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On a Paley-type inequality 
F . S C H 1 P P 

Dedicated to Professor B. Szokefalvi-Nagy on his 70th birthday 

In this paper a new space similar to the dyadic Hardy spaces is investigated. 
This space is defined by a shift-invariant norm and it is proved that for 1 «= / x 
this norm is equivalent to the //-norm. 

1. Introduction 

The spaces LP=LP(0,1) (l</?-=°°) are considered as real Banach spaces 
of real-valued functions with the usual norms || ||p. The "dyadic Hardy spaces" 
are denoted by №\ The spaces Hp ( l^/?<oo) coincide with the space of all L1 

functions, quadratic variations of which belong to LP. The quadratic variation 
Q(f) of the function fdV is defined by 

0 ) Q ( f ) - = i i M „ ( / ) l 2 ] 1 / 2 
v n = 0 / 

where A„(f)=En(f)—E„-1(f) ( n -0 ,1 , . . . ) , E^f=0 and £„(/') denotes the 
2"-th partial sum of the Walsh—Fourier series of / . The operator E„ is equal 
to the conditional expectation with respect to the <r-algebra generated by the intervals 
[k2~n, (k+1)2_") (k=0, 1, ..., 2"— 1). The dyadic Hp-norm of the function / is 

( 2 ) ¡II/IIHP • : = | | F I ( / ) | | , ( 1 § ? < - ) • • 

It was proved by R . E. A . C. PALEY [1] that for l < / x a > there exist constants. 
cp and cp depending only on p such that 

(3) c'p\\f\\p^\\Q(f)\\p^cp\\f\\p (1 -=/><-), 

i.e., for 1 < / ) « » the Xp-norm'and the Hp-norm are equivalent. In the case p = 1 
the inequality ( 3 ) is not true. B . DAVIS [ 2 ] has proved (in a more general form) that 
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the ff-norm of / is equivalent to the Z.1-norm of the dyadic maximal function 
E*(f) of / : HQC/lLHI^COIl! where £ * ( / ) = s u p \En(f)\. Furthermore, it is 
known that 

(4) l|£*(/)llP ~ \№f)h ~ / IInf\ x)\\„dx (l ^ p <•) 
0 

where 

T(f ; x): = Zr„(x)An(f) 
1 1 = 0 

and r=(r„, n£N) (N:={0,1, 2, ...}) denotes the Rademacher system. A special 
case of (3) is the well-known Khintchine inequality: 

( - ) 1 / 2 

[2ai\ 
Vn=o / 2 a«rn (1 < p <»). 

The //-norms are invariant with respect to the dyadic shift operators 
sn(f):=fF„ (n£N), where the 'P„-s are the Walsh—Paley functions, i.e., | | / ! l p= 
= \\fVB\\p (1 n£N). The ff-norm has not this property. An easy computation 
shows that for the functions 

r2", if 0 ^ j c < 2 ~ n , 
D A X ) = l o , if 2 - ^ 1 < " € N ) 

we have 

(5) lie(A")l|1>3-1/2n, lie (fa»-Da") 111 = 1. 

We introduce the following shift-invariant norm: for 1 oo let 

WfWn; •= Ilsupec/^IU 

and denote by H* the set of L1 functions / , for which | | / | | H * < c o - Obviously, 
H*QH p . By means of (5) a function / 0 can be constructed such that ||/0|| J J J-C oo 

and II/¿11 h? — I" [3] it was proved that the sublinear operator 

e*(/) = sup g(/<?„) (/¡el1) n 

has weak type (2, 2), i.e., there exists a constant C independent of / such that for 
every ^ > 0 , 

mes {xe[0, 1): Q*(f){x) > y) < C « / | | t / ^ . 

In this paper we give the following generalization of the above result. 

T h e o r e m . «1. For l < / ? < ° ° the H*-norm is equivalent to the LP-norm: 
(6) \\Q*(f)h ~ 11/11» (l </><-). 
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2. There exists a function in Hx with infinite H*-norm. 

The first part of Theorem is a consequence of the following 

L e m m a 1. The operators 
(N-1 \!/2 

(7) • Qlif)= sup 2 M „ ( / f J I 2 {.mN) 
m«=2w V/1=1 / 

are of restricted weak type (p, p) for every 1 </>< i.e., for every measurable 
set Hi[0,1), 

(8) mes {x: Q* (x„)(x) > y} < Cp ||Zh|| >/y> (y > 0), 

w/iere w //¡e characteristic function of the set H and Cp is a constant depending 
only on p. 

It is easy to see that for every /6Z.1 there exists a linear operator Lf: L1-*/.1 

such that 
( 9 ) i ) L , ( f ) = Q % ( f ) , i i ) \ L f ( g ) \ ^ Q * ( g ) ( g i V ) 

hold. Indeed, for x£[0, 1) let 0 ^ M ( x ) < 2 N be such a number for which 

/JV-l 
Q % ( f ) ( x ) = [ 2 K i / ^ W M ! 2 ] . 

Furthermore, let 
JV-l 

Ls{g)(x) = 2 ^(x)AJg'FM<x))(x), 
n = l 

where 

£ra(x) = s ignzl m (/^wX^/f 1 4 . ( / ^ W l 2 ) ' ( l ^ m ^ N ) . 

It is obvious that for the linear operator Lf (9) is satisfied, and by (9) ii) it is 
also of restricted weak type (p,p) for 1 < / > < » . Applying the Stein—Weiss 
interpolation theorem (see, e.g., [5], p. 191) we get that the operator Lf\ Lp—L" 
( l< /?<°° ) and consequently on the basis of (9) i) the operators U-+LP 
(1 </?<«>) are also uniformly bounded. 

Since 
/ . 1̂/2 

Q*(f) ^ sup |£0(/f,„)|-f sup ^ K ( / f J I 2 = SUP I W O I + 1 ' ™ Q*Af), m wt * n = 1 ' in /V — co 
we have 

iie*coii, 3? cp*n/n, (i 

and by the Paley-inequality, 

c ; i i / n P < i i e ( / ) i i P ^ ! i r ( / ) i i P . 
This proves (6). 
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Let us introduce another shift-invariant norm by means of the maximal function 

E**{f) := sup \En(fTm)\ 
M,N( N 

as follows: let 
\\f\\*P ••= WE**coil, (i 

Since E*(f)mE**(f)^E* (\f\), the Doob-inequality (see [4]), implies that 
ll/llp~ll/llp ( l ^ / x 0 0 ) * i-e-, for l < p < o o the Hp-norm is equivalent to the || Hp-
norm. We do not know whether the Hj-norm and the || ||*-norm are equivalent 
or not. 

2. Two lemmas 

Let 
JN := {[k2n, (fc +1)2"): 0 S n < N, (fc + l)2" < 2N, k, n€N"}, 

and for an interval I = [k2n, (/fc+l)2n) we set m(I) = k2", | / |=2" and 

E i ( f ) = 2 { f fVndx}Ytt. 

Then, £ ,„(/)=£ [ 0 j 2„ )(/) and for all j f j = [k2n, (k+l)2n) we ha \e EI(J)=En(f¥J)TJ. 
By means of the intervals of JN the function Q^(f) can be written in the form 

QW) = sup (Z Mi(/)l2)1/2, 

where A,(f)=E, ( f ) — E , ( f ) and I+ denotes the interval for which / c / + and 
| /+ |=2 | / | hold. 

To estimate Q%{f) we use an elementary observation with respect to series, 
in which the indices of the terms are the elements of . We need the following 

L e m m a 2. Let g,: [0, 1) —R (/€ -fN) be a sequence of functions and 2?,c:[0, 1) 
{ld.fN) a sequence of increasing sets (i.e., implies B,QBj). Further let 
A,=B,\C\ Bj. Then 

jci 
(10) sup{| Z /, S C : = 2 sup yAj sup | 2 8j[ 1} 

IQJCK ickiqjizk 

Proo f . To prove (10), let a£[0, 1) and SIK = I Z 1B 8 I- We show that 
¡'¿Jag. J J 

S1K(x)^G(x). 
If SIK(x)^0, then the (linearly ordered) set {/£ JN: IQJczK, xiBj} is not 

empty. Denote by I the minimum element (with respect to the ordering Q ) of 

/<= K means that JQK and J^K. 
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this set. If / c J , then by the definition of I we have that for x $ B j . 
Let I* be such an element of the set J ~ {/€ JN: Jczl, x£Bj} (V0), for which 
| /* |=min ( | / | : / € • / } • From the definition of I* it follows that for every Jczl* 
we have / ( £ . / . Thus, for such J's, x$Bj and consequently x£A,t. From these 
we get 

|S«(*)| = \SIK(X)\ = \S,*K(x)-SltI(x)\ Eg 

/»gJcK /»gJcK 

and (10) is proved. 
Let 

f > / = sup { |£ j ( / ) | : J a I, 2 | / | = |/|} ( / e ^ , | / | s 2), 

(11) = \Ej(f)\ (/€•/*, |/| = 1), 

F f f = sup {Fjf : J g /}, F* / = sup {Fj*/: /€ A}-

The (T-algebra generated by the intervals [fc2-\ (Jk + 1)2-") (k=0, 1, ..., 2 " - l ) 
will be denoted by (H€N) and for | / |=2", set sd I=s4„. The sequence 
( £ , ( / ) , / € A ) is predictable. Indeed, since EI{f)=El,(f)+Er,{f) ( / = / ' U I " , 
/ / D / " = 0), F / / is _^measurable and \E,(f)\-<2F*f. 

For let 

B^ = {x€[0,1): (F*f){x) > v}, ¿ J = U 
(12) 

C/ = {x€[0, 1): (F*f)(y) ^ ey). 

Then the following statement is true. 

L e m m a 3. For every y>0, 

(13) 2 / | f f d x . 
N y (F*f>y) 

Proo f . On the basis of the definition of A$ and B\ it is obvious that 
(F,f)(x)>y if x£Ayj. Let 

D»r = {xtA*: \E,.(f){x)\ > v}, D»r = A»r\D»r, 

where 1'czl, 7 " = / \ / ' and 2 | / ' | = |/ | . We set 

Pi = -/^¡.EI' + Xdj.E,,. 

Since EIEJ= 0 if I(~)J=&, and XA%ZA$=0, if IcJ, on the basis of the 
^-homogeneity of E, (which means E,(Xf)=XEjf, if X is ¿¡//-measurable) we get 
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that the P / s are orthogonal projections, i.e., PIPJ=8JJPJ (I,J£SN). Thus 

\\x{F*i>y)f\\\ ^ || 2 = 2 WPJWl = 

= 2 f\Erf\'dx+ f \Er.f\2dx s y2 2 mes^J, 
D,- DJ" IZ'N 

and Lemma 3 is proved. 

3. Proof of Lemma 1 
Let 

( 1 4 ) £ ' = 7 *<a = 7 *c / + Cy =- °>-

Then ej is ^-measurable and 

( / s*Jdy)AIf=AIf. 
0 

Using this, the quadratic variation can be estimated as follows: 

Q„(f) = ( 2 M//l2)1/2 = ( 2 J W i f d y 

2 W t W d y , 0 ne/e^N 
and by Lemma 2 we have 

G s ( f ) ^ f sup WJdy, 
0 't'N 

where 

2 l^//l2)1/2, i g j i s N 
and consequently 

A 

(15) X{F*f<vQ*N(fi ^ f sup Ä J d j . 
0 tZ^N 

Using Abel's transformation, an easy computation shows that 

1 2 

thus by the Paley-inequality we get 

Wx^RX ̂  cp\\ 2 ZMfXA*)||p = 
(16) ' S ' e ' w 
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Let first />>2. Then by (13) and (15), 

x 
( 

0 J«-*« 
WXVWQNWLP^ / ( 2 №f\\U)ll2pdy^ 

X A 
^ 2(4eC 2 p f p f ( Z mes A^" dy =g C'p f ( / \f\°-/y2 dx)^p dy 

0 J6J,w 0 {F*/=>y} 

= C'p{fy~U2 dy)if (F*/r-2\f\Adx)l,2p ^ ic;x^(f \F*f\f2". 
0 0 0 

Using the maximal inequality ||F*/||r^(r/(/-— l))||/ | | r (/">!) we get 

Apmes {QUf) > A, F*f C; | | / | |p , 

and on the basis of the maximal inequality (8) follows for every /£LP (pS2). 
Let now and f~Xn- By a simple integral transformation (15) can be 

written in the form 

sup dt, 
0 It*» 

and since sup R f f =X{F*f=~?.t} syp R j ' f , by F*f^l we have 

(17) X { F * f s n Q W ) < f sup Rj'fdt, 

where A1=min The condition t^ ) . " - 1 yields 
thus by (13), (16), and (17) with q=2((2-p)/(p-l)+2) we have 

\ \ y . { F * f < ; . n Q ' U f ) l l ^ X / ( 2" I I W I I I ) 1 ^ ^ 
o 

^ X C q J ( 2 mes A j ' y i q dt «= (mes H)llqXCq J (Xt)~2lq dt 
0 0 

1 
is C q ) } ~p,q (mes H ) 1 / q f l ~ l l 2 d t = 2C?A1-p/i(mes H ) l l q . 

0 
From this we obtain 

Ap mes {Q*N Ap} S C p mes H. 

This and the maximal inequality gives (8). 
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4. Proof of the second part of Theorem 

Let 

/ = ¿ 2 
n = 0 

Since ||Da»||i = l (?€N), this series is absolute convergent a.e. and fZL1. It is 
obvious that 

11 = 0 

and consequently E*f£L}-, i.e., | | / | | H i < ~ . On the basis of Q(r2nf)^2-n ,2Q(D2v>) 
we have 

IIQ*(f)h ^ W Q i ^ J ) ^ ^ 2 - ^ m D ^ ^ (n€N), 

thus | | / | | H i = oo. 
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