Some weak-star ergodic theorems

JOSEPH M. SZŰCS

Dedicated to Professor Béla Szőkefalvi-Nagy on his 70th birthday

0. Introduction. Let M be a von Neumann algebra and let G be a group of *-automorphisms of M. It is proved in [3] that if the family of G-invariant normal states is faithful on M (i.e., M is G-finite), then for every $t \in M$, the w^* -closed convex hull of $\{gt: g \in G\}$ contains exactly one G-invariant element. In the present paper we prove the converse of this theorem in the case where M is σ -finite and G is abelian. We present our results in the more general setting of arbitrary Banach spaces.

1. Results. Throughout this paper B denotes a Banach space and B^* its dual space. We denote by $L_{w*}(B^*)$ the space of w^* -continuous linear operators in B^* , equipped with the topology of pointwise w^* -convergence. Every element g of $L_{w*}(B^*)$ is a bounded operator in B^* such that there exists a unique bounded linear operator g_* in B for which $(g_*)^* = g$. Throughout this paper G will denote a bounded commutative semigroup $G \subset L_{w*}(B^*)$. We shall study the implications of the following condition:

(U) For every $t \in B^*$, the w^{*}-closed convex hull of the orbit $\{gt : g \in G\}$ contains a unique G-invariant element, which will be denoted by t^G .

(The fact that this closed convex hull contains at least one G-invariant element follows from the Kakutani-Markov fixed point theorem (cf. [2], V. 10. 6), in view of the w^{*}-compactness of the unit ball of B^* .)

Theorem 1. Suppose that condition (U) is satisfied and either B is a separable Banach space or G is a separable topological subspace of $L_{w*}(B^*)$. Then the mapping $t \rightarrow t^G$ ($t \in B^*$) is a bounded linear projection P acting in B^* . We have gP = Pg = Pand P is the limit, in $L_{w*}(B^*)$, of a sequence of elements of the convex hull of G.

Theorem 2. Suppose that either B or G is separable. If condition (U) is satisfied and B is weakly complete, then the mapping $t \rightarrow t^G$ ($t \in B^*$) is a w^{*}-continuous

Received April 14, 1982.

linear projection P such that gP = Pg = P. The operator P belongs to the sequential closure, in $L_{w*}(B^*)$, of the convex hull coG of G. Moreover, for every $v_0 \in coG$ and every w^* -neighborhood N of zero there exists $v_1 \in coG$ such that $vv_1v_0t - t^G \in N$ for every $v \in coG$ and $t \in B^*$ such that $||t|| \leq 1$.

Proposition 1. The hypotheses of Theorem 2 are satisfied if:

(a) $B=L^1(X, S, m)$, where (X, S, m) is a positive localizable measure space (then $B^*=L^{\infty}(X, S, m)$);

(b) G is a bounded commutative semigroup of w^* -continuous linear operators in $L^{\infty}(X, S, m)$, satisfying condition (U);

(c) Either $L^1(X, S, m)$ or G is separable.

Proposition 2. The assertions of Theorem 2 hold if:

(a) B^* is a W^* -algebra M;

(b) G is a bounded commutative semigroup of w^* -continuous linear mappings of M into itself, satisfying condition (U).

(c) Either M is σ -finite or G is separable.

Corollary. Let M be a von Neumann algebra and let G be a commutative group of *-automorphisms of M, satisfying condition (U). If M is σ -finite or G is separable, then M is G-finite (for this notion, cf. [3]).

2. Proofs. For the proof of Theorem 1 we need the following two lemmas.

Lemma 1. Let $G = \{g_1, g_2, ...\}$ be countable and let B be separable. Suppose that condition (U) is satisfied. Then for every $t \in B^*$, the sequence $\left\{\frac{1}{n^n} \sum_{i_1,...,i_n=1}^n g_1^{i_1} \dots g_n^{i_n} t\right\}_{n=1}^{\infty}$ w*-converges to t^G .

Lemma 2. Let B_1 be a G_* -invariant closed subspace of B, i.e., let $g_*\varphi \in B_1$ for $g_* \in G_*$, $\varphi \in B_1$. Furthermore, let $B_1^{\perp} = \{t: (\varphi, t) = 0 \text{ for all } \varphi \in B_1\}$ and let the dual space B_1^* of B_1 be identified canonically with the quotient space B^*/B_1^{\perp} . If G acting on B^* satisfies condition (U), then G acting on B_1^* also satisfies condition (U).

Proof of Lemma 1. Let $v_n = \frac{1}{n^n} \sum_{i_1,\dots,i_n=1}^n g_1^{i_1}\dots g_n^{i_n}$ and let $t \in B^*$. We have to prove that the sequence $\{v_n t\}$ w*-converges to t^G . To prove this, we show that every subsequence $\{v_n t\}$ of $\{v_n t\}$ contains a subsequence $\{v_{n_k} t\}$ which w*-converges to t^G . Since the sequence $\{v_n t\}$ is a bounded sequence in B^* and every closed ball in B^* is metrizable compact in the w*-topology (cf. [2], V. 4.2, V. 5.1), this will imply that $v_n t \to t^G$ in the w*-topology as $n \to \infty$. Let $\{v_{n_k} t\}$ be a subsequence of $\{v_n t\}$. Since $\{v_{n_k} t\}$ is a bounded sequence, it contains a w*-convergent subsequence $\{v_{n_k} t\}$ (by the above remark). We have to prove that the limit of $\{v_{n_{k_i}}t\}$ is t^G . Since the limit of $\{v_{n_{k_i}}t\}$ obviously belongs to the w*-closed convex hull of $\{gt: g \in G\}$, we only have to prove that it is G-invariant. Pick a positive integer s. Let $n \ge s$. Then g_s appears in v_n . By the commutativity of G we have:

$$\|g_{s}v_{n}t - v_{n}t\| =$$

$$= \left\|\frac{1}{n^{n}}\sum_{i_{1},\dots,i_{n}=1}^{n}g_{g}^{i_{1}}\dots g_{s-1}^{i_{s-1}}g_{s}^{i_{s}+1}g_{s+1}^{i_{s}+1}\dots g_{n}^{i_{n}}t - \frac{1}{n^{n}}\sum_{i_{1},\dots,i_{n}=1}^{n}g_{1}^{i_{1}}\dots g_{n}^{i_{n}}t\right\| =$$

$$= \left\|\frac{1}{n^{n}}\sum_{i_{1},\dots,i_{s-1},i_{s+1},\dots,i_{n}=1}^{n}\left(g_{1}^{i_{1}}\dots g_{s-1}^{i_{s-1}}g_{s}^{n+1}g_{s+1}^{i_{s+1}}\dots g_{n}^{i_{n}}t - g_{1}^{i_{1}}\dots g_{s-1}^{i_{s-1}}g_{s+1}^{i_{s+1}}\dots g_{n}^{i_{n}}t\right\| \leq$$

$$\leq \frac{2n^{n-1}\|G\| \cdot \|t\|}{n^{n}} = \frac{2}{n}\|G\| \cdot \|t\|,$$

where $||G|| = \sup \{||g||: g \in G\}$. If now $n = n_{k_l}$ and $l \to \infty$, then $n_{k_l} \to \infty$, and consequently, $||g_s v_{n_{k_l}}t - v_{n_{k_l}}t|| \to 0$ by the above. Hence $g_s v_{n_{k_l}}t \to \lim_{l \to \infty} v_{n_{k_l}}t$. On the other hand, by the w*-continuity of g_s we have $g_s v_{n_{k_l}}t \to g_s \lim_{l \to \infty} v_{n_{k_l}}t$. Consequently, $g_s \lim_{l \to \infty} v_{n_{k_l}}t = \lim_{l \to \infty} v_{n_{k_l}}t$. Since g_s was an arbitrary element of G, we have proved that $\lim_{l \to \infty} v_{n_{k_l}}$ is G-invariant, and consequently,

$$\lim_{l\to\infty}v_{n_{k_l}}t=t^G$$

Proof of Lemma 2. Since $GB_1^{\perp} \subset B_1^{\perp}$, the semigroup G acts on $B_1^* = =B^*/B_1^{\perp}$, and Lemma 2 makes sense. Let $f \in B_1^*$ and let f_0 be a G-invariant element of the w^* -closed convex hull of $\{gf: g \in G\}$. There exists a net v_n of elements of $\cos G$ such that $v_n f \rightarrow f_0$ in the w^* -topology of B_1^* . The element $f \in B_1^*$ is canonically identified with a coset $t+B_1^{\perp}$ ($t \in B^*$) and for every $g \in G$, the element gf is identified with $gt+B_1^{\perp}$. The convergence relation $vf \rightarrow f_0$ means that for every $\varphi \in B_1$, $(\varphi, v_n t)$ converges, the limit being (φ, f_0) . For every $\varphi \in B_1$, $g \in G$ we have $(g_*\varphi, f_0) = (\varphi, g_*^*f_0) = (\varphi, gf_0) = (\varphi, f_0)$. Consequently, f_0 is a G_* -invariant bounded linear form on B_1 .

Since closed balls are w^* -compact in B^* , there is a subnet v_1 of the net v_n for which v_1t converges in the w^* -topology of B^* . Let us denote the limit by t_0 . The element $t_0 \in B^*$ belongs to the w^* -closed convex hull of $\{gt: g \in G\}$ and

(*)
$$(\varphi, t_0) = (\varphi, f_0)$$
 for $\varphi \in B_1$.

Since G acting on B^* satisfies condition (U), there is a net w_k in coG such that $w_k t_0 \rightarrow t^G$ in the w*-topology of B^* . For $\varphi \in B_1$ we have: $(\varphi, t^G) = \lim_k (\varphi, w_k t_0) = \lim_k (w_{k*}\varphi, t_0) = \lim_k (w_{k*}\varphi, f_0) = \lim_k (\varphi, f_0) = (\varphi, f_0)$. (Here the next to the last equality holds because f_0 is G_* -invariant on B_1 and the equality before the next

to the last equality holds because of (*) and the G_* -invariance of B_1 .) Consequently, $(\varphi, t^G) = (\varphi, f_0)$ for $\varphi \in B_1$, i.e., f_0 is the restriction of t^G to B_1 . Since f_0 was an arbitrary element in the w^* -closed convex hull of $\{gf: g \in G\}$, the lemma is proved.

Proof of Theorem 1. Throughout this proof we assume that condition (U) is satisfied for G acting on B^* .

(1) First we assume that *B* is separable. This implies the separability of *G*. Indeed, let $\{\varphi_n\}_{n=1}^{\infty}$ be a dense sequence in the unit ball of *B*. Let *T* be the set of *B*-valued sequences bounded by $||G|| = \sup \{||g|| : g \in G\}$. If $\alpha, \beta \in T$, we define $\varrho(\alpha, \beta)$ by the equality

$$\varrho(\alpha,\beta) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\|\alpha_n - \beta_n\|}{1 + \|\alpha_n - \beta_n\|}.$$

Then ϱ is a metric on T. We have $\alpha^{(k)} \rightarrow \alpha$ in this metric if and only if $\alpha_n^{(k)} \rightarrow \alpha_n$ $(k \rightarrow \infty)$ for every n = 1, 2, ... Since B is separable, so is T. Let $g \in G$ and let us define an element α^g of T by the equalities $\alpha_n^g = g_* \varphi_n$ (n=1, 2, ...). The mapping $g \rightarrow \alpha^g$ is a homeomorphism of G_* onto a subset of T if G_* is considered with the topology of pointwise strong convergence on B and T is considered with the topology induced by the metric ϱ . Since T has a countable dense subset, we may infer that so does G_* (because of the metrizability of T). Since taking adjoints of operators is a weak—weak* continuous operation, G contains a countable subset G_0 which is dense in G in the topology of $L_{w*}(B^*)$.

Now let G_0 be a countable dense subset of G in the topology of $L_{w*}(B^*)$. Then the G_0 -invariant elements of B^* are the same as the G-invariant elements of B^* and for every $t \in B^*$, the w^* -closed convex hull of $\{gt : g \in G_0\}$ coincides with the w^* -closed convex hull of $\{gt : g \in G\}$. Consequently, if in addition, we choose G_0 to be a subsemigroup of G (for example, we replace G_0 by the subsemigroup generated by G_0), then G satisfies condition (U) if and only if G_0 does.

Now we can apply Lemma 1 to the separable Banach space B and countable semigroup G_0 . We obtain that there exists a sequence $\{v_n\}_{n=1}^{\infty}$ in coG_0 such that for every $t \in B^*$, $v_n t \to t^{G_0} = t^G$ in the w*-topology as $n \to \infty$. Consequently, the mapping $t \to t^G$ is a bounded linear projection, to be denoted by P, acting in B^* . Since $(gt)^G = gt^G = t^G$ for $g \in G$, $t \in B^*$, we have: gP = Pg = P. This completes the proof of Theorem 1 in case B is separable.

(2) Suppose G is separable, i.e., there exists a countable subset G_0 of G which is dense in G in the topology of $L_{w*}(B^*)$. We may assume that G_0 is a subsemigroup of G. The first part of the proof shows that it is sufficient to prove the theorem for G_0 . However, we cannot apply Lemma 1 because B may not be separable. Consequently, we also have to appeal to Lemma 2. Let g_1, g_2, \ldots be all different elements of G_0 and let $v_n = \frac{1}{n^n} \sum_{i_1,\ldots,i_n=1}^n g_1^{i_1} \ldots g_n^{i_n}$. We are going to prove that

for every $t \in B^*$, $v_n t \to t^G$ in the w^{*}-topology of B^* as $n \to \infty$. All the assertions of Theorem 1 will follow from this in the same way as in part (1) of this proof.

Let φ_0 be an arbitrary element of *B*. Let us denote by B_1 the Banach subspace spanned by the elements $g_{1*}\varphi_0, g_{2*}\varphi_0, \ldots$. The subspace B_1 is G_{0*} -invariant. We may apply Lemma 2 and obtain that G_0 , acting on $B_1^* = B^*/B_1^{\perp}$, also satisfies condition (U). Since B_1 is separable and G_0 is countable, Lemma 1 may be applied. We obtain that for every $f \in B_1^*, v_n f \rightarrow f^G$ in the w*-topology of B_1^* as $n \rightarrow \infty$. In view of the identification $B_1^* = B^*/B_1^{\perp}$, this implies that for every $t \in B^*$, the sequence $\{(\varphi_0, v_n t)\}_{n=1}^{\infty}$ is convergent. (It may be seen directly that it converges to (φ_0, t^{G_0}) ; however, we choose another way of proving this, which we think is easier to follow.) Since φ_0 was an arbitrary element of *B* and $||v_n t|| \leq ||G|| \cdot ||t||$; we obtain that for every $t \in B^*$, the sequence $\{v_n t\}_{n=1}^{\infty}, w^*$ -converges to an element Pt of B^* . It is easy to see that Pt is G_0 -invariant. Therefore, $Pt = t^{G_0} (=t^G)$.

Proof of Theorem 2. The hypotheses of Theorem 1 are satisfied. Consequently, there is a sequence $\{v_n\}_{n=1}^{\infty}$ in $\cos G$ such that for every $t \in B^*$, $v_n t \to t^G$ in the w^{*}-topology of B^* as $n \to \infty$. Now let $\varphi \in B$ be given. For every $t \in B^*$, we have $(v_{n*}\varphi - v_{m*}\varphi, t) = (\varphi, (v_n - v_m)t) \to 0$ as $n, m \to \infty$. Consequently, the sequence $\{v_{n*}\varphi\}_{n=1}^{\infty}$ is a weak Cauchy sequence in B. Since B is assumed to be weakly complete, there exists an element of B, to be denoted by $P_*\varphi$, for which $(v_{n*}\varphi, t) \to$ $\rightarrow (P_*\varphi, t) \quad (n \to \infty)$ for every $t \in B^*$. It is easy to see that P_* is a bounded linear operator in B. As $n \to \infty$, we have: $(\varphi, v_n t) = (v_{n*}\varphi, t) \to (P_*\varphi, t) = (\varphi, P_*^*t)$ for $\varphi \in B$, $t \in B^*$. Consequently, $v_n \to P_*^*$ in $L_{w*}(B^*)$ as $n \to \infty$. Since P_*^* is obviously w^* -continuous, we obtain the assertions of Theorem 2 (except the last assertion) if we put $P = P_*^*$.

The last assertion of Theorem 2 may be proved as follows. First we prove that for every $\varphi \in B$, the closed convex hull of $\{g_*\varphi : g_* \in G_*\}$ contains exactly one G_* -invariant element (namely, $P_*\varphi$). Here we may take either weak or strong closure, because the strong closure of a convex subset of a Banach space coincides with its weak closure (cf. [2], V. 3.13). Let $\varphi \in B$ and let φ be a G_* -invariant element in the closure of $(\cos G_*)\varphi$. Then there exist $w_n \in \cos G_*$ such that $w_n \varphi \rightarrow \varphi$ strongly as $n \rightarrow \infty$. We have $P_*w_n \varphi \rightarrow P_*\varphi$. Here $P_*w_n \varphi = P_*\varphi$ (because $P_*g_* = P_*$ for $g \in G$) and $P_*\hat{\varphi} = \hat{\varphi}$ (because P_* is a weak limit of elements of $\cos G_*$ and $\hat{\varphi}$ is G_* -invariant). Therefore, $\hat{\varphi} = P_*\varphi$. On the other hand, if $g \in G$, then $g_*P_*\varphi =$ $= P_*\varphi$, i.e., $P_*\varphi$ is G_* -invariant. Therefore, $P_*\varphi$ is the unique G_* -invariant element in the closure of $(\cos G_*)\varphi$. Since this is true for every $\varphi \in B$, the following holds according to [1]: For every $\varphi \in B$, every $\varepsilon > 0$ and every $v_{0*} \in \cos G_*$ there exists $v_{1*} \in \cos G_*$ such that $||v_*v_{1*}v_{0*}\varphi - P_*\varphi|| < \varepsilon$. This inequality is equivalent to the following: $|([v_*v_{1*}v_{0*} - P_*]\varphi, t)| < \varepsilon$ for all $t \in B^*$ such that $||t|| \leq 1$ or $|(\varphi, [vv_1v_0 - P]t)| < \varepsilon$ for all $t \in B^*$ such that $||t|| \le 1$. The last assertion of Theorem 2 follows immediately from this.

Proofs of Propositions 1,2 and the corollary of Proposition 2. In Proposition 1, $L^1(X, S, m)$ is weakly complete (cf. [2], IV. 8.6); consequently, the hypotheses of Theorem 2 are satisfied. In Proposition 2, the predual of M is weakly complete (cf. [4], Proposition 1); consequently, the hypotheses of Theorem 2 are satisfied. The corollary to Proposition 2 is simply a special case of Proposition 2.

3. Remarks and problems.

Remark 1. It follows from the author's other results (to be published) that even if G is not commutative and G and B are not separable and condition (U) is satisfied, then the mapping $t \rightarrow t^G$ ($t \in B^*$) is a bounded linear projection contained in the closure, in $L_{w*}(B^*)$, of the convex hull of G.

Remark 2. It follows from the author's other results (to be published) that even if B is not weakly complete and condition (U) is satisfied, then a weaker version of the last assertion of Theorem 2 holds.

Problem 1. Is Theorem 2 true without the hypothesis that B is weakly complete?

Problem 2. Is Theorem 2 true without the hypothesis of separability of B or G? (In this case we can only expect P to be in the closure of coG, instead of the sequential closure of coG.)

Problem 3. Are the results of this paper true without the hypothesis that G is commutative?

References

[1] L. ALAOUGLU and G. BIRKHOFF, General ergodic theorems, Ann. Math., 41 (1940), 293-309.

[2] N. DUNFORD and J. T. SCHWARTZ, Linear operators. Part I: General theory, Interscience Publishers, Inc. (New York, 1958).

 [3] I. Kovács and J. Szűcs, Ergodic theorems in von Neumann algebras, Acta Sci. Math., 27 (1966), 233-246.

[4] S. SAKAI, On topological properties of W*-algebras, Proc. Japan Acad., 33 (1957), 439-444.

GACD, TEXAS A & M UNIVERSITY AT GALVESTON P. O. BOX 1675 GALVESTON, TX 77553, U.S.A.