsz')O0), * 
where Vs is the induced covariant derivation along z(.v) on the submanifold 
7t_1(j(Jo)) defined by the induced Riemannian connection form <p*(Z). 

We can summarize the obtained results. 

Theo rem 1. Let x(s), s£I, be an arc-length parametrized curve in P. It is 
a geodesic of P if and only if 

(i) the projection curve y(s) = nox(s) satisfies 

V s / = -n*[A (x')x' + ai2)T(x\ x')] = — [Apa
cZpYc + (1/2)Tp"yZ^Zy]ea 

where Vs is the covariant derivative in the basic manifold M; 
(ii) for all s0£I the development z(s) = xs sx(s) of x(s) in the fiber 7c_1(^(i0)) 

satisfies 

Vsz'= T*cilY<Zi>ex at s = s0, 

where Vx is the induced covariant derivative in the fiber 7r-1(j>(j0)). 

P roof . We have proved already that the conditions (i) and (ii) are necessary 
for a geodesic x(s) of P. The sufficiency follows from the fact that the conditions 
(i) and (ii) give a second order differential equation for x(s), it has for all initial 
points and tangent vectors a unique solution which has to be the same curve as 
the geodesic with this initial point and tangent vector. 

5. Homothetic fibers. Here we give a more detailed discussion of the case 
which can be obtained from a Riemannian submersion whose fibers are totally 
geodesic submanifolds by a bundle-like homothetic deformation with a positive 
smooth function defined on the basic manifold (cf. [1]). 

If gab<»a®<»b+g<lpof®(D? is the metric tensor of the submersion {P, n, M) 
with totally geodesic fibers (i.e., Tp"y=0 and the translation of the fibers is iso-
metry), the submersion with the metric tensor 

gab caa®ojb + exp ( - (?) gxfi of <g> cop, 
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where g: M—R is a smooth function, is a Riemannian submersion such that the 
translation of the fibers is homothetic map. In this case the second fundamental 
tensor of the fibers is of the form 

(9) Tpay = gaexp(-g)gPy, where dg = gnco". 

(cf. Corollary of Theorem 2 in [1], p. 161.) 

Theo rem 2. Let {P,n,M} be a Riemannian submersion satisfying (9). The 
curve x(s) (s(il) is an arc-length parametrized geodesic if and only if 

(i) the projection curve y{s) — nox(s) satisfies 

V , / = — 7t*[A (V)x'] — (c/2) grad (exp e(y(s))) 

for a positive constant c; 
(ii) the development z(s)~rs s x(.y) in the fiber 7r~1(>'(i0)) is a geodesic para-

metrized with the speed [|z'|| = / c • exp o(j>(.s)), where the constant satisfies in an 
initial point s0dl, 

| |/(s0)||2 + c-exp 2g(y(s0)) = 1. 

Proof . The conditions (i) and (ii) of Theorem 1 give the equations 

(10a) V , / =-n,A (x')x' — (\/2)(grad Q)<Z',Z'>, 

(10b) Vsz' = Q'Z'. 

The equation (10a) can be obtained immediately by substitution of (9). For the 
proof of (10b) we note that in our case the translation of fibers T is homothetic 
and consequently affine map, thus for all s2£I the developments zx{s) and 

£ 
z2(s) in the fibers 7T _ 1 (> ' ( I ' I ) ) and 7 R _ 1 ( J ( I ' 2 ) ) , respectively, satisfy xs s *(Vszi) — * 
= Vsz2. It follows that the condition (ii) of Theorem 1 can be considered in a fixed 
fiber 7r-1(j»(Jo)) (Jo€/) for all s£f. The right hand side of the equation (10b) can be 
obtained by (9) 

Vsz' = Tx
cp YcZ^ex = z'(gcYc) = z'g'. 

The equation (10b) means that the curve z(s) is a geodesic in re_1(j(j0)), 
its speed can be computed as follows: 

' * * 

V s(exp(-e)z ' ) = —Q' exp( —g)z' + exp( —g)Vsz' = 0, 
that is 

(z', z') = exp( — Q) • c exp 2g = c • exp g, c = constant. 

We substitute this in equation (10a): 

Vs_y' = —ti*A (x')x' — (1 /2) (grad g)c • exp g = — n* A (x')x' — (c/2) grad (exp g), 
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and the necessity of the conditions of Theorem 2 is proved. But they are sufficient 
since for all initial points and tangent vectors these two second order equations have 
the same unique solution. 

Coro l l a ry 1. A vertical curve in a fiber n~1(y0) is a geodesic of P if and 
only if it is a geodesic in the submanifold 7t_1(j>0) and (grad o)(_y0) = 0. In this case 
the fiber n~1(y0) is a totally geodesic submanifold. 

Coro l l a ry 2. The function $(y, y'): TM—R defined by <f>(y, y') = 
= (] \c){y', y ) + exp Q(y) is constant along a projection curve of a geodesic. 

Proof . By Theorem 2 we have for a geodesic 

1 = <y, = < / , / > + c • exp Q = c • <P(y, / ) . 

Remark . The constant c along a geodesic x(s) can be expressed by the 
angle 9 between the geodesic x(s) and the fiber: 

c = exp (— e)(l — ( / , / ) ) = exp (— o) cos2 9. 
Thus the statement that / c=exp (—(l/2)g) cos 9 is constant is a generalization • 
of Clairaut's Theorem on surface of revolution. 

Co ro l l a ry 3. If {P,n,M} is a Riemannian submersion with totally geodesic 
fibers, the curve x(s) is a geodesic of P if and only if the following conditions are 
satisfied: 

(i) let a denote the arc-length parameter of the projection curve y = nox, 
the first vector of curvature is 

^ dy (dx\dx 

(ii) the development z(s) = xs sx{s) of in the fiber 7t_1(j(j0)) is a constant 
speed geodesic. 

Proof . Theorem 2 implies in the case g>=constant | | / | | 2 = 1 — ||z'||2=constant, 
therefore a is proportial to s. It follows 

= i i / I I - 2 V s / ( £ ) £ . 
Example . Let us consider the Hopf bundle 7i: S2m+1-+CP(m) of the unit 

sphere over the complex projective space equipped with the Fubini—Study metric. 
It is a Riemannian submersion with totally geodesic fibers (cf. [2], p. 466). 

Its tensor A can be expressed in the form A(Z)Y=(Z,N)JY, where J is 
the almost complex tensor on Cm+1, N is the tangent unit vectorfield of the fibers 
defined by JM for the unit normal vectorfield M of S2m +1, Z and Y are ar-
bitrary vertical and horizontal tangent vectorfields of S2m+1. 

23 
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We get that the curve x(s) is a geodesic of S2m+1 if and only if 
(i) the first vector of curvature of y(s) is expressed by 

a do ~ *>J da ' 
dx 

where a is the arc-length parameter of ^(i) and the vertical part Z of — 
da 

is Z=CN. We have 

M da) J ° do da' 

that is the curve y(s) is a r e a l 2-plane curve in CP(w) of curvature — £ contained 
in the complex projective line (2-sphere) spanned by y' and Jy'. 

(ii) C=constant, that is the fiber curve Z(O)=T<t a x(o) is of the speed 
dz do £ 
— = z ' : — = L : || v'|| = with respect to the arc-length parameter a of the 
da ds |/1 
basic curve y(a), which is a circle of curvature — £ in a complex projective line in 
CP(m) ( - 1 < C < 1 ) . 

6. Stable fibers of the geodesic flow. As we observed in Corollary 1 of Theorem 2 
if y0£M is a critical point of the function g: M—R, n~1(y0) is a total geodesic 
submanifold of P, or equivalently the tangent bundle T[n~1(y0)) is an invariant 
submanifold of TP with respect to the geodesic flow on TP. 

The fiber 7r-1(j>0) is called stable (with respect to the geodesic flow) if for any 
£>0 it is possible to find a <5=<5(e)>0 such that if an arc-length parametrized 
geodesic X(J) satisfies the initial conditions 

d(nox(s0), jo) <= <5, | | i i ( so) | | <5 

then the inequalities d(jiox(s), y0)<s, ||7r+x'(y)|| hold for any where 
d is the distance on M. (For simplicity we suppose that the manifold P is complete 
and the geodesies of P are defined for all J€R.) 

Theo rem 3. If the function g: M-~R has at the point j0£Af strict local 
minimum, the fiber n~1(y0) is stable with respect to the geodesic flow. 

Proof . Since the function exp g has at y0 strict local minimum, the strict 
inequality exp e0>)>exp e(j0) if y^yo, is true in a neighbourhood V<zM. If y'^0 

/ ) = (1 A0</, / > + e x p g(y) > exp e ( j ) S exp g(y0) 
for y£V, that is the function <P(y,y') has a strict local minimum at {_y0, 0}£TM. 
Let be given an £>0 such that the ^neighbourhood of y0 is contained in V. 
We consider the values of $ on the boundary of the neighbourhood defined by the 
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inequalities d(y,y0)<e, || j>|| <e. The function # reaches its minimum <P* on 
this compact set (if £ is sufficiently small) and $*>exp We can find a 
neighbourhood d(y, ||j'||<<5 in TM such that here <P(y, y')< <P*. If the ini-
tial point and tangent vector of J ( J ) = 7 : O J C ( J ) satisfy the inequalities 
ll/(Jo)ll«5 then B u t b y Corollary 2 of Theorem 2<P 
is constant along y(s)=nox(s) if x(i) is a geodesic of P, consequently 
4>(y(s), y'(s))<<!>* for all I£R. Therefore the curve (J(J), /(J)}={^OX(J), n^} 
cannot attain the boundary of the ^neighbourhood of {j>0, 0}, because there would 
be 

This completes the proof. 

Coro l la ry . If {P,n,M} is a submersion with i-dimensional fibers, then at 
the strict minimum point y0£M of the function Q: M— R the fiber geodesic 7r-1(_y0) 
is stable. 
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