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1. Introduction. This paper has its origin in a study of random walks on regular 
polytopes. Regular polytopes in two dimensions (regular polygons) and in three 
dimensions (regular polyhedra or Platonic solids) have been known from ancient 
times. Four- and higher-dimensional polytopes were discovered by L. SCHLAFLI [12] 
before 1853. For the theory of regular polytopes we refer to the books of H. S. M. 
COXETER [5], P . H . SCHOUTE [13] a n d D . M . Y . SOMMERVILLE [16]. 

Let ip be a regular polytope with a vertices whose rectangular Cartesian 
coordinates are x0, x l 5 ..., x„_1. Denote by q the number of edges emanating 
from each vertex of We define two distance functions on the vertices of 
The distance D(xr,xs) is the number of edges in a shortest path joining xr and xs. 
The distance ||xr—xs|| is the Euclidean distance between xr and xs. 

Let us suppose that in a series of random steps a traveler visits the vertices 
of The traveler starts at a given vertex and in each step, independently of the 
past journey, chooses as the destination one of the neighboring vertices with 
probability 1 ¡q. Denote by v„ (n = l, 2, ...) the position of the traveler at the end 
of the 77-th step, and by v0 the initial position. An important problem in the theory 
of probability is to determine p(n), the probability that the traveler returns to the 
initial position at the end of the nth step. By symmetry we can choose any vertex, 
say x0, as the initial position and thus 

(1) P(n) = P{\n = x0\\„^x0} 

for all /7^0. 
Since {v„; /7^0} is a homogeneous Markov chain with state space {x0, x l5 ... 

...jX^.i}, the problem of finding p(n) has a straightforward solution. We determine 
the incidence matrix of the graph of the polytope, form its 71th power, and any diagonal 
element divided by q" yields p(n). 
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However, we can also find p(n) in another way. Divide the a vertices of 
ty into disjoint sections S0,S1,...,Sm such that S0 contains only a single vertex, 
say x0, and define a sequence of random variables {t„; n^O} so that 

(2) c„ = j if y„£Sj. 
In terms of <;„ (n==0) we can write that 

(3) P(«) = P { ^ = 0|Í„ = 0}. 

We would like to define S0, Sx, ..., Sm so that the sequence {<!;„; /¡^0} forms 
a Markov chain, and its state space {0,1, ..., m} contains fewer states than' that 
of {v„; «SO}. This can be done in each case and consequently it is more advantageous 
to use (3) than (1) for the determination of p(ri). 

If ^ is any regular polytope other than the four-dimensional 24-cell, 600-cell 
and 120-cell and if 
(4) Sj = {xr: D(xr, x0) =j} 

for j=0, 1, ...,m where now 0,1, .. . ,m are the possible values of D(xr, x0) 
(/•=0, ..., a— 1), then the sequence 0} defined by (2) is a homogeneous 
Markov chain. 

If P̂ is any regular polytope other than the four-dimensional 120-cell, and if 

(5) Sj = {xr: ||x,-x0!l = dj} 

for . /=0, 1, ..., m where now d0,d1,...,dm are the possible values of ||xr —x0|| 
( r=0,1 , ...,ff—1) arranged in increasing order of magnitude, then the sequence 
{£„; wSO} defined by (2) is a homogeneous Markov chain. 

However, if ^ is a four-dimensional 120-cell and if Sj is defined by (4) or 
(5), then is not a Markov chain. Since the distances Z)(xr,xs) and 
| |x r—xj remain invariant under rotations and reflections of we expect that 
in the general case the definition of the sections of should be based on the rota-
tions and reflections of that is, on the symmetry group G of 

If g£G and if g carries xr into xs, then we write xrg=xs. Let H be the 
stabilizer of x0, that is, 

(6) H={g:x0g = x0 and g<EG}. 

For any g£G define the double coset 

(7) C(g) = HgH = {hlgh2: h^H and h2£H}. 
Any two double cosets C(g¡) and C(g2) are either disjoint or identical. Denote 
by C0,Ci, ...,Cm all the disjoint double cosets of type (7). In particular, let C0=H. 
The double cosets C0 , C l 5 ..., Cm determine a partition of G. 

Now define 
(8) Sj = {xr: xr = x„g and g£Cj} 
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for j = 0, 1, ..., m. We can check that if Sj is defined by (8), then for each regular 
polytope the sequence {£„; «SO} defined by (2) is a Markov chain and m is much 
smaller than a. 

Since D(x,g,xsg)=D(xr,xs) and | |x rg-x sg| | = | |x r-x s | | for all g£G, every 
vertex xr belonging to Sj, defined by (8), has the same distance D(xr, x0) from x0, 
and the same distance ||xr — x0|| from x0. Thus (8) reduces to (4) and (5) in the 
indicated particular cases. 

We can generalize the random walk discussed above by assuming that the 
traveler in each step, independently of the past journey, chooses a vertex at random 
as the destination, and the transition probability P{v„=xs |v„_1=x r} depends 
either on the distance D(x,,xs), or on the distance | |x r—xj, or more generally, 

(9) P{v„ = x j v , , ^ = xr} = pv 

if xs=xrg and g£Cv (v = 0, 1, ..., in). If S} (./'=0, 1, ..., m) is defined by (8) and 
if is defined by (2), then in this more general random walk too, the sequence 
{£„; «SO} forms a homogeneous Markov chain. 

In this paper we shall consider a generalization of the random walk discussed 
above. Specifically, we shall be concerned with a random walk on a finite group 
and give a general method for the determination of the «-step transition proba-
bilities. 

2. Random walk on a group. The random walk described in the Introduction 
is a particular case of the general model defined in this section. 

Let G be a finite group which is partitioned into nonempty disjoint subsets 
C0 , Ci, ..., Cm such that C0 contains e, the identity element of G. The number 
of elements in C0 is denoted by N(C0)~co. The index set of the partition is 
/ = {0, 1, ...,m}. 

Let }>0, }>!, ...,y„, ... be a sequence of mutually independent random elements 
each belonging to G. A sequence of discrete random variables £0, ..., £„, ... 
is defined such that 
(10) c„ =./ if T„V, ... y„fCj. 

The sequence {£„; defines a random walk on the group G, or more precisely, 
on the partition {C0,C!, ...,Cm}. 

In what follows we assume that for /?=1,2, . . . the probability P{y„=g} 
does not depend on the particular g, it depends only on the class Cv (v£/) which 
contains g. 'We write 
(11) P {"in = g} = PJOJ 

for « S i and g(LCv. However, the distribution P{yu— g}> may be chosen 
arbitrarily,; 
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Our first aim is to find a condition which guarantees that the sequence {£„; n^O} 
is a Markov chain. It is easy to see that if the following Condition (i) is satisfied, 
then {£„; «SO} is a homogeneous Markov chain with state space / = (0, 1, ..., m). 

Condi t ion (i). For any gi€C; the number of ordered pairs (g2, g3) for 
which g2dCv, g3€Cj and gig2=gs is independent of the particular choice of gl5 

and is equal to coaiJV for i,j, v£/. 

We define the matrices 
02) Av = [ a i h ) . . u 

for v£/. 
We use the notation I=[<5y]. for an (m + l)X(m + l) unit matrix. Here 

and throughout this paper <5denotes the Kronecker symbol, that is, 

(i3) < 5 , = { ; if i = j, 
if t j. 

Let us define cr0, a l f ..., am such that the number of elements in Cv is iV(Cv) = 
=<7V<» for vÇJ. Obviously, cr0=l, and the order of G is N(G)=aco where 

m 
( 1 4 ) < T = 2 " < V 

v = 0 

It follows immediately from the definition of aijv (/,./, v£/) that a0jv = (7jôjv 

for j, v£7 and that 
m 

(15) 2 aiJv = <TV 
;=o 

for any /£/. 
We shall frequently use the diagonal matrix 

( 1 6 ) D - [ < 5 0 . < T f ] , , . 6 , 

where the square root is positive. 
Since the sum of the probabilities (11) for all gZG is necessarily equal to 1, 

the parameters p0,pi, •••,P,„ should satisfy the requirement 

m 
( 1 7 ) 2 " f f v P v = 1 -

v = 0 

According to the above consideration if Condition (i) is satisfied, then {£„; nSÛ} 
is a homogeneous Markov chain with state space / = {0, 1, ..., w}. The transition 
probabilities 
(18) P { ç „ = j | ç „ - i = i}=P,7 ( h K D 
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are given by 
m 

(19) Pij = 2aijvPv 
v = 0 

If we use the notation (12), then the transition probability matrix 

(20) rt = [ P l j } . j e i 

can be expressed in the following way 
m 

(21) n = Z P v K -
v = 0 

The «-step transition probabilities 

(22) P { L = j \ ^ = i} = p j f 

for / , / 6 / and « s 0 can be determined as the elements of the matrix 

(23) «" = [ P & \ , e / . 

In particular, we have 

(24) J>(n) = Pt t„ = 0|£0 = 0} = pJg> 
for nSO. 

The main problem is to determine the n-th power of it defined by (21) and (12). 
Since the elements of Jt depend on the parameters p 0 , p \ , •••,pm, at first sight 
it seems we should determine n" separately for each choice of the parameters 
Po,Pi, •••,pm- However, we shall demonstrate that if the partition {C0, C1, ..., Cm} 
satisfies also Condition (ii) stated below, then we can derive a general formula for 
JI" which is valid for any choice of the parameters Po,Pi, •••,pm-

C o n d i t i o n (ii). For any v£I there is a v'£/ such that gZCv implies that 
g-^Cr. 

Condition (ii) implies that if v '=v, then Cv contains the inverse of each of 
its elements. If v '^v , then Cy. consists of the inverses of the elements of Cv . 
Obviously, 0v=<tv for all v£/. The integers 0', 1', . . . ,m' form a permutation 
of 0, 1, ..., m.' Always, 0 '=0 . We define the corresponding permutation matrix A by 

(25) A = [ < M , , € i 

where <5¡/ is defined by (13). We have A'=A where A' is the transpose of A, 
and A 2 =I where I is an (m + l )X(w+1) unit matrix. 

Since 0v=ffv for all v£/, we have also 

(26) DA = AD 
where D is defined by (16). 
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Finally, we note that if Cv denotes also the sum of the elements of G which 
belong to Cv , then we can interpret C0 ,CX , . . . ,C n as elements of the group 
algebra (Frobenius algebra) of G. If C0 , Cx, ..., Cm satisfy Condition (i), then 
the elements C 0 , C l 5 ..., Cm form a basis of a subalgebra si of the group algebra 
of G. The elements of si are KqCq+0C1C1 + . . . •+• <xmCm where ofo, ®i, •••><*m are 
complex numbers. If in addition C0,C1, ...,Cm satisfy Condition (ii), then si 
reduces to a so-called Schur algebra. See D . E . LITTLEWOOD [ 1 0 , pp. 2 4 2 , 2 5 7 ] , 

[9, p p . 2 2 , 43] , I. SCHUR [15], H . WIELANDT [21], [22] , O . TAMASCHKE [18], [19] , [20] , 

F . ROESLER [11] a n d M . BRENDER [2]. 

3. Examples. Here are a few examples for partitions of finite groups satisfying 
Conditions (i) and (ii). 

Example 1. Let H be a subgroup of a finite group G. For each g£G let us 
form the class 

Any two classes C ( g J and C(g2) are either disjoint or identical. Denote by 
C0 ,C1 , . . . ,Cm all the disjoint classes of type (27). Then the partition {CcC^ ...,Cm} 
satisfies Conditions (i) and (ii), and {£„; 0} defined by (10) is a homogeneous 
Markov chain. In this case C n = {e}, a>= I and aijv (/, /, vdl) are nonnegative 
integers. 

If, in particular, H=G, then C0, C 1 ; ..., C,„ are the conjugacy classes of Gy 

and the problem of finding it" leads in a natural way to the definition of group-
characters. (See F . G. FROBENIUS [7], W. BURNSIDE [3], [4] and I. SCHUR [14].) 

E x a m p l e 2. Let H be again a subgroup of a finite group G. For each gÇG1 

let us form the double coset 

Any two classes C(gx) and C(g2) are either disjoint or identical. Denote by 
C 0 , C 1 ; . . . , C m all the disjoint classes of type (28). Then the partition {C0,C l5 ...,Cm} 
satisfies Conditions (i) and (ii), and {<!;„; nsO} defined by (10) is a homogeneous 
Markov chain. In this case C0=H, co is the order of H, and Űíjv (/,/ , v£7) are 
nonnegative integers. 

If G is the symmetry group of a regular polytope and if H is the stabilizer 
of a given vertex of then {<?„; « ^ 0 } defines a random walk on the vertices-
of (See J. S. FRAME [6] and L. TAKÁCS [17].) 

Example 3. Let G be the automorphism group of a distance-transitive finite 
connected graph. A graph is distance-transitive if for any four vertices x l 5 x2, yi, y^ 

(27) C(g) = {hgh~l: h£H}. 

(28) C(g) = HgH = {hlght: htÇH and h2£H}. 
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satisfying -DCxj, x2)=D(y1, y2) there is an automorphism gdG such that y ^ x ^ 
and y2 = x2g. Let 
(29) C, = {g: Z>(x0g,x0) = ; } 

for j = 0, 1, ..., m where in is the diamater of the graph and x0 is a fixed vertex. 
Then the partition C0,Clt ...,Cm satisfies Conditions (i) and (ii), and {£„; «50} 
defined by (10) is a Markov chain. (See D. G. HIGMAN [8] and N. BIGGS [1].) 

4. The matrices A0, Ax, ..., A,„. If a partition {C0, Cx, ...,Cm} of a finite 
group G satisfies Conditions (i) and (ii), the elements of the matrices Av (v£/) 
defined by (12) can be determined by the direct use of Condition (i). However, 
the elements of the matrices Av (v£J) also satisfy remarkable relations, and our 
next aim is to prove these. 

In what follows we assume that {C„, C1 ; ..., Cm} is a partition of a finite group, 
that Conditions (i) and (ii) are satisfied, and that Av (v€/) is defined by (12). 

T h e o r e m 1. We have 
(30) ff.-tf/yv = <JjaJiv. 
and 
(31) 0,-jv = 

for all i,j, v£J. 

Proof . By Condition (i) the number of triplets (gj., g2, g3) satisfying the 
requirements giiCh g2eCv, g3£Cj and gxg2=g3 is o^afl,^. Since gxg2=gz 

if and only if g3g2
1 = g1 or gi1gi=g2, and since now by Condition (ii) 

and g i 1 £ C v , therefore we have 

(32) = Ojciji,,. = <Tiarvj. 
This proves (30) and (31). 

Equations (30) and (31) can conveniently be expressed in matrix notation. 
By (30) we have 
(33) D2AV = A;D 2 

for vg/ where the prime means transposition and D is defined by (16). By (33) 

(34) D A v D i = D- i A;,D = (DAv.D-1)'. 

Accordingly, if v' = v, then DAVD_1 is a real symmetric matrix. 
By (31) we obtain that 

(35) K ' J , - , = A k - 4 v £ / = AAy 

for / £ / where A is the permutation matrix defined by (25). 

26 
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If we interpret C0,Cl, ...,Cm as elements of the group algebra (Frobenius 
algebra) of G, and Cv is the sum of all those elements of G which belong to Cv , 
then by Condition (i) and (30) we can write that 

m 
(36) C ,C T = 0) 2AJ,,.CJ 

j=0 
for any i£I and v£7. 

If we arrange the products C;CV ( /=0 ,1 , ..., m) in the form of a row vector, 
then by (36) we get 

(37) [C0CV, CXC„ ..., CmCv] = co[C0, Cu ..., CJAV , 

for v£7, and by (31) and (36) 

(38) [QC0 , CTCLT ..., C f C J = co[C0, C l5 ..., CJAA,A 

for /€/• By (35) and (36) it follows that 

(39) [CjCJ,. ,« = J -£- (D«AA ) C j . 
j=o Oj 

Theorem 2. We have 
m (40) A fA,.= 

v = 0 

for all i,j£I. 

Proof . By (36) and (37) 
m 

[COCJQ, CXCJC,, CMCJCJ = a) AVJI [Q)Cv> ••*> CJ = 

(41) 
M 

= ft>2[C0, C l 5 ..., CJ Av. 
v=0 

On the other hand by the repeated applications of (37) we get 

[CVCJCj, C1CJCL, . . . , C m C J .C i ] = [ C 0 C j , C1CJ, ..., C . C y J C , = 

(42) = cu[C0, C l5 ..., C J A,. C, = «[C0 C,, QC,-, ..., Cm CJ A,- = 

= a)2[C0, C l5 ..., CJAj.Ay.. 

A comparison of (41) and (42) shows that 
m 

(43) A rA,, = 2 « * j r K 
v = 0 

for all »6/ and If in (43) we replace i,j, v by /', / ' , v' respectively and take 
into consideration that av,ri=avlj., then we get (40). 



Random walk on a finite group 403 

Theorem 3. The matrices AA;A and Av commute, that is 

(44) AA,.AAV = AvAAj-A 
for all j£l and v£I. 

Proof . If vdl is fixed, then by (37) 

(45) [ Q Q C J . ^ , - [(ClCv)Ck]. kéI = coK[QCk]i kèI 

and by (38) 
(46) [CiCvCJ.jJk€i = [C, (CvCk)]. ke} = coiQCJ. t € J AAVA. 

If we put (39) into (45) and (46), and compare the coefficients of C} in the two 
expressions, then we obtain that 

(47) A;, D2 A Aj = D2 AA; AAV A 
or 
(48) D2AVAA, = D2AAjAAvA 
which proves (44). 

Theorem 4. If 
(49) CjCv = CvCJ 

for all jd / and vÇ /, or equivalently, if 

(50) aijv, = aivJ, 

holds for all i,v,j£l, then the matrices A0, A l5 ..., Am commute in pairs. 

Proof . First, we observe that (36) implies that (49) holds if and only if (50) 
holds. By (33) we can express (50) in the following equivalent form 

(51) Av. = AAVA 

for all v£ i where A is defined by (25). If we make use of (51), then (44) reduces 
to the equation 

(52) Ay.Av = A„Aj-

which is valid for all jÇ.1 and vÇ/. This proves that 
(53) Aj-Av — AvAj 

for all / € / and v€7. 
The converse of Theorem 4 is obvious. If (53) holds for all / £ / and v£/, 

then by (40), (50) necessarily holds and this implies (49). 
Wenotethatif v'=v forall v£l, then (50) is satisfied because by (31) aijv—alvj. 
If we consider a Schur algebra with basis C„, C1 ; ..., Cm, then by the above 

results we can make several conclusions. If we put 2=0 or v=0 in (36), then we 

26» 
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obtain that C0/co is the unit element of the Schur algebra. The matrix representa-
tions Tx and T2 defined by 

(54) T,(CV) = (o[aivj,]uiI = <oAAvA 
and 
(55) T2(CV) = с0[a j i v .] i j a = <oA'v. = wD*AvD = 

are the right regular matrix representation, and the left regular matrix representation 
respectively. Accordingly, the matrix representation defined by 

(56) T(CV) = со Av 

for v£7 is equivalent to the regular matrix representation of the Schur algebra. 
The Schur algebra is commutative if and only if (50) is satisfied. 

5. The determination of n". We suppose again that {C0, C±, ...,Cm} is a par-
tition of a finite group G and that this partition satisfies Conditions (i) and (ii). 
Our aim is to determine the wth power of the matrix 

m 
(57) it= 2Pv A V , 

»=o 
where the matrices Av (v€/) are defined by (12) and p0, px, ...,pm are arbitrary 
real or complex numbers. If p0,pi, •••,pm are nonnegative real numbers satisfying 
(17), then (57) reduces to the transition probability matrix of the Markov chain 
{£„; nsO} defined by (10). 

We observe that if py and pv. are complex conjugate numbers for every v£ I 
then the matrix DnD - 1 is a Hermitian matrix, and consequently the eigenvalues 
of n are real numbers. This follows from the identity 

(58) i 
Д . Л _ (Pv + Pv') ~ j (Pv — Pv') iK . А Л , ^ (Pv Pv') ft Л(-Л . .A 4 Pv Av+pv ' Av. = (Av+Av.) -I (1 - I)(AV +1 Av.) 

and from (34) which implies that 

(59) D(Av + Av.)D-i 

is a real symmetric matrix for all v£/, and 

(60) (1 — i)D (Av+¿Av.) D 
is a Hermitian matrix for all v£I. 

If Po>Pi, a r e real numbers satisfying the requirements pv-=pv for all 
v£/, then DnD - 1 is a real symmetric matrix. 

We shall use the following method for the determination of it". For all v£7 
let us define 
(61) Tv = X - i D A . D ^ X 
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where D is given by (16) and for the time being X is any nonsingular (m + l )X 
X(/n +1) matrix. 

T h e o r e m 5. The matrices r v (y£I) defined by (61) satisfy the following 
equations 

m 
(62) r ; r , = 2 «vu- r v 

v = 0 

for all i£l and jdl. The coefficients avij. are defined by (12). 

P roo f . If we multiply (40) by X _ 1D from the left and by D _ 1 X from the 
right, then we get (62). 

Form (34) it follows immediately that 

(63) r v , - r ; 

for all vÇ/. If, in particular, v = v', then Fv is a symmetric matrix. 
Usually, if we calculate r v for a few values of v by (61), then we can easily 

determine r v for all vÇ.1 by (62). If every r v (v£J) is known, then by (61) 

(64) Av - D - ' X r . X - ' D 

for v£/, and (57) can be expressed in the following form 

(65) « = D - 1 x i J / > ï r v ) x - 1 D . 
Vv=0 ' 

Thus 

(66) N" = D- 1 XI,F/>,R V ) X- !D 
Vv = 0 t 

for all « S 0. 
We shall use (66) for finding n" for all n^O. In what follows we shall show that 

we can chose the matrix X in such a way that the matrices Tv (v£l) are all block-
diagonal matrices of the same type. The determination of n" by (66) is particularly 
simple if each r„ (v£l) is a diagonal matrix. 

To find a suitable X let us consider the matrix 
m 

( 6 7 ) M = 2 c v A v 

v = 0 

where c\ (v£I) are real numbers satisfying the requirements cv-=cv for all vÇ/. 
Since (59) is a real symmetric matrix for v£7, therefore DAMAD -1 is also a real 
symmetric matrix. Consequently, there exists a real orthogonal matrix X such that 

(68) DAMAD"1 = XLX' 

where L is a diagonal matrix whose diagonal elements are the eigenvalues of M. 
Let us suppose that the columns of X are arranged in such a way that the diagonal 
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elements of L form a nonincreasing sequence. If M- has r distinct eigenvalues 
with multiplicities m1,m2,...,mr respectively, then the diagonal elements of 
L form r blocks containing m1,m2,...,mr identical numbers. 

T h e o r e m 6. If X is an orthogonal matrix satisfying (68) and if L isadiagonal 
matrix whose diagonal elements form r blocks containing mx, m2, ..., mr identical 
elements, then each Tv (v£7), defined by (61), is a block-diagonal matrix containing 
r blocks such that the i-th block is an m,Xmt matrix (i = 1, 2, ...,/*). 

P r o o f . By Theorem 3 the matrices DAMAD - 1 and DAVD - 1 commute. 
Thus by (64) and (68) we have 
(69) L r v = TVL 

for all v£/. Let us form the (i, /c)-entry of both sides of (69). Since L is a diagonal 
matrix, we can conclude from (69) that the (/, &)-entry of Tv is necessarily 0 if 
the /-th and A>th diagonal elements of L are distinct. Consequently, each Tv is 
a block-diagonal matrix of the type specified in Theorem 6. This completes the 
proof of Theorem 6. 

If the matrix M defined by (67) has only simple eigenvalues then by Theorem 6 
the matrices Tv (v£7) defined by (61) are diagonal matrices. We can prove that if 
for some choice of the real numbers c0, clt ..., cm the matrix M defined by (67) 
has only simple real eigenvalues, then A = I ; that is, v '=v for all v£7. In this 
case A0, A1 ; ..., Am commute in pairs. In any other case the matrix M has multiple 
eigenvalues and our aim is to choose cv (v£7) in such a way that the sum of the 
squares of the multiplicities of the eigenvalues of M be as small as possible, that 
is, in Theorem 6 the sum m\+m\ + b e as small as possible. Usually we 
attain the minimum if M=A V for some v=v'. 

From Theorem 6 we can conclude that if T is a matrix representation of the 
algebra si with basis C0,C1,...,Cm and if T(CV)=a»rv for v€7, then T is 
equivalent to the regular matrix representation of si and T can be expressed as 
the direct* sum of r matrix representations of si. Actually, fey a footnote of 
H . WIELANDT [ 2 1 ] (p. 3 8 6 ) the algebra si is semi-simple and consequently it is 
completely reducible, that is, si is the direct sum of simple matrix algebras over 
the field of complex numbers. 

Examples for the application of the method developed here will be given in 
another paper. Now we would like to mention only briefly the case of a random 
walk on a four-dimensional 120-celI. We shall use the same notation as in the Intro-
duction. A 120-cell has «7=600 vertices and from each vertex q—4 edges emanate. 
Let us consider the random walks {v„; n^O} and {£„; 0} defined in the Intro-
duction. Now {v„;/7^0} is a Markov chain and the state space contains 600 
states. If we define the sections of the 120-cell by (4) then m = l5, but {£„; n s O } 
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is not a Markov chain. If we define the sections by (5), then m=30, and {£„;«£0} 
is still not a Markov chain. However, if we define the sections by (8), then {<!;„; n^O} 
becomes a Markov chain and m=44. Now the transition probability matrix n is 
given by (21) and Tv is defined by (61). By an appropriate choice of X we can 
achieve that each Tv becomes a block-diagonal matrix containing 15 one by one, 
6 two by two, and 6 three by three matrices. If Tv (v£7) and X are known nume-
rically, then we can determine the «-step transition probabilities explicitly by (66). 
The numerical data are used only to determine certain integers. First, we can deter-
mine explicitly the eigenvalues of Tv (v£/) by solving quadratic and cubic equations 
with integer coefficients. The coefficients of these equations are determined by 
the traces of the first two or three powers of the block-matrices in each Tv and all 
these traces are integers. The eigenvalues of n can also be obtained by solving 
quadratic and cubic equations whose coefficients are quadratic and cubic forms of 
Po,Pi, •••, Pa and depend only on the traces of the first two or three powers of the 
block-matrices in I\, (v€/) and on aiJv ( i , j , v£ I ) . The numerical values of the 
elements of the matrix X are used only to determine certain integers which are the 
coefficients of the «-th powers of the eigenvalues of it in the expression for 600p\">. 
Since the numerical calculations are used only to determine certain integers, no high 
precision is needed. The expressions for the «-step probabilities are straightforward, 
but lengthy because of the large number of parameters p0,pi, •••,pii-
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