Non-horizontal geodesics of a Riemannian submersion

P. T. NAGY
Dedicated to Professor B. Szôkefalvi-Nagy on his 70th birthday

1. Introduction. For Riemannian manifolds M and P, a submersion $\pi: P \rightarrow M$ is a smooth mapping of P onto M which has maximal rank and preserves the length of horizontal vectors. A tangent vector to P at x is called horizontal if it is orthogonal to the fiber $\pi^{-1} \circ \pi(x)$ through x, vertical if it is tangent to the fiber. The fundamental concepts of a Riemannian submersion were introduced by B. O'Nerll [2]. The horizontal geodesics of P were studied in [3].

Our aim here is to investigate the non-horizontal geodesics of P and to characterize them with their "projections" on the basic manifold M and on the fibers through their points. As an application we shall get a stability property of some fibers with respect to the geodesic flow of a class of Riemannian submersions.

We use the method of moving frame; for the notation and the basic relations of the invariants of a submersion we refer to [1].

The paper is organised as follows. Section 2 is devoted to the basic concepts of a Riemannian submersion. In Section 3 we discuss the translation of fibers along a curve of M defined by the horizontal subspaces and the relation of this translation to the Riemannian parallel translation. In Section 4 we treat the equation of geodesics as we need. In Section 5 we apply our result in a special class of Riemannian submersions where the translation of fibers is homothetic transformation. Finally in Section 6 we investigate the stability of fibers with respect to the geodesic flow in the above discussed class of submersions.

Throughout this paper the indices $i, j, k, \ldots, a, b, c, \ldots$ and $\alpha, \beta, \gamma, \ldots$ will run from 1 to $n+k$, form 1 to n and from $n+1$ to $n+k$, respectively, where $n=\operatorname{dim} M, n+k=\operatorname{dim} P$. The summation convention will be adopted.

The author expresses his sincere thanks to Professor A. M. Vasil'ev (Moscow State University) for his valuable suggestions.

[^0]2. Adapted frames. Let $\{L(P), p, P\}$ and $\{L(M), q, M\}$ denote the principal fiber bundle of linear frames of P and M, respectively. The bundle of adapted frames $\left\{L_{M}(P), p, P\right\}$ over P of the submersion $\pi: P \rightarrow M$ is defined as a subbundle of $\{L(P), p, P\}$ consisting of frames $\left\{x ; e_{1}, \ldots, e_{n+k}\right\} \in L_{x}(P)$ such that the vectors e_{1}, \ldots, e_{n} are horizontal and the vectors e_{n+1}, \ldots, e_{n+k} are vertical. The structure group of the adapted frame bundle is isomorphic to the group $G L(n) \times$ $\times G L(k) \subset G L(n+k)$.

Let ω and φ denote the \mathbf{R}^{n+k}-valued canonical form and the $\mathfrak{g l}(n+k)$-valued Riemannian commection form on $L(P) . \omega$ and φ satisfy the structure equation

$$
d \omega=-\varphi \wedge \omega \quad \text { or } \quad d \omega^{i}=-\varphi_{k}^{i} \wedge \omega^{k}
$$

where ω^{i} and φ_{k}^{i} are the components of the forms ω and φ with respect to the canonical bases of \mathbf{R}^{n+k} and $\mathfrak{g l}(n+k)$.

The fundamental tensors of the submersion are of the form

$$
A=A_{\beta}{ }^{a}{ }_{c} e_{a} \otimes \omega^{\beta} \otimes \omega^{c}, \quad T=T_{\beta}{ }^{a}{ }_{\gamma} e_{a} \otimes \omega^{\beta} \otimes \omega^{\gamma}
$$

where $\left\{e_{1}, \ldots, e_{n+k}\right\}$ is an adapted frame and $\left\{\omega^{1}, \ldots, \omega^{n+k}\right\}$ is its dual coframe. The Riemannian metric tensor of P can be written as

$$
g=g_{a b} \omega^{a} \otimes \omega^{b}+g_{a \beta} \omega^{\alpha} \otimes \omega^{\beta}
$$

on the adapted frame bundle. The metric tensor of the basic manifold is $\tilde{g}=g_{a b} \tilde{\omega}^{a} \otimes \tilde{\omega}^{b}$, where $\omega^{a}=\pi^{*} \tilde{\omega}^{a}$. The Riemannian connection form ψ of M defines a form on $L_{M}(P)$ in a natural way whose components are denoted also by ψ_{b}^{a}.

Proposition 1. The fundamental tensors A, T of the submersion and the Riemannian connection forms of P and M are related by the equations

$$
\begin{equation*}
\varphi_{b}^{a}=\psi_{b}^{a}+(1 / 2) A_{y}{ }^{a}{ }_{b} \omega^{\nu} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{\alpha \beta} A_{\cdot b c}^{\alpha}=g_{a b} A_{\beta}{ }^{a}{ }_{c}, \quad g_{\alpha \beta} T_{\cdot b \gamma}^{\alpha}=g_{a b} T_{\beta}{ }^{a}, \tag{3}
\end{equation*}
$$

and the tensors A and T satisfy

$$
\begin{equation*}
A_{\gamma a b}+A_{\gamma b a}=0, \quad T_{\beta}{ }^{a}{ }_{\gamma}=T_{\gamma}{ }^{a}{ }_{b}, \tag{4}
\end{equation*}
$$

Proof. The more detailed description of the adapted frame bundle and the proof of equations (1), (2), (4) can be found in [1], pp. 155-158 (orthonormed frames are used).

To prove the equation (3) we note that the Riemannian metric tensor satisfies

$$
d g_{i j}-\varphi_{i}^{k} g_{k j}-\varphi_{j}^{k} g_{i k}=0
$$

Since $g_{a \beta}=0$, we have

$$
0=d g_{a \beta}=g_{a c} \varphi_{\beta}^{c}+g_{\beta \gamma} \varphi_{a}^{\gamma}
$$

Using (2) we get

$$
g_{\beta \gamma} \varphi_{a}^{\gamma}=-g_{a c} \varphi_{\beta}^{c}=-g_{a c}(1 / 2)\left(A_{\beta}^{c}{ }_{d} \omega^{d}+T_{\beta}{ }^{c}{ }_{\delta} \omega^{\delta}\right)=-g_{\beta \gamma}(1 / 2)\left(A_{\cdot a d}^{\gamma} \omega^{d}+T_{a \delta}^{\gamma} \omega^{\delta}\right)
$$

This completes the proof.
3. Translation of fibers. Let be given a curve $y(t)$ of the basic manifold M defined on an open interval $t \in I \subset \mathbf{R}$. If $t_{0} \in I, x_{0} \in \pi^{-1}\left(y\left(t_{0}\right)\right)$, there is a unique horizontal curve $x\left(x_{0}, t\right)(t \in I)$ of P satisfying $x\left(x_{0}, t_{0}\right)=x_{0}$ and $\pi \circ x\left(x_{0}, t\right)=y(t)$. These curves define a 1 -parameter family of maps $\tau_{t_{0}, t}: \pi^{-1}\left(y\left(t_{0}\right)\right) \rightarrow \pi^{-1}(y(t))$ along the curve $y(t), t \in I$, such that

$$
\tau_{t_{0}, t} x_{0}:=x\left(x_{0}, t\right)
$$

This map is called translation of fibers along the curve $y(t)$ of M. The derivative map $\tau_{t_{0}, r *}$ induces a translation of vertical vectors along horizontal curves. A vertical vectorfield Z on P is constant with respect to this translation if and only if the Lie derivative $\mathscr{L}_{Y} Z=[Y, Z]=0$, where Y is a horizontal vectorfield defined in a neighbourhood of $\pi^{-1}(y(t))(t \in I)$ satisfying $Y(x(t))=\dot{x}(t)$ for the horizontal lifts $x(t)$ of $y(t)$. Here the dot denotes the derivation by t.

Proposition 2. If $Y=Y^{a} e_{a}$ and $Z=Z^{\alpha} e_{\alpha}$ are horizontal and vertical vectorfields on P then the expression $\nabla_{Y} Z-\mathscr{L}_{Y} Z$ is a (1,1)-type tensorfield satisfying

$$
\nabla_{Y} Z-\mathscr{L}_{Y} Z=(1 / 2) A_{\gamma}{ }_{c}^{a} Y^{c} Z^{\gamma} e_{a}-(1 / 2) T^{\alpha}{ }_{c \gamma} Y^{c} Z^{\gamma} e_{\alpha}
$$

Proof. We fix a point $x_{0} \in P$. Let $U \subset M$ be a neighbourhood of $y_{0}=\pi\left(x_{0}\right) \in M$, and $t \in I \mapsto y(t) \in M$ is a curve in U such that $y\left(t_{0}\right)=y_{0}\left(t_{0} \in I\right)$ and $\dot{y}\left(t_{0}\right)=\pi_{*} Y\left(x_{0}\right)$. Let \bar{Y} be a horizontal vectorfield defined on a neighbourhood of x_{0} such that $\bar{Y}(x(t))=\dot{x}(t)$ for horizontial lifts $x(t)$ of $y(t)$. Let be given a frame field $\left\{\tilde{e}_{1}(y), \ldots, \tilde{e}_{n}(y)\right\}$ on U and an adapted frame field $\left\{e_{1}(x), \ldots, e_{n+k}(x)\right\}$ on a neighbourhood of x_{0} such that $\pi_{*} e_{a}(x)=\tilde{e}_{a}(\pi(x))$. For a smooth function f on P we denote the components of its differential with respect to the adapted coframe $\left\{\omega^{i}\right\}$ dual to $\left\{e_{i}\right\}$ by $\partial_{i} f$, i.e., $d f=\left(\partial_{i} f\right) \omega^{i}$. We can write for $\bar{Y}=\bar{Y}^{a} e_{a}$

$$
\nabla_{\mathrm{Y}} Z-\mathscr{L}_{Y} Z=\nabla_{Z} \bar{Y}=\left(\left(\partial_{\gamma} \bar{Y}^{a}\right) Z^{\gamma}+\varphi_{c}^{a}(Z) \bar{Y}^{c}\right) e_{u}+\varphi_{c}^{\alpha}(Z) \bar{Y}^{c} e_{\alpha}
$$

Since the components \bar{Y}^{a} are constant on the fiber we have $\partial_{\gamma} \bar{Y}^{a}=0$. By Proposition 1 we get
$\nabla_{Y} Z-\mathscr{L}_{Y} Z=\nabla_{Z} \bar{Y}=\varphi_{c}^{a}(Z) \bar{Y}^{c} e_{a}+\varphi_{c}^{\alpha}(Z) \bar{Y}^{c} e_{\alpha}=(1 / 2) A_{\gamma}{ }^{a}{ }_{c} Z^{\gamma} \bar{Y}^{c} e_{a}-(1 / 2) T^{\alpha}{ }_{c \gamma} Z^{\gamma} \bar{Y}^{c} e_{\alpha}$, since the forms ψ_{c}^{a} are lifted from a form on $L(M)$ and therefore $\psi_{c}^{a}(Z)=0$. At the point $x_{0}, \bar{Y}\left(x_{0}\right)=Y\left(x_{0}\right)$, and the proof is complete.
4. Equation of geodesics. Let $x(s)(s \in I)$ be an arc-length parametrized curve in $P, y(s)=\pi \circ x(s)$ is its projection curve in the basic manifold M and $z(s)=$ $=\tau_{s, s_{0}} x(s)$ is its development in the fiber $\pi^{-1}\left(y\left(s_{0}\right)\right), s_{0} \in I$. Comma denotes the derivation by s. The tangent vector $x^{\prime}(s)$ can be written as $x^{\prime}(s)=Y(s)+Z(s)$, where $Y(s)$ is its horizontal part and $Z(s)$ is its vertical part. The curve $x(s)$ is a geodesic if and only if the equations

$$
Y^{a^{\prime}}+\varphi_{c}^{a}\left(x^{\prime}\right) Y^{c}+\varphi_{\gamma}^{a}\left(x^{\prime}\right) Z^{\gamma}=0, \quad Z^{\alpha \prime}+\varphi_{c}^{\alpha}\left(x^{\prime}\right) Y^{c}+\varphi_{y}^{\alpha}\left(x^{\prime}\right) Z^{\gamma}=0
$$

are satisfied, where $Y=Y^{a} e_{a}, Z=Z^{\alpha} e_{\alpha}$ for an adapted frame field $\left\{e_{i}(s)\right\}$ along $x(s)$. By Proposition 1 these equations can be written in the form

$$
\begin{gather*}
Y^{a \prime}+\psi_{c}^{a}(Y) Y^{c}+A_{\beta}^{a}{ }_{c} Z^{\beta} Y^{c}+(1 / 2) T_{\beta}^{a}{ }_{\gamma} Z^{\beta} Z^{\gamma}=0 \tag{5}\\
Z^{\alpha \prime}+\varphi_{\gamma}^{\alpha}\left(x^{\prime}\right) Z^{\gamma}-(1 / 2) A_{\cdot b c}^{\alpha} Y^{b} Y^{c}-(1 / 2) T_{{ }^{\prime} \beta}^{\alpha} Y^{c} Z^{\beta}=0 \tag{6}
\end{gather*}
$$

We know $\cdot A_{\cdot b c}^{\alpha} Y^{b} Y^{c}=0$ by the skew symmetry of A. The tangent vector y^{\prime} of the projection curve $y(s)$ has the components Y^{a} with respect to the frame $\tilde{e}_{a}=\pi_{*} e_{a}$ hence the equations (5) are equivalent to

$$
\begin{equation*}
\tilde{\nabla}_{s} y^{\prime}=-\left(A_{\beta}{ }^{a}{ }_{c} Z^{\beta} Y^{c}+(1 / 2) T_{\beta}{ }^{a}{ }_{\gamma} Z^{\beta} Z^{y}\right) \tilde{e}_{a} \tag{7}
\end{equation*}
$$

From the equations (6) and (7) it follows immediately that the horizontal lifts of geodesics of M are geodesics of P (in this case $Z^{\alpha} \equiv 0$).

It is also clear that if a geodesic $x(s)$ of P is horizontal at $s_{0} \in I$ then it is horizontal for all $s \in I$.

We investigate here the non-horizontal geodesics of P. If $x(s), s \in I$, is a nonhorizontal curve then $\left(\tau_{s, s_{0}} x(s)\right)^{\prime} \neq 0$ for all $s \in I$. Let us denote by $\bar{x}_{o}(s)$ the horizontal lift of $y(s)=\pi \circ x(s)$ through $x(\sigma)$ that is $\bar{x}_{\sigma}(\sigma)=x(\sigma)(\sigma \in I)$. Let $Y(x)$ be a horizontal vectorfield defined in a neighbourhood of the curve $x(s)$ such that $Y\left(\bar{x}_{\sigma}(s)\right)=\bar{x}_{\sigma}^{\prime}(s)$ for all $\sigma, s \in I$. Let $Z(x)$ be a vertical vectorfield defined in a neighbourhood of the curve $x(s)$ such that $Z\left(\bar{x}_{\sigma}\left(s_{1}\right)\right)=\tau_{s_{2}, s_{1} *} Z\left(\bar{x}_{\sigma}\left(s_{2}\right)\right)$ is satisfied for all $s_{1}, s_{2} \in I$, where $\tau_{s_{1}, s_{2}}$ is the translation $\pi^{-1}\left(y\left(s_{1}\right)\right) \rightarrow \pi^{-1}\left(y\left(s_{2}\right)\right)$ along $y(s)$. From the definition of the vectorfields Y and Z we get $\mathscr{L}_{Y} Z=0$. It follows from (6) that

$$
0=\left(\partial_{b} Z^{\alpha}\right) Y^{b}+\varphi_{\nu}^{\alpha}(Y) Z^{\gamma}+\left(\partial_{\beta} Z^{\alpha}\right) Z^{\beta}+\varphi_{\gamma}^{\alpha}(Z) Z^{\gamma}-(1 / 2) T_{\cdot c \beta}^{\alpha} Z^{\beta} Y^{c}
$$

Since

$$
\left(\left(\partial_{b} Z^{\alpha}\right) Y^{b}+\varphi_{\gamma}^{\alpha}(Y) Z^{\gamma}\right) e_{\alpha}=\nabla_{Y} Z-\varphi_{\gamma}^{a}(Y) Z^{\gamma} e_{a}
$$

and by Proposition 2,

$$
\nabla_{Y} Z=\mathscr{L}_{Y} Z+(1 / 2) A_{\gamma}{ }^{a}{ }_{c} Y^{c} Z^{\gamma} e_{a}-(1 / 2) T^{\alpha}{ }_{c \gamma} Y^{c} Z^{\gamma} e_{a}
$$

which together with $\mathscr{L}_{Y} Z=0$ imply

$$
\left(\left(\partial_{\beta} Z^{\alpha}\right) Z^{\beta}+\varphi_{\gamma}^{\alpha}(Z) Z^{\gamma}\right) e_{\alpha}-\varphi_{\gamma}^{a}(Y) Z^{\gamma} e_{a}+(1 / 2) A_{\gamma}{ }_{c}^{a} Y^{c} Z^{\gamma} e_{a}-T_{c \gamma}^{\alpha} Y^{c} Z^{\gamma} e_{\alpha}=0
$$

By Proposition $1 \varphi_{\gamma}^{a}(Y) Z^{\gamma}=(1 / 2) A_{\gamma}{ }^{a}{ }_{c} Y^{c} Z^{\gamma}$, we find

$$
\begin{equation*}
\left(\partial_{\beta} Z^{\alpha}\right) Z^{\beta}+\varphi_{\gamma}^{\alpha}(Z) Z^{\gamma}=T_{\cdot c \gamma}^{\alpha} Y^{c} Z^{\gamma} \tag{8}
\end{equation*}
$$

Now, we fix a parameter $s_{0} \in I$. If we map the fibers $\pi^{-1}(y(s))$ onto $\pi^{-1}\left(y\left(s_{0}\right)\right)$ using the translation $\tau_{s, s_{0}}$ along $y(s)$, we get the curve $z(s):=\tau_{s, s_{0}} x(s)$ on $\pi^{-1}\left(y\left(s_{0}\right)\right)$. The vertical vectors $\left\{e_{n+1}(s), \ldots, e_{n+k}(s)\right\}$ of the adapted frame field $\left\{e_{i}(s)\right\}$ are mapped into the vertical frame field $\stackrel{*}{e}_{\alpha}(s):=\tau_{s, s_{0} *} e_{a}(s)$ along $z(s)$; the vertical vectors $Z(x(s))$ and $Z(z(s))$ have the same components with respect to the corresponding frames. Thus the left hand side of the equation (8) is $\left(\stackrel{*}{\nabla}_{s} z^{\prime}\right)\left(s_{0}\right)$; where $\stackrel{*}{\nabla}_{s}$ is the induced covariant derivation along $z(s)$ on the submanifold $\pi^{-1}\left(y\left(s_{0}\right)\right)$ defined by the induced Riemannian connection form $\varphi_{\gamma}^{\alpha}(Z)$.

We can summarize the obtained results.
Theorem 1. Let $x(s), s \in I$, be an arc-length parametrized curve in P. It is a geodesic of P if and only if
(i) the projection curve $y(s)=\pi \circ x(s)$ satisfies

$$
\tilde{\nabla}_{s} y^{\prime}=-\pi_{*}\left[A\left(x^{\prime}\right) x^{\prime}+(1 / 2) T\left(x^{\prime}, x^{\prime}\right)\right]=-\left[A_{\beta}{ }^{a}{ }_{c} Z^{\beta} Y^{c}+(1 / 2) T_{\beta}{ }^{a}{ }_{\gamma} Z^{\beta} Z^{\gamma}\right] \tilde{e}_{a}
$$

where $\tilde{\nabla}_{s}$ is the covariant derivative in the basic manifold M;
(ii) for all $s_{0} \in I$ the development $z(s)=\tau_{s, s_{0}} x(s)$ of $x(s)$ in the fiber $\pi^{-1}\left(y\left(s_{0}\right)\right)$ satisfies

$$
\stackrel{*}{\nabla}_{s} z^{\prime}=T_{\cdot \beta}^{\alpha} Y^{c} Z^{\beta} e_{\alpha} \quad \text { at } \quad s=s_{0}
$$

where $\stackrel{*}{\nabla}_{x}$ is the induced covariant derivative in the fiber $\pi^{-1}\left(y\left(s_{0}\right)\right)$.
Proof. We have proved already that the conditions (i) and (ii) are necessary for a geodesic $x(s)$ of P. The sufficiency follows from the fact that the conditions (i) and (ii) give a second order differential equation for $x(s)$, it has for all initial points and tangent vectors a unique solution which has to be the same curve as the geodesic with this initial point and tangent vector.
5. Homothetic fibers. Here we give a more detailed discussion of the case which can be obtained from a Riemannian submersion whose fibers are totally geodesic submanifolds by a bundle-like homothetic deformation with a positive smooth function defined on the basic manifold (cf. [1]).

If $g_{a b} \omega^{a} \otimes \omega^{b}+g_{\alpha \beta} \omega^{\alpha} \otimes \omega^{\beta}$ is the metric tensor of the submersion $\{P, \pi, M\}$ with totally geodesic fibers (i.e., $T_{\beta}{ }^{a}{ }_{\gamma} \equiv 0$ and the translation of the fibers is isometry), the submersion with the metric tensor

$$
g_{a b} \omega^{a} \otimes \omega^{b}+\exp (-\varrho) g_{\alpha \beta} \omega^{\alpha} \otimes \omega^{\beta}
$$

where $\varrho: M \rightarrow \mathbf{R}$ is a smooth function, is a Riemannian submersion such that the translation of the fibers is homothetic map. In this case the second fundamental tensor of the fibers is of the form

$$
\begin{equation*}
T_{\beta a \gamma}=\varrho_{a} \exp (-\varrho) g_{\beta \gamma}, \quad \text { where } \quad d \varrho=\varrho_{a} \omega^{a} \tag{9}
\end{equation*}
$$

(cf. Corollary of Theorem 2 in [1], p. 161.)
Theorem 2. Let $\{P, \pi, M\}$ be a Riemannian submersion satisfying (9). The curve $x(s)(s \in I)$ is an arc-length parametrized geodesic if and only if
(i) the projection curve $y(s)=\pi \circ x(s)$ satisfies

$$
\tilde{\nabla}_{s} y^{\prime}=-\pi_{*}\left[A\left(x^{\prime}\right) x^{\prime}\right]-(c / 2) \operatorname{grad}(\exp \varrho(y(s)))
$$

for a positive constant c;
(ii) the development $z(s)=\tau_{s, s_{0}} x(s)$ in the fiber $\pi^{-1}\left(y\left(s_{0}\right)\right)$ is a geodesic parametrized with the speed $\left\|z^{\prime}\right\|=\sqrt{c} \cdot \exp \varrho(y(s))$, where the constant satisfies in an initial point $s_{0} \in I$,

$$
\left\|y^{\prime}\left(s_{0}\right)\right\|^{2}+c \cdot \exp 2 \varrho\left(y\left(s_{0}\right)\right)=1 .
$$

Proof. The conditions (i) and (ii) of Theorem 1 give the equations

$$
\begin{equation*}
\tilde{\nabla}_{s} y^{\prime}=-\pi_{*} A\left(x^{\prime}\right) x^{\prime}-(1 / 2)(\operatorname{grad} \varrho)\left\langle z^{\prime}, z^{\prime}\right\rangle \tag{10a}
\end{equation*}
$$

The equation (10a) can be obtained immediately by substitution of (9). For the proof of (10b) we note that in our case the translation of fibers $\tau_{s, s_{0}}$ is homothetic and consequently affine map, thus for all $s_{1}, s_{2} \in I$ the developments $z_{1}(s)$ and $z_{2}(s)$ in the fibers $\pi^{-1}\left(y\left(s_{1}\right)\right)$ and $\pi^{-1}\left(y\left(s_{2}\right)\right)$, respectively, satisfy $\tau_{s_{1}, s_{2}}\left(\stackrel{*}{\nabla}_{s} z_{1}^{\prime}\right)=$ $=\stackrel{*}{\nabla}_{s^{\prime}}^{2} z_{2}^{\prime}$. It follows that the condition (ii) of Theorem 1 can be considered in a fixed fiber $\pi^{-1}\left(y\left(s_{0}\right)\right)\left(s_{0} \in I\right)$ for all $s \in I$. The right hand side of the equation (10b) can be obtained by (9)

$$
\stackrel{*}{\nabla}_{s} z^{\prime}=T_{c \beta}^{\alpha} Y^{c} Z^{\beta}{ }^{*} e_{\alpha}=z^{\prime}\left(\varrho_{c} Y^{c}\right)=z^{\prime} \varrho^{\prime} .
$$

The equation (10b) means that the curve $z(s)$ is a geodesic in $\pi^{-1}\left(y\left(s_{0}\right)\right)$, its speed can be computed as follows:

$$
\stackrel{*}{\nabla}_{s}\left(\exp (-\varrho) z^{\prime}\right)=-\varrho^{\prime} \exp (-\varrho) z^{\prime}+\exp (-\varrho) \stackrel{*}{\nabla_{s}} z^{\prime}=0,
$$

that is

$$
\left\langle z^{\prime}, z^{\prime}\right\rangle=\exp (-\varrho) \cdot c \exp 2 \varrho=c \cdot \exp \varrho, \quad c=\text { constant }
$$

We substitute this in equation (10a):

$$
\tilde{\nabla}_{s} y^{\prime}=-\pi_{*} A\left(x^{\prime}\right) x^{\prime}-(1 / 2)(\operatorname{grad} \varrho) c \cdot \exp \varrho=-\pi_{*} A\left(x^{\prime}\right) x^{\prime}-(c / 2) \operatorname{grad}(\exp \varrho),
$$

and the necessity of the conditions of Theorem 2 is proved. But they are sufficient since for all initial points and tangent vectors these two second order equations have the same unique solution.

Corollary 1. A vertical curve in a fiber $\pi^{-1}\left(y_{0}\right)$ is a geodesic of P if and only if it is a geodesic in the submanifold $\pi^{-1}\left(y_{0}\right)$ and $(\operatorname{grad} \varrho)\left(y_{0}\right)=0$. In this case the fiber $\pi^{-1}\left(y_{0}\right)$ is a totally geodesic submanifold.

Corollary 2. The function $\Phi\left(y, y^{\prime}\right): T M \rightarrow \mathbf{R}$ defined by $\Phi\left(y, y^{\prime}\right)=$ $=(1 / c)\left\langle y^{\prime}, y^{\prime}\right\rangle+\exp \varrho(y)$ is constant along a projection curve of a geodesic.

Proof. By Theorem 2 we have for a geodesic $x(s)$,

$$
1=\left\langle x^{\prime}, x^{\prime}\right\rangle=\left\langle y^{\prime}, y^{\prime}\right\rangle+c \cdot \exp \varrho=c \cdot \Phi\left(y, y^{\prime}\right)
$$

Remark. The constant c along a geodesic $X(s)$ can be expressed by the angle θ between the geodesic $x(s)$ and the fiber:

$$
c=\exp (-\varrho)\left(1-\left\langle y^{\prime}, y^{\prime}\right)\right\rangle=\exp (-\varrho) \cos ^{2} \theta
$$

Thus the statement that $\sqrt{c}=\exp (-(1 / 2) \varrho) \cos \theta$ is constant is a generalization of Clairaut's Theorem on surface of revolution.

Corollary 3. If $\{P, \pi, M\}$ is a Riemannian submersion with totally geodesic fibers, the curve $x(s)$ is a geodesic of P if and only if the following conditions are satisfied:
(i) let σ denote the arc-length parameter of the projection curve $y=\pi \circ x$, the first vector of curvature is

$$
\tilde{\nabla}_{\sigma} \frac{d y}{d \sigma}=-\pi_{*} A\left(\frac{d x}{d \sigma}\right) \frac{d x}{d \sigma}
$$

(ii) the development $z(s)=\tau_{s, s_{0}} x(s)$ of $x(s)$ in the fiber $\pi^{-1}\left(y\left(s_{0}\right)\right)$ is a constant speed geodesic.

Proof. Theorem 2 implies in the case $\varrho=$ constant $\left\|y^{\prime}\right\|^{2}=1-\left\|z^{\prime}\right\|^{2}=$ constant, therefore σ is proportial to s. It follows

$$
\tilde{\nabla}_{\sigma} \frac{d y}{d \sigma}=\left\|y^{\prime}\right\|^{-2} \nabla_{s} y^{\prime}=-\left\|y^{\prime}\right\|^{-2} \pi_{*} A\left(x^{\prime}\right) x^{\prime}=-\pi_{*} A\left(\frac{d x}{d \sigma}\right) \frac{d x}{d \sigma} .
$$

Example. Let us consider the Hopf bundle $\pi: S^{2 m+1} \rightarrow \mathbf{C P}(m)$ of the unit sphere over the complex projective space equipped with the Fubini-Study metric. It is a Riemannian submersion with totally geodesic fibers (cf. [2], p. 466).

Its tensor A can be expressed in the form $A(Z) Y=\langle Z, N\rangle J Y$, where J is the almost complex tensor on \mathbf{C}^{m+1}, N is the tangent unit vectorfield of the fibers defined by $J M$ for the unit normal vectorfield M of $S^{2 m+1}, Z$ and Y are arbitrary vertical and horizontal tangent vectorfields of $S^{2 m+1}$.

We get that the curve $x(s)$ is a geodesic of $S^{2 m+1}$ if and only if (i) the first vector of curvature of $y(s)$ is expressed by

$$
\tilde{\nabla}_{\sigma} \frac{d y}{d \sigma}=-\zeta J \frac{d y}{d \sigma}
$$

where σ is the arc-length parameter of $y(s)$ and the vertical part Z of $\frac{d x}{d \sigma}$ is $Z=\zeta N$. We have

$$
\tilde{\nabla}_{\sigma}\left(J \frac{d y}{d \sigma}\right)=J \tilde{\nabla}_{\sigma} \frac{d y}{d \sigma}=\zeta \frac{d y}{d \sigma}
$$

that is the curve $y(s)$ is a real 2-plane curve in $\mathbf{C P}(m)$ of curvature $-\zeta$ contained in the complex projective line (2 -sphere) spanned by y^{\prime} and $J y^{\prime}$.
(ii) $\zeta=$ constant, that is the fiber curve $z(\sigma)=\tau_{\sigma, \sigma_{0}} x(\sigma)$ is of the speed $\frac{d z}{d \sigma}=z^{\prime}: \frac{d \sigma}{d s}=\zeta:\left\|y^{\prime}\right\|=\frac{\zeta}{\sqrt{1-\zeta^{2}}}$, with respect to the arc-length parameter σ of the basic curve $y(\sigma)$, which is a circle of curvature $-\zeta$ in a complex projective line in $\mathbf{C P}(m)(-1<\zeta<1)$.
6. Stable fibers of the geodesic flow. As we observed in Corollary 1 of Theorem 2 if $y_{0} \in M$ is a critical point of the function $\varrho: M \rightarrow \mathbf{R}, \pi^{-1}\left(y_{0}\right)$ is a total geodesic submanifold of P, or equivalently the tangent bundle $T\left(\pi^{-1}\left(y_{0}\right)\right)$ is an invariant submanifold of $T P$ with respect to the geodesic flow on $T P$.

The fiber $\pi^{-1}\left(y_{0}\right)$ is called stable (with respect to the geodesic flow) if for any $\varepsilon>0$ it is possible to find a $\delta=\delta(\varepsilon)>0$ such that if an arc-length parametrized geodesic $x(s)$ satisfies the initial conditions

$$
d\left(\pi \circ x\left(s_{0}\right), y_{0}\right)<\delta, \quad\left\|\pi_{*} x^{\prime}\left(s_{0}\right)\right\|<\delta
$$

then the inequalities $d\left(\pi \circ x(s), y_{0}\right)<\varepsilon,\left\|\pi_{*} x^{\prime}(s)\right\|<\varepsilon$ hold for any $s \in \mathbf{R}$, where d is the distance on M. (For simplicity we suppose that the manifold P is complete and the geodesics of P are defined for all $s \in \mathbf{R}$.)

Theorem 3. If the function $\varrho: M \rightarrow \mathbf{R}$ has at the point $y_{0} \in M$ strict local minimum, the fiber $\pi^{-1}\left(y_{0}\right)$ is stable with respect to the geodesic flow.

Proof. Since the function $\exp \varrho$ has at y_{0} strict local minimum, the strict inequality $\exp \varrho(y)>\exp \varrho\left(y_{0}\right)$ if $y \neq y_{0}$, is true in a neighbourhood $V \subset M$. If $y^{\prime} \neq 0$

$$
\Phi\left(y, y^{\prime}\right)=(1 / c)\left\langle y^{\prime}, y^{\prime}\right\rangle+\exp \varrho(y)>\exp \varrho(y) \geqq \exp \varrho\left(y_{0}\right)
$$

for $y \in V$, that is the function $\Phi\left(y, y^{\prime}\right)$ has a strict local minimum at $\left\{y_{0}, 0\right\} \in T M$. Let be given an $\varepsilon>0$ such that the ε-neighbourhood of y_{0} is contained in V. We consider the values of Φ on the boundary of the neighbourhood defined by the
inequalities $d\left(y, y_{0}\right)<\varepsilon,\|y\|<\varepsilon$. The function Φ reaches its minimum Φ^{*} on this compact set (if ε is sufficiently small) and $\Phi^{*}>\exp \varrho\left(y_{0}\right)$. We can find a neighbourhood $d\left(y, y_{0}\right)<\delta,\left\|y^{\prime}\right\|<\delta$ in $T M$ such that here $\Phi\left(y, y^{\prime}\right)<\Phi^{*}$. If the initial point and tangent vector of $y(s)=\pi \circ x(s)$ satisfy the inequalities $d\left(y\left(s_{0}\right), y_{0}\right)<\delta$; $\left\|y^{\prime}\left(s_{0}\right)\right\|<\delta$ then $\Phi\left(y\left(s_{0}\right), y^{\prime}\left(s_{0}\right)\right)<\Phi^{*}$. But by Corollary 2 of Theorem 2Φ is constant along $y(s)=\pi \circ x(s)$ if $x(s)$ is a geodesic of P, consequently $\Phi\left(y(s), y^{\prime}(s)\right)<\Phi^{*}$ for all $s \in \mathbf{R}$. Therefore the curve $\left\{y(s), y^{\prime}(s)\right\}=\left\{\pi \circ x(s), \pi_{*} x^{\prime}\right\}$ cannot attain the boundary of the ε-neighbourhood of $\left\{y_{0}, 0\right\}$, because there would be $\Phi \geqq \Phi^{*}$.

This completes the proof.
Corollary. If $\{P, \pi, M\}$ is a submersion with 1-dimensional fibers, then at the strict minimum point $y_{0} \in M$ of the function $\varrho: M \rightarrow \mathbf{R}$ the fiber geodesic $\pi^{-1}\left(y_{0}\right)$ is stable.

References

[1] P. T. Nagy, On boundle-like conform deformation of a Riemannian submersion, Acta Math. Acad. Sci. Hungar., 39 (1982), 155-161; Correction, ibid., to appear.
[2] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459-469.
[3] B. O'Neill, Submersion and geodesics, Duke Math. J., 34 (1967), 363-373.

[^0]: Received August 11, 1982.

