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On a Paley-type inequality
F. SCHIPP
Dedicated to Professor B. Székefalvi-Nagy on his 70th birthday

In this paper a new space similar to the dyadic Hardy spaces is investigated.
This space is defined by a shift-invariant norm and it is proved that for l<p<eo
this norm is equivalent to the ILP-norm.

1. Introduction

The spaces LP=17(0,1) (1<p<-<o) are considered as real Banach spaces
of real-valued functions with the usual norms || [|,. The “dyadic Hardy spaces”
are denoted by H?. The spaces H? (1= p<o) coincide with the space of all I!
functions, quadratic variations of which belong to IP. The quadratic variation
O(f) of the function feI! is defined by

0  en=(Smo"

where A,()=E.(f)—E,-.(f) 1=0,1,..), E_;f=0 and E,f) denotes the
2"-th partial sum’ of the Walsh—Fourier series of f. The operator E, is equal
to the conditional expectation with respect to the o-algebra generated by the intervals
[k2-" (k+1)27" (k=0,1, ...,2"—1). The dyadic HP-norm of the function f is
2 LA ae = HQ(NI, (A =p=<oo).

It was proved by R.E. A. C. PALEY [1] that for 1<p=<<co there exist constants.
¢, and ¢, depending only on p such that
3 il =12NN, = ¢ llfl, A <p=<e),

ie., for 1<p<eo the LP-norm and the H?-norm are equivalent. In the case p=1
the inequality (3) is not true. B. DAvis [2] has proved (in a more general form) that
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the H!-norm of f is equivalent to the L!-norm of the dyadic maximal function

E*(f) of f: 12NN ~IE*(/Hl, where E*(f)=Sl'.'lp |E.(/)]. Furthermore, it is

known that
1

@ IE* U, ~ 12NN, ~ [ IT(f: Dll,dx (1 =p <)

0
where

T(f; x):= § ra(¥) 40 (f)

and r=(r,, n€N) (N:={0, 1, 2, ...}) denotes the Rademacher system. A special
case of (3) is the well-known Khintchine inequality:

oo 142 o
( Z a%) ~ Z a" r'l
n=0 n=0

The Lf-norms (1<p<oo) are invariant with respect to the dyadic shift operators
5,(f)=f¥, (n€N), where the ¥,s are the Walsh—Paley functions, i.e., || fi,=
=|f¥.l, (1<p=<e,neN). The H-norm has not this property. An easy computation
shows that for the functions

(1 <p=<oo).

p

2", if O0=x<27"

Dz"(x)={0, if 2n=x<1 N

we have
&) 1Q (Do)l = 37Y2n, |Q(¥enDom)ll; = 1.

We introduce the following shift-invariant norm: for 1=p<o let
1 g = [lsup @S2,

and denote by Hj the set of L' functions f, for which [f |[H;< o0, Obviously,
H; SH,. By means of (5) a function f, can be constructed such that || follgi<<o
and | follgz=-<e. In [3] it was proved that the sublinear operator

0*() = sup Q¥ (feLy)

has weak type (2, 2), i.e., there exists a constant C independent of f such that for
every y=0,

mes {x€[0, 1): Q*(/)(x) > y} < C{fIF/»*
In this paper we give the following generalization of the above result.

Theorem. 1. For 1<p<co the H}-norm is equivalent to the LP-norm:

(©) 12* (N, ~ Ifll, (1 <p=<e).
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2. There exists a function in H; with infinite Hf-norm.
The first part of Theorem is a consequence of the following

Lemma 1. The operators

1 12
) o= s (Z 40w wew

are of restricted weak type (p,p) for every l<p<eo, ie., for every measurable
set HE[O, 1),

®) mes {x: Ox(xn)(*) = y} < C,lxald/y* (& =0),

where 3y is the characteristic function of the set H and C, is a constant depending
only on p.

Itis easy to see that for every f€L! there exists a linear operator L,: L'—I!
such that

® ) L(f)=0x(f), i) |L, ()] =0x(e) (g€LY
hold. Indeed, for x€[0, 1) let 0=M (x)<2” be such a number for which

N-1 12
2N = (3 18,0 Puc)k)

n=1

Furthermore, let

L@ = 3 609 dn(@¥ ) (0,

n=1
where

2

N-1 Y
tu(®) = sign 8 S Pud @ 2 1P (1 =m= W)

It is obvious that for the linear operator L, (9) is satisfied, and by (9) ii) it is
also of restricted weak type (p,p) for l<p<oe. Applying the Stein—Weiss
interpolation theorem (see, e.g., [5], p. 191) we get that the operator L,: LP—~L?
(l<=p<-<) and consequently on the basis of (9) i) the operators QF: LP=L?
(l<p<weo) are also uniformly bounded.

Since

. 1/2
Q*(f) = Sup |E0(fqlm)| +5Up ( g; lAll(lem)lg] = Sup ]Eo(fwm)! +)é,l_l:1; Q?:I (f)’
we have

12*OI, = CoIfl, (1 <p=<w)
and by the Paley-inequality,

el < 12NN, = 127NN,
This proves (6).
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Let us introduce another shift-invariant norm by means of the maximal function

E**(f) = sup |E,(f¥,)

m,n¢

115 = NE** (M, (1 =p<o).

Since E*(f)=E*()=E*(|f]), the Doob-inequality (see [4]), implies that
IF1;~1fl, d<p<ee), ie., for 1<p<eo the H -norm is equivalent to the || ||3-
norm. We do not know whether the H;-norm and the || | -norm are equivalent
or not.

as follows: let

2. Two lemmas

Let
Sy = {[k2", (k+1)2"): O=n=<N, (k+D2"<?2V k, nEN"},

and for an interval /=[k2", (k+1)2") we set m(I)=k2", |I|=2" and

E(f) = '%;(oflf'}’,,dx) .

Then, E,(f)=Ey, ,(f) andforall jeI=[k2", (k+1)2") wehave E;(f)=E,(f¥,)¥;.
By means of the intervals of 4, the function QF(f) can be written in the form

oN() = sup (Kzl 4 ()2,

where 4,(f)=E; (f)—E/(f) and I, denotes the interval for which /c/, and
[7.|=2}{I| hold.

To estimate Qy(f) we use an elementary observation with respect to series,
in which the indices of the terms are the elements of #,. We need the following

Lemma 2. Let g;: [0, 1)—R (I€.#) be a sequence of functions and B;C[0, 1)
(I€.#y) a sequence of increasing sets (i.e., ISJ implies B;SB,). Further let
A;=B\ () B;. Then ’

JciI

(10 sup{| 2 Zn,g1|3 ICK, I KE}‘N} =G:=2 sup 1,,,5up| 2> g,l. b
ISJCK Iesy

IcK ISJCcK
Proof. To prove (10), let x€[0;1) and S,K=| 2 158 l We show that
1cick Y7
Six(x)=G6(x).
If Sp(x)70; then the (linearly ordered) set {J€Jy: ISJCK, x€B,} is not
empty. Denote by I the minimum element (with respect to the ordering ) of

1 Jc K means that JS K and J#K.
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this set. If IcI, then by the definition of I we have that for ISJCI, x¢B,.
Let I* be such an element of the set = {J€Sy: J<I, x€B,} (#8), for which
|[*|=min {{J|: J€£}. From the definition of I* it follows that for every JcI*
we have J¢.£. Thus, for such J’s, x¢ B, and consequently x€A;.. From these

we get
Stk (X))} = |S1c(®)| = Sk (X) — Spep(x)] =

= Ja(®) II*C;;KgJ(x)|+XA,*(x) |1*C%’:xgl(x)l =G6(%),

and (10) is proved.
Let
Frf=sup{lEx(N: JC L 2| = |I}} ey, 1| =2),

1) Fif=E/() UeSy, [I|=1),
Fif=swp B f: TS 1Y Ff = sup (Fif: IE5).

The o-algebra generated by the intervals [k27", (k+1)27") (k=0, 1, ...,2"—1)
will be denoted by ., (n€N) and for Ic#y, [[|=2", set =«f,. The sequence
(Ei(f), I€F) is predictable. Indeed, since E;(f)=Ep(f)+E.(f) U=I'Ur",
I'0N1"=0), F}f is o,_,-measurable and |E;(f)|<2F}f.

For y=0 let :

By = {x€[0, 1): (Ff)(x) =y}, 4A}= By\}gz B3,

Cf = {x€[0, ): (FFN)(y) = ey}

(12)

Then the following statement is true.

Lemma 3. For every y=0,

(13) > mes A} < —1? f |/ dx.

Iesy V' (prs=n)

Proof. On the basis of the definition of -4} and B it is obvious that
(Frf)(x)=y if xcA}. Let

Dy = {xedy: |Ep(NH(D)] =y}, Di» = ANNDY,
where /'cl, I”=I\J" and 2|I’'|=|I|. We set '
Py = yp,Er+1pp.Er.

Since EiE;=0 if INJ=0, and yayx,=0, if ICJ, on the basis of the
&-homogeneity of E; (which means E;(Af)=AE,f, if A is &/-measurable) we get
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that the P,’s are orthogonal projections, i.e., P P;=6;,P; (I,J€#y). Thus
IxEr>pfl3 = ” 2> Plf“2 = 2P fli=
(. 1€E5,

= 3 [IEflfdx+ [|E.fPdx=y* 3 mesd},
1e7x p, Dy» Iesy

and Lemma 3 is proved.

3. Proof of Lemma 1
Let
(14) 8’=ix « ==X, X »r=0).
=% Meart rsyv<rt n T Ty ey, fer,

Then &} is o,-measurable and
+oo
([ ad)af=4f
1]
Using this, the quadratic variation can be estimated as follows:

gm=(2mmwu[2
nelesy nele Sy

“+ o0

I ( ley 4, fI22dy,

0 ncleSsy

2\1/2
| =

+ oo
[ edifdy
0

A

and by Lemma 2 we have
+oo

QXN < [ sup Rifdy,
o Iesx

where
4 R f= 2)(,4;( lex 4, fIP)V2,
1STesy -
and consequently
’ A
(15) e <y Q8 () = [ sup Rydy.
o Iesy

Using Abel’s transformation, an easy computation shows that

| 2 8? Ifl§4e’

1Sicsy
thus by the Paley-inequality we get

"fo'R;'”p = Cp“I .%,J E;Al(fx.d}')“p =
N

(16) =

= Gollvey, 2, c4r/llo = 4Cllxal-

c
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Let first p=>2. Then by (13) and (15),

A
MmgmnuwuéfggnMﬂ@W%wé
(1] N

s R A
= 2(4eC,,)? of (. gN mes )P dy=C, [( [ 1y dx]irdy =

0 (P>}
= Cé(f yv2dy)( f1 (F*f)P=2|f|2dx) " = 2C; 172 f1 |F*f|e)ee.
0 0 0

Using the maximal inequality [|[F*f|,=(r/—D)Ifl, (r=1) we get
AP mes {Qy (f) = 4, F*f = 2} < CJI f1I5,

and on the basis of the maximal inequality (8) follows for every feI” (p=2).
Let now 1<p<2 and f=y4. By a simple integral transformation (15) can be
written in the form

Jp-1
Krrrsam@u(f) <2 [ sup Rifa,
o Iesy
and since sup R f=psy=20 SUP R f; by F*f=1 we have
A

(17) trs=m @i (N < [ sup Ritf dr
0 N

where A,=min (#*~1, 1~Y)=1. The condition t=i?"" yields A~2=¢-(G-P/I(P-1)-p
thus by (13); (16), and (17) with ¢g=2((2—p)/(p—1)+2) we have

}'l
Mmﬂﬂgﬂﬂmézfggnmvmwmé
0 N

A 2
=ic, [ (|3 mes Aj'yindt = (mes HYIC, [ Gn#4dr =
0 N 0

1
= C, /1P (mes HYV1 [ 1=Y2dt = 2C,72~7/(mes H)\A.

o
From this we obtain
P mes{Qx(f) > 4; F*f=A?} = C,mes H.

This and the maximal inequality gives (8).
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4. Proof of the second part of Theorem

Let
f= ,.g(') 2-"/2I'2,,D22n.

Since ||Dqsl,=1 (s€N), this series is absolute convergent a.e. and feL'. It is
obvious that

E*f= 327D 4,
n=0 -

and consequently E*fcL!, ie., || f ”Hl<00, On the basis of Q(r,n f)=2""2Q(D,2n)
we have

1O (N, = NQ(rpn NI, = 272 Q(Dyer)l, = 3712272 (n€N),
thus || f|lgz = <
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