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On symplectic actions of compact Lie groups 
with isotropy subgroups of maximal rank 

J. SZENTHE 

Dedicated to Professor B. Szokefalvi-Nagy on his 70th birthday 

Let (M , (a) be a symplectic manifold, G a connected Lie group and 
<P: GXM—M a symplectic action. Iftheaction <P has a momentum map [i\M-+ g*, 
where g* is the dual space of the Lie algebra g of G, then there is an action 
f : GXg*—g* such that p. is equivariant with respect to the actions <P, W. In 
this setting are derived the results of A. A. Kirillov, B. Kostant, J. M. Souriau and 
of others concerning Hamiltonian systems with symmetries ([1], pp. 276—311). 
Restriction to the case where G is compact offers a situation with peculiar features, 
a subject which seems to deserve special concern. A result pertaining to the above 
case is presented below. In fact, it is shown that if G is compact and the isotropy 
subgroups of 0 are of maximal rank then all the orbits of 0 are equivariantly 
isomorphic. 

The concepts and results applied subsequently are in conformity with those 
laid down in the work of R. ABRAHAM and J . E. MARSDEN [ 1 ] , however, in the 
notations there are some deviations. 

The following lemma presents a simple but for the subsequent results essential 
observation. 

Lemma 1. Let (M,co) be a symplectic manifold, G a connected Lie group 
and 0: GXM—M a symplectic action with a momentum map p: Af—g*. Then the 
kernel of the tangent linear map Tzfi: TZM-*T^Z)g* is given by 

Ker Tzti = (TzG{z)Y 

where the orthogonal complement is taken with respect to the symplectic form oo. 

Proof . Let Z€TzM and <p\I-M a curve with <p(0)=z, <p'(0)=Z. Then 
the following holds for any fixed X£g according to the definition of the momentum 
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map: 

¿ < / I ( * ( T ) ) , * > | R = 0 = Z(n(x), X) = d{(p(x), X))(Z) = ( I ( A » ( Z ) = co(X, Z) 

where X is the infinitesimal generator of the action <P corresponding to the element 
X of the Lie algebra g of G. On the other hand, the following is obviously valid: 

±(„(<p(T)),X)\t=0 = (,ioT:vZ,X) 

where TVg*—g* is the canonical isomorphism at /¿(z). Consequently, the 
following is obtained: 

(ifoT. pZ, X) = m (X, Z) for X£ g. 

Therefore Z£Ker T.ji if and only if Z^{TzG(z))L holds, since T.G{z) is spanned 
by the values of I at z as Ji runs through g. 

Let now (M, co) be a symplectic manifold and < , ) a Riemannian metric 
on M. Then there is a unique tensor field A of type (1, 1) on M such that 
co(X,Y) = (AX,Y) holds for any vector fields X, Y£#~(M). Moreover, since 
co is non-degenerate, Az : T.M-^T.M, the value of A at the point z£ M is an 
automorphism of the tangent space. Consider now with respect to the inner product 
( , )z the polar decomposition A:~S,oJ: of A., then the symmetric tensor 
S, and the orthogonal tensor Jz are uniquely defined since A. is injective ([2], 
pp. 169—170). Thus, tensor fields S, J are obtained on M. Moreover, the tensor 
field J is an almost complex structure on M and (X, Y) = a>(JX, Y) holds for 
arbitrary vector fields X, according to a basic result ([1], pp. 172—174). 

The tensor field J is called the almost complex structure defined by the symplectic 
form co and by the Riemannian metric ( , ). 

The following corollary is a consequence of the preceding lemma and of the 
above mentioned facts. 

Coro l la ry . Let (M,co) be a symplectic manifold, G a connected Lie group 
and <P: C X M - M a symplectic action with a momentum map More-
over, let there be a Riemannian metric ( , ) on M which is left invariant by the 
action $ and let J be the almost complex structure defined by co and ( , ). Then 
the kernel of the tangent linear map T.fi is given at any point z£M by 

Ker T-j.i = J.(N,G(z)) 

where N,G(z) is the orthogonal complement of the tangent space T.G(z) with respect 
to the inner product ( , )2. 
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Proo f . According to the above mentioned relation of (o, ( , ) , and / the 
following inclusions obviously hold: 

J{NZG{£J) c {TZG{Z)Y, J~I((T:G(z)±) c NZG(z) 

for z£M. Consequently, the Corollary follows directly from the preceding lemma. 

The following lemma which is again a consequence of the relation of co, ( , ), 
and / , is essential for the subsequent results. 

The lemma concerns the induced action on the tangent bundle. In fact, if an 
action # : 6 X M - M is given, then by <Pg(z)=<P(g, z), z£M, a diffeomorphism 
$g: M-+M is defined for any g£G. Consequently the tangent linear map 
T$g\ TM^TM is a transformation of TM for gdG. Thus an action of G on 
TM is obtained which is called the induced action of G on TM. 

L e m m a 2. Let (M, co) be a symplectic manifold, G a connected Lie group, 
<P: GXM-+M a symplectic action, and ( , ) a Riemannian metric on M which is 
left invariant by the action <P. Then the almost complex structure J defined by 
co and ( , ) is equivariant for the induced action of G on TM; in other words, 
T<PgcJ=JoT<Pg is valid for any element g of G. 

P r o o f . Let A be the tensor field defined by co and ( , ) on M and S,J 
those obtained by the polar decomposition of A. The in variance of co and ( , ) 
yields that the following is valid for arbitrary vector fields X, and g£G: 

(T<P~1 oA oT4>GX, Y> = (A OT<PGX, T4>gY> = 
= co(Td>GX, T<PgY) = CD{X, Y) = (AX, Y). 

But then A = T<P~1oAoT<Pg holds for g£G. Consequently, the following is 
valid, too: 

A = soj^{T0g
xoSomg)o{m;xojoT0g), geG. 

But, then T$~1oSoT<Pg, TQ^oJoT^g yields a polar decomposition of A for 
gCG, since the Riemannian metric ( , ) is left invariant by the action <P. Since 
A,, z^M, is injective, its polar decomposition is unique, as mentioned before. 
Consequently, the validity of 

j = m^ojomg, gee 

. is obtained which yields the assertion of the lemma. 

In order to state a corollary of the preceding lemma the introduction of a concept 
is convenient. In fact, let 4>: GXM-+M be a smooth action of a connected Lie 
group G. Then 

RZ = {X\TZ$GX= X for g<EG: where XET.M} 

is a subspace of the tangent space TZM at any point 2 of the manifold M. 
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Corol la ry . Let (M,co) be a symplectic manifold, G a connected Lie group, 
<P: GXM-^M a symplectic action and ( , ) a Riemannian metric on M which is 
left invariant by the action <P. If J is the almost complex structure defined by OJ 
and ( , ) then JZ(RZ) = R. holds at any point z£M. 

Proof . If X£R: then Tz4>g(J ,(X)) =JZ(TZ<PZ{X)) =JZ{X) holds for g£Gz, 
and this implies the assertion of the corollary. 

In case of a smooth action of a compact connected Lie group there is a standard 
classification of the orbits of the action and accordingly principal, exceptional and 
singular orbits are distinguished. As a result of R. PALAIS [5] shows the above 
classification can be introduced in case of isometric actions of connected Lie groups 
so that almost all the fundamental results concerning smooth actions of compact 
Lie groups remain valid. Therefore, if M is an isometric action of 
a connected Lie group on a Riemannian manifold M then there are points z£M 
such that G(z) is a principal orbit; moreover, if in this case 

T.M = T.G(z)@ NzG(z) 
is the orthogonal decomposition with respect to the Riemannian metric ( , ), then 
NzG(z)<zRz holds. 

For the formulation of the next lemma the introduction of the following concept 
is convenient. Consider a smooth action <£: GXM-^M of a connected Lie group 
G on a differentiable manifold M and a non-zero tangent vector X£TzG(z), z^M; 
it is said that X is an isotropy fixed tangent vector for the action <P provided that 
the following is valid: 

X=Tz4>gX for g£Gz. 

Some results concerning basic properties of the above concept will be given else-
where. 

Lemma 3. Let (M, a>) be a symplectic manifold, G a connected Lie group, 
<£: GXM-^M a symplectic action with a momentum map p\M-~g* and ( , ) 
a Riemannian metric on M which is left invariant by the action <P. If the action 
<P has no isotropy fixed tangent vectors then 

Ker T.p = NzG(z) 

holds at any point z£ M such that G(z) is a principal orbit of the action. 

Proof . Let z£M be such that G(z) is a principal orbit and consider the 
orthogonal decomposition 

T2M = T.G(z) © N,G(z) 

with respect to the Riemannian metric ( , ). Let X£ R and 
X=X' + X", X'£T:G(z), X"£NzG(z) 
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its corresponding decomposition. Then both X' and X" are left fixed by the 
action Tz$g\TzM^TzM, g(LGz. Thus, the assumption that <t> has no isotropy 
fixed tangent vectors implies that X' = 0 holds. Consequently, R.czNzG(z) is 
valid. On the other hand, the assumption that G(z) is a principal orbit implies 
that NzG(z)aRz holds. Thus, NzG(z)=Rz. Now, the corollaries to Lemma 1 and 
to Lemma 2 as well as the preceding assertion yield that 

Ker Tzfi = Jz{NzG(zj) = JZ(RZ) = Rz = NzG{z) 

holds. Thus, the assertion of the lemma is proved. 

The following theorem presents the result already mentioned at the beginning. 
The rank of compact Lie groups occurring here is taken in the usual sense given 
in terms of the maximal tori or of the Cartan subalgebras. 

Theorem. Let (M,co) be a symplectic manifold, G a compact connected 
Lie group and GXM-+M a symplectic action with a momentum map. If the 
isotropy subgroups of 0 are of maximal rank then all the orbits of 0 are equi-
variantly isomorphic. « 

Proof . Since the group G is compact, there is a Riemannian metric ( , ) 
on M which is left invariant by the action The assumption that the isotropy 
subgroups of 0 are of maximal rank implies that 0 has no isotropy fixed tangent 
vectors. In fact, assume that there is a V£TzG(z) for some zdM which is an 
isotropy fixed tangent vector of Consider now the maps 

TTz: G - G/Gz, ez: GIGZ-G(z), 

which are the canonical projection and the canonical equivariant isomorphism, 
and fix a reductive decomposition g = g®m. where gzc:g is the subalgebra of 
the Lie algebra g corresponding to the isotropy subgroup G,. Then with the 
usual identifications TeG=g, TeGz=gz, a restricted map 

T„ £, ° Te n,: mz - Tz G (z) 

is obtained where o = n, (e), and this restricted map is a vector space isomorphism 
which is equivariant for the following actions: 

Ad (g): m2 - , TZ<P0: TZG(z) - Tz G(z), g€ Gz. 

Now, the existence of the vector V€ TzG(z) yields an element X of the Lie algebra 
g such that 

XOu-{0} and [g,, = 0 

are valid. Since GzczG is of maximal rank, there is a Cartan subalgebra f of 
g included in gz. But then [f, Jif]=0 holds, and therefore X is in the normalizer 
of f. Since X$ f is valid, a contradiction is obtained with the definition of Cartan 

25 



386 J. Szenthe 

subalgebras. Therefore, the action <P has no isotropy fixed tangent vectors. Let 
now p: M—9* be a momentum map of the action <£. Then the preceding lemma 
applies and yields that 

Ker Tzp = NzG(z) 

is valid for z£M provided that G(z) is a principal orbit of the action <i>. 
Fix now a z£M such that G(z) is a principal orbit of <P and consider the 

component F. containing the point z of the following set 

{x|</>(g, x) = x for g£Gz, where x£M). 

Then, F. is a totally geodesic submanifold of the Riemannian manifold M 
according to a fundamental result ([4], pp. 59—61) and Fz intersects every orbit 
of the action [6]. Let F'.cF. be the set of points x£Fz such that G(x) is 
a principal orbit. Then, F'_ is an open, everywhere dense subset of Fz inconsequence 
of the Principal Isotropy Type Theorem. Moreover, observations made in the proof 
of the preceding lemma imply that 

TXFZ = NxG(x) 

holds for x£ F'_. Therefore, the assertion of Lemma 3 yields that 

Ker T,Ai = TXFZ 

is valid for x£F'z. But then p(F'_) is a single point and consequently p(Fz) is 
a single point too. Consider now the action !P: GXg* — g* on the dual space g*, 
which is associated with the action $ ([1], pp. 276—294). The image of p is a single 
orbit of the action 'F, owing to the facts that p is equivariant for <P and V, 
that Fz intersects every orbit of <P, and that p(Fz) is a single point. 

The restriction of Txp to TxG(x) is injective provided that G(x) is a principal 
orbit of <£, as Lemma 3 implies this. Therefore, the action <P cannot have singular 
orbits, since the image of p is a single orbit of f as observed above. Thus, p 
restricted to an orbit of '!> is a covering map. Let now z£M be such that G(z) 
is a principal orbit. Then Fz is intersected the same number of times by any principal 
orbit of <P. Since in any neighbourhood of an exceptional orbit there are principal 
ones, F, is intersected the same number of times by an exceptional orbit of $ as 
by the principal ones. Therefore, the existence of exceptional orbits and properties 
of the momentum map p imply the existence of different intersecting totally geodesic 
submanifolds Fz. But the fact that two different ones among such submanifolds 
intersects entails obviously the existence of singular orbits. Consequently, the action 
<J> has no exceptional orbits either. Thus, the action 0 has only principal orbits; 
and this fact implies the assertion of the theorem. 

As its following corollary shows, the preceding theorems has consequences 
concerning the structure of the symplectic manifold as well. 
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C o r o l l a r y . Let (M,(0) be a symplectic manifold, G a compact connected 
Lie group and GXM—M a symplectic action with a momentum map. If the 
isotropy subgroups of the action 0 are of maximal rank, then M is the total space 
of a differentiable fibre boundle, where the base manifold is the orbit space of the action 
0 and the fibers are diffeomorphic to a finite covering of a fixed orbit of the coadjoint 
action Ad*:GXg*-g*. 

P roo f . Since G is compact, there is a momentum map {L:M-*Q* of the 
action 0 such that the associated action !?:GXg*—g* is equivalent to the co-
adjoint action of G. In fact, let n:M—g* be a momentum map of $ and a: G—g* 
the coadjoint cocycle associated to p; then the associated action f is given as 
follows: 

«P(g,a = Ad*(g-1)^+<7(g) where (g, $)£GXQ*. 

Since the group G is compact, the action W must have a fixed point £€9* and 
therefore 

V ( g , 0 = Ad* (g-1){+ff(g) = C 

holds for every g£G. Consequently, the associated action W is given as follows: 

f ( g , a = A d " • ( g - ^ K - O + C where (g,£)€GXg*. 
According to the preceding theorem fi maps to a single orbit of W and is a covering 
map on each orbit of 0 which are all of the same type. Consequently, the orbits 
of 4> are diffeomorphic to a finite covering of a single orbit of the coadjoint action. 
Since the orbits of <£ are all of the same type, the assertion of the corollary follows 
now by a basic theorem on the union of orbits of the same type of smooth actions of 
compact Lie groups ([3], pp. 6—9). 

Added in proof. The author is indebted to Professor J. E. Marsden for the 
information that Lemmas 1, 2 and 3 are partially contained in the paper Symmetry 
and bifurcations of momentum mappings, Comm. Math. Phys., 78 (1981), 445—478 
by J. M . ARMS, J..E. MARSDEN and V. MONCRIEF. Moreover, the author is thank-
ful to Professor J. J. Duistermaat for acquainting him with conjectures that some 
results of the paper such as the Corollary to the Theorem can be developed fur-
ther. A detailed account of the above observations together with further related 
results will be presented in a forthcoming paper. 
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