Some weak-star ergodic theorems

JOSEPH M. SZƯCS
Dedicated to Professor Béla Szökefalvi-Nagy on his 70th birthday

0. Introduction. Let M be a von Neumann algebra and let G be a group of *-automorphisms of M. It is proved in [3] that if the family of G-invariant normal states is faithful on M (i.e., M is G-finite), then for every $t \in M$, the w^{*}-closed convex hull of $\{g t: g \in G\}$ contains exactly one G-invariant element: In the present paper we prove the converse of this theorem in the case where M is σ-finite and G is abelian. We present our results in the more general setting of arbitrary Banach spaces.
1. Results. Throughout this paper B denotes a Banach space and B^{*} its dual space. We denote by $L_{w^{*}}\left(B^{*}\right)$ the space of w^{*}-continuous linear operators in B^{*}, equipped with the topology of pointwise w^{*}-convergence. Every element g of $L_{w^{*}}\left(B^{*}\right)$ is a bounded operator in B^{*} such that there exists a unique bounded linear operator g_{*} in B for which $\left(g_{*}\right)^{*}=g$. Throughout this paper G will denote a bounded commutative semigroup $G \subset L_{w *}\left(B^{*}\right)$. We shall study the implications of the following condition:
(U) For every $t \in B^{*}$, the w^{*}-closed convex hull of the orbit $\{g t: g \in G\}$ contains a unique G-invariant element, which will be denoted by t^{G}.
(The fact that this closed convex hull contains at least one G-invariant element follows from the Kakutani-Markov fixed point theorem (cf. [2], V. 10. 6), in view of the w^{*}-compactness of the unit ball of B^{*}.)

Theorem 1. Suppose that condition (U) is satisfied and either B is a separable Banach space or G is a separable topological subspace of $L_{w^{*}}\left(B^{*}\right)$. Then the mapping $t \rightarrow t^{G}\left(t \in B^{*}\right)$ is a bounded linear projection P acting in B^{*}. We have $g P=P g=P$ and P is the limit, in $L_{w *}\left(B^{*}\right)$, of a sequence of elements of the convex hull of G.

Theorem 2. Suppose that either B or G is separable. If condition (U) is satisfied and B is weakly complete, then the mapping $t \rightarrow t^{G}\left(t \in B^{*}\right)$ is a w^{*}-continuous
linear projection P such that $g P=P g=P$. The operator P belongs to the sequential closure, in $L_{w *}\left(B^{*}\right)$, of the convex hull coG of G. Moreover, for every $v_{0} \in \operatorname{co} G$ and every w^{*}-neighborhood N of zero there exists $v_{1} \in \operatorname{co} G$ such that $v_{1} v_{0} t-t^{G} \in N$ for every $v \in \operatorname{coG}$ and $t \in B^{*}$ such that $\|t\| \leqq 1$.

Proposition 1. The hypotheses of Theorem 2 are satisfied if:
(a) $B=L^{1}(X, S, m)$, where (X, S, m) is a positive localizable measure space (then $B^{*}=L^{\infty}(X, S, m)$);
(b) G is a bounded commutative semigroup of w^{*}-continuous linear operators in $L^{\infty}(X, S, m)$, satisfying condition (U);
(c) Either $L^{1}(X, S, m)$ or G is separable.

Proposition 2. The assertions of Theorem 2 hold if:
(a) B^{*} is a W^{*}-algebra M;
(b) G is a bounded commutative semigroup of w^{*}-continuous linear mappings of M into itself, satisfying condition (U).
(c) Either M is σ-finite or G is separable.

Corollary. Let M be a von Neumann algebra and let G be a commutative group of $*$-automorphisms of M, satisfying condition (U). If M is σ-finite or G is separable, then M is G-finite (for this notion, cf. [3]).
2. Proofs. For the proof of Theorem 1 we need the following two lemmas.

Lemma 1. Let $G=\left\{g_{1}, g_{2}, \ldots\right\}$ be countable and let B be separable. Suppose that condition (U) is satisfied. Then for every $t \in B^{*}$, the sequence $\left\{\frac{1}{n^{n}} \sum_{i_{1}, \ldots, i_{n}=1}^{n} g_{1}^{i_{1} \ldots} g_{n}^{i_{n}} t\right\}_{n=1}^{\infty}$ w^{*}-converges to t^{G}.

Lemma 2. Let B_{1} be a G_{*}-invariant closed subspace of B, i.e., let $g_{*} \varphi \in B_{1}$ for $g_{*} \in G_{*}, \varphi \in B_{1}$. Furthermore, let $B_{1}^{\perp}=\left\{t:(\varphi, t)=0\right.$ for all $\left.\varphi \in B_{1}\right\}$ and let the dual space B_{1}^{*} of B_{1} be identified canonically with the quotient space B^{*} / B_{1}^{\perp}. If G acting on B^{*} satisfies condition (U), then G acting on B_{1}^{*} also satisfies condition (U).

Proof of Lemma 1. Let $v_{n}=\frac{1}{n^{n}} \sum_{i_{1}, \ldots, i_{n}=1}^{n} g_{1}^{i_{1}} \ldots g_{n}^{i_{n}}$ and let $t \in B^{*}$. We have to prove that the sequence $\left\{v_{n} t\right\} w^{*}$-converges to t^{G}. To prove this, we show that every subsequence $\left\{v_{n_{k}} t\right\}$ of $\left\{v_{n} t\right\}$ contains a subsequence $\left\{v_{n_{k_{l}}} t\right\}$ which w^{*}-converges to t^{G}. Since the sequence $\left\{v_{n} t\right\}$ is a bounded sequence in B^{*} and every closed ball in B^{*} is metrizable compact in the w^{*}-topology (cf. [2], V. 4.2, V. 5.1), this will imply that $v_{n} t \rightarrow t^{G}$ in the w^{*}-topology as $n \rightarrow \infty$. Let $\left\{v_{n_{k}} t\right\}$ be a subsequence of $\left\{v_{n} t\right\}$. Since $\left\{v_{n_{k}} t\right\}$ is a bounded sequence, it contains a w^{*}-convergent subsequence $\left\{v_{n_{k_{1}}} t\right\}$ (by the above remark). We have to prove that the limit of
$\left\{v_{n_{k}} t\right\}$ is t^{G}. Since the limit of $\left\{v_{n_{k_{l}}} t\right\}$ obviously belongs to the w^{*}-closed convex hull of $\{g t: g \in G\}$, we only have to prove that it is G-invariant. Pick a positive integer s. Let $n \geqq s$. Then g_{s} appears in v_{n}. By the commutativity of G we have:

$$
\begin{gathered}
\left\|g_{s} v_{n} t-v_{n} t\right\|= \\
=\left\|\frac{1}{n^{n}} \sum_{i_{1}, \ldots, i_{n}=1}^{n} g_{g}^{i_{1}} \ldots g_{s-1}^{i_{s}-1} g_{s}^{i_{s}+1} g_{s+1}^{i_{s+1}} \ldots g_{n}^{i_{n}} t-\frac{1}{n^{n}} \sum_{i_{1}, \ldots, i_{n}=1}^{n} g_{1}^{i_{1}} \ldots g_{n}^{i_{n} t}\right\|= \\
=\| \frac{1}{n^{n}}{ }_{i_{1}, \ldots, i_{s-1},} \sum_{i_{s+1}, \ldots, i_{n}=1}^{n}\left(g_{1}^{i_{1}} \ldots g_{s-1}^{i_{s-1} 1} g_{s}^{n+1} g_{s+1}^{i_{s}+1} \ldots g_{n}^{i_{n} t-g_{1}^{i_{1}} \ldots g_{s-1}^{i_{s}-1} g_{s+1}^{i_{s}+1} \ldots g_{n}^{i_{n} t} t \| \leqq}\right. \\
\hdashline \frac{2 n^{n-1}\|G\| \cdot\|t\|}{n^{n}}=\frac{2}{n}\|G\| \cdot\|t\|,
\end{gathered}
$$

where $\|G\|=\sup \{\|g\|: g \in G\}$. If now $n=n_{k_{l}}$ and $l \rightarrow \infty$, then $n_{k_{l} \rightarrow \infty}$, and consequently, $\left\|g_{s} v_{n_{k_{1}}} t-v_{n_{k_{l}}} t\right\| \rightarrow 0$ by the above. Hence $g_{s} v_{n_{k_{t}}} t \rightarrow \lim _{t \rightarrow \infty} v_{n_{k_{l}}} t$. On the other hand, by the w^{*}-continuity of g_{s} we have $g_{s} v_{n_{k_{l}}} t \rightarrow g_{s} \lim _{l \rightarrow \infty} v_{n_{k_{l}}} t$. Consequently, $g_{s} \lim _{l \rightarrow \infty} v_{n_{k_{l}}} t=\lim _{l \rightarrow \infty} v_{n_{k_{l}}} t$. Since g_{s} was an arbitrary element of G, we have proved that $\lim _{l \rightarrow \infty} v_{n_{k_{l}}}$ is G-invariant, and consequently,

$$
\lim _{t \rightarrow \infty} v_{n_{k_{l}}} t=t^{G} .
$$

Proof of Lemma 2. Since $G B_{1}^{\perp} \subset B_{1}^{\perp}$, the semigroup G acts on $B_{1}^{*}=$ $=B^{*} / B_{1}^{\perp}$, and Lemma 2 makes sense. Let $f \in B_{1}^{*}$ and let f_{0} be a G-invariant element of the w^{*}-closed convex hull of $\{g f: g \in G\}$. There exists a net v_{n} of elements of co G such that $v_{n} f \rightarrow f_{0}$ in the w^{*}-topology of B_{1}^{*}. The element $f \in B_{1}^{*}$ is canonically identified with a coset $t+B_{1}^{\perp}\left(t \in B^{*}\right)$ and for every $g \in G$, the element $g f$ is identified with $g t+B_{1}^{\perp}$. The convergence relation $v f \rightarrow f_{0}$ means that for every $\varphi \in B_{1},\left(\varphi, v_{n} t\right)$ converges, the limit being $\left(\varphi, f_{0}\right)$. For every $\varphi \in B_{1}, g \in G$ we have $\left(g_{*} \varphi, f_{0}\right)=\left(\varphi, g_{*}^{*} f_{0}\right)=\left(\varphi, g f_{0}\right)=\left(\varphi, f_{0}\right)$. Consequently, f_{0} is a G_{*}-invariant bounded linear form on B_{1}.

Since closed balls are w^{*}-compact in B^{*}, there is a subnet v_{1} of the net v_{n} for which $v_{1} t$ converges in the w^{*}-topology of B^{*}. Let us denote the limit by t_{0}. The element $t_{0} \in B^{*}$ belongs to the w^{*}-closed convex hull of $\{g t: g \in G\}$ and

$$
\begin{equation*}
\left(\varphi, t_{0}\right)=\left(\varphi, f_{0}\right) \quad \text { for } \quad \varphi \in B_{1} \tag{*}
\end{equation*}
$$

Since G acting on B^{*} satisfies condition (U); there is a net w_{k} in $\operatorname{co} G$ such that $w_{k} t_{0} \rightarrow t^{G}$ in the w^{*}-topology of B^{*}. For $\varphi \in B_{1}$ we have: $\left(\varphi, t^{G}\right)=\lim _{k}\left(\varphi, w_{k} t_{0}\right)=$ $=\lim _{k}\left(w_{k *} \varphi, t_{0}\right)=\lim _{k}\left(w_{k^{*}} \varphi, f_{0}\right)=\lim _{k}\left(\varphi, f_{0}\right)=\left(\varphi, f_{0}\right)$. (Here the next to the last equality holds because f_{0} is G_{*}-invariant on B_{1} and the equality before the next
to the last equality holds because of (*) and the G_{*}-invariance of B_{1}.) Consequently, $\left(\varphi, t^{G}\right)=\left(\varphi, f_{0}\right)$ for $\varphi \in B_{1}$, i.e., f_{0} is the restriction of t^{G} to B_{1}. Since f_{0} was an arbitrary element in the w^{*}-closed convex hull of $\{g f: g \in G\}$, the lemma is proved.

Proof of Theorem 1. Throughout this proof we assume that condition (U) is satisfied for G acting on B^{*}.
(1) First we assume that B is separable. This implies the separability of G. Indeed, let $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ be a dense sequence in the unit ball of B. Let T be the set of B-valued sequences bounded by $\|G\|=\sup \{\|g\|: g \in G\}$. If $\alpha, \beta \in T$, we define $\varrho(\alpha, \beta)$ by the equality

$$
\varrho(\alpha, \beta)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left\|\alpha_{n}-\beta_{n}\right\|}{1+\left\|\alpha_{n}-\beta_{n}\right\|} .
$$

Then ϱ is a metric on T. We have $\alpha^{(k)} \rightarrow \alpha$ in this metric if and only if $\alpha_{n}^{(k)} \rightarrow \alpha_{n}$ ($k \rightarrow \infty$) for every $n=1,2, \ldots$. Since B is separable, so is T. Let $g \in G$ and let us define an element α^{g} of T by the equalities $\alpha_{n}^{g}=g_{*} \varphi_{n} \quad(n=1,2, \ldots)$. The mapping $g \rightarrow \alpha^{g}$ is a homeomorphism of G_{*} onto a subset of T if G_{*} is considered with the topology of pointwise strong convergence on B and T is considered with the topology induced by the metric ϱ. Since T has a countable dense subset, we may infer that so does G_{*} (because of the metrizability of T). Since taking adjoints of operators is a weak-weak* continuous operation, G contains a countable subset G_{0} which is dense in G in the topology of $L_{w^{*}}\left(B^{*}\right)$.

Now let G_{0} be a countable dense subset of G in the topology of $L_{w *}\left(B^{*}\right)$. Then the G_{0}-invariant elements of B^{*} are the same as the G-invariant elements of B^{*} and for every $t \in B^{*}$, the w^{*}-closed convex hull of $\left\{g t: g \in G_{0}\right\}$ coincides with the w^{*}-closed convex hull of $\{g t: g \in G\}$. Consequently, if in addition, we choose G_{0} to be a subsemigroup of G (for example, we replace G_{0} by the subsemigroup generated by G_{0}), then G satisfies condition (U) if and only if G_{0} does.

Now we can apply Lemma 1 to the separable Banach space B and countable semigroup G_{0}. We obtain that there exists a sequence $\left\{v_{n}\right\}_{n=1}^{\infty}$ in $\operatorname{co} G_{0}$ such that for every $t \in B^{*}, v_{n} t \rightarrow t^{G_{0}}=t^{G}$ in the w^{*}-topology as $n \rightarrow \infty$. Consequently, the mapping $t \rightarrow t^{G}$ is a bounded linear projection, to be denoted by P, acting in B^{*}. Since $(g t)^{G}=g t^{G}=t^{G}$ for $g \in G, t \in B^{*}$, we have: $g P=P g=P$. This completes the proof of Theorem 1 in case B is separable.
(2) Suppose G is separable, i.e., there exists a countable subset G_{0} of G which is dense in G in the topology of $L_{w *}\left(B^{*}\right)$. We may assume that G_{0} is a subsemigroup of G. The first part of the proof shows that it is sufficient to prove the theorem for G_{0}. However, we cannot apply Lemma 1 because B may not be separable. Consequently, we also have to appeal to Lemma 2. Let g_{1}, g_{2}, \ldots be all

for every $t \in B^{*}, v_{n} t \rightarrow t^{G}$ in the w^{*}-topology of B^{*} as $n \rightarrow \infty$. All the assertions of Theorem 1 will follow from this in the same way as in part (1) of this proof.

Let φ_{0} be an arbitrary element of B. Let us denote by B_{1} the Banach subspace spanned by the elements $g_{1 *} \varphi_{0}, g_{2 *} \varphi_{0}, \ldots$. The subspace B_{1} is $G_{0 *}$-invariant. We may apply Lemma 2 and obtain that G_{0}, acting on $B_{1}^{*}=B^{*} / B_{1}^{\perp}$, also satisfies condition (U). Since B_{1} is separable and G_{0} is countable, Lemma 1 may be applied. We obtain that for every $f \in B_{1}^{*}, v_{n} f \rightarrow f^{G}$ in the w^{*}-topology of B_{1}^{*} as $n \rightarrow \infty$. In view of the identification $B_{1}^{*}=B^{*} / B_{1}^{\perp}$, this implies that for every $t \in B^{*}$, the sequence $\left\{\left(\varphi_{0}, v_{n} t\right)\right\}_{n=1}^{\infty}$ is convergent. (It may be seen directly that it converges to ($\varphi_{0}, t^{G_{0}}$); however, we choose another way of proving this, which we think is easier to follow.) Since φ_{0} was an arbitrary element of B and $\left\|v_{n} t\right\| \leqq\|G\| \cdot\|t\|$; we obtain that for every $t \in B^{*}$, the sequence $\left\{v_{n} t\right\}_{n=1}^{\infty} w^{*}$-converges to an element $P t$ of B^{*} : It is easy, to see that $P t$ is G_{0}-invariant. Therefore, $P t=t^{G_{0}}\left(=t^{G}\right)$.

Proof of Theorem 2. The hypotheses of Theorem 1 are. satisfied. Consequently, there is a sequence $\left\{v_{n}\right\}_{n=1}^{\infty}$ in $\operatorname{co} G$ such that for every $t \in B^{*}, v_{n} t \rightarrow t^{G}$ in the w^{*}-topology of B^{*} as $n \rightarrow \infty$. Now let $\varphi \in B$ be given. For every $t \in B^{*}$, we have $\left(v_{n *} \varphi-v_{m *} \varphi, t\right)=\left(\varphi,\left(v_{n}-v_{m}\right) t\right) \rightarrow 0$ as $n, m \rightarrow \infty$. Consequently, the sequence $\left\{v_{n *} \varphi\right\}_{n=1}^{\infty}$ is a weak Cauchy sequence in B. Since B is assumed to be weakly complete, there exists an element of B, to be denoted by $P_{*} \varphi$, for which $\left(v_{n *} \varphi, t\right) \rightarrow$ $\rightarrow\left(P_{*} \varphi, t\right)(n \rightarrow \infty)$ for every $t \in B^{*}$. It is easy to see that P_{*} is a bounded linear operator in B. As $n \rightarrow \infty$, we have: $\left(\varphi, v_{n} t\right)=\left(v_{n *} \varphi, t\right) \rightarrow\left(P_{*} \varphi, t\right)=\left(\varphi, P_{*}^{*} t\right)$ for $\varphi \in B, t \in B^{*}$. Consequently, $v_{n} \rightarrow P_{*}^{*}$ in $L_{w^{*}}\left(B^{*}\right)$ as $n \rightarrow \infty$. Since P_{*}^{*} is obviously w^{*}-continuous, we obtain the assertions of Theorem 2 (except the last assertion) if we put $P=P_{*}^{*}$.

The last assertion of Theorem 2 may be proved as follows. First we prove that for every $\varphi \in B$, the closed convex hull of $\left\{g_{*} \varphi: g_{*} \in G_{*}\right\}$ contains exactly one G_{*}-invariant element (namely, $P_{*} \varphi$). Here we may take either weak or strong closure, because the strong closure of a convex subset of a Banach space coincides with its weak closure (cf. [2], V. 3.13). Let $\varphi \in B$ and let $\hat{\varphi}$ be a G_{*}-invariant element in the closure of $\left(\operatorname{co} G_{*}\right) \varphi$. Then there exist $w_{n} \in \operatorname{co} G_{*}$ such that $w_{n} \varphi \rightarrow \hat{\varphi}$ strongly as $n \rightarrow \infty$. We have $P_{*} w_{n} \varphi \rightarrow P_{*} \hat{\varphi}$. Here $P_{*} w_{n} \varphi=P_{*} \varphi$ (because $P_{*} g_{*}=P_{*}$ for $g \in G$) and $P_{*} \hat{\varphi}=\hat{\varphi}$ (because P_{*} is a weak limit of elements of $\operatorname{co} G_{*}$ and $\hat{\varphi}$ is G_{*}-invariant). Therefore, $\hat{\varphi}=P_{*} \varphi$. On the other hand, if $g \in G$, then $g_{*} P_{*} \varphi=$ $=P_{*} \varphi$, i.e., $P_{*} \varphi$ is G_{*}-invariant. Therefore, $P_{*} \varphi$ is the unique G_{*}-invariant element in the closure of $\left(\operatorname{co} G_{*}\right) \varphi$. Since this is true for every $\varphi \in B$, the following holds according to [1]: For every $\varphi \in B$, every $\varepsilon>0$ and every $v_{0 *} \in \operatorname{co} G_{*}$ there exists $v_{1 *} \in \operatorname{co} G_{*}$ such that $\left\|v_{*} v_{1 *} v_{0 *} \varphi-P_{*} \varphi\right\|<\varepsilon$. This inequality is equivalent to the following: $\left|\left(\left[v_{*} v_{1 *} v_{0 *}-P_{*}\right] \varphi, t\right)\right|<\varepsilon$ for all $t \in B^{*}$ such that $.\|t\| \leqq 1$ or
$\left|\left(\varphi,\left[v v_{1} v_{0}-P\right] t\right)\right|<\varepsilon$ for all $t \in B^{*}$ such that $\|t\| \leqq 1$. The last assertion of Theorem 2 follows immediately from this.

Proofs of Propositions 1,2 and the corollary of Proposition 2. In Proposition 1, $L^{1}(X, S, m)$ is weakly complete (cf. [2], IV. 8.6); consequently, the hypotheses of Theorem 2 are satisfied. In Proposition 2, the predual of M is weakly complete (cf. [4], Proposition 1); consequently, the hypotheses of Theorem 2 are satisfied. The corollary to Proposition 2 is simply a special case of Proposition 2.

3. Remarks and problems.

Remark 1. It follows from the author's other results (to be published) that even if G is not commutative and G and B are not separable and condition (U) is satisfied, then the mapping $t \rightarrow t^{G}\left(t \in B^{*}\right)$ is a bounded linear projection contained in the closure, in $L_{w^{*}}\left(B^{*}\right)$, of the convex hull of G.

Remark 2. It follows from the author's other results (to be published) that even if B is not weakly complete and condition (U) is satisfied, then a weaker version of the last assertion of Theorem 2 holds.

Problem 1. Is Theorem 2 true without the hypothesis that B is weakly complete?

Problem 2. Is Theorem 2 true without the hypothesis of separability of B or G ? (In this case we can only expect P to be in the closure of co G, instead of the sequential closure of $\operatorname{co} G$.)

Problem 3. Are the results of this paper true without the hypothesis that G is commutative?

References

[1] L. Alaouglu and G. Birkhoff, General ergodic theorems, Ann. Math., 41 (1940), 293-309.
[2] N. Dunford and J. T. Schwartz, Linear operators. Part I: General theory, Interscience Publishers, Inc. (New York, 1958).
[3] I. Kovács and J. Szücs, Ergodic theorems in von Neumann algebras, Acta Sci. Math., 27 (1966), 233-246.
[4] S. SAKAl, On topological properties of W^{*}-algebras, Proc. Japan Acad., 33 (1957), 439-444.

