# Solutions to three problems concerning the overconvergence of complex interpolating polynomials 

V. TOTIK<br>To Professor B. Szökefalvi-Nagy on his seventieth birthday

The aim of this note is to solve the problems raised in [1] by J. Szabados and R. S. Varga. We keep the notations of [1].

The answer to the first problem is positive: $\hat{G}_{l}(z, \varrho)=G_{l}(z, \varrho)$. By the definition of $\hat{G}_{l}(z, \varrho)$ it is sufficient to show that for fixed $z, G_{l}(z, \varrho)$ is a monotonically decreasing continuous function of $\varrho$. By Hadamard's three-circle-theorem

$$
I_{n}(\varrho)=\frac{1}{n} \log \left|\max _{|t|=e}\left(1-t^{-l n}\right) \frac{z^{n}-1}{t^{n}-1}-\frac{\omega_{n}(z, Z)}{\omega_{n}(t, Z)}\right|
$$

is a convex function of $\log \varrho$ on the interval $\left(\varrho^{\prime}, \infty\right)$. The proof of [1, Proposition 1] and a trivial estimate yield

$$
\begin{equation*}
K_{1} \log \frac{|z|}{\varrho^{I+1}} \leqq I_{n}(\varrho) \leqq K_{2} \log \frac{|z|+\varrho^{\prime}}{\varrho-\varrho^{\prime}}, \tag{1}
\end{equation*}
$$

hence

$$
\log G_{l}(z, \varrho)=\limsup _{n \rightarrow \infty} I_{n}(\varrho)
$$

is also a convex function of $\log \varrho$ and thus it is continuous in $\varrho$. Since by (1)

$$
\lim _{\varrho \rightarrow \infty} \log G_{l}(z, \varrho)=-\infty,
$$

the convexity of $\log G_{l}(z, \varrho)$ implies its decrease on ( $\varrho^{\prime}, \infty$ ) as was stated above.
After these the results of [1] imply the formula

$$
\begin{equation*}
\Delta_{l}(z, \varrho, Z)=G_{l}(z, \varrho)=\max \left(\frac{|z|}{\varrho} g(z, \varrho) ; \frac{|z|}{\varrho^{l+1}}\right) \quad(|z|>\varrho), \tag{2}
\end{equation*}
$$

where

$$
\begin{gathered}
g(z, \varrho)=\frac{\varrho}{|z|} \limsup _{n \rightarrow \infty}\left\{\max _{|t|=e}\left|\frac{z^{n}-1}{t^{n}-1}-\frac{\omega_{n}(z, Z)}{\omega_{n}(t, Z)}\right|\right\}^{1 / n}= \\
\quad=\limsup _{n \rightarrow \infty}\left\{\max _{|t|=\varrho}\left|1-\frac{\omega_{n}(z, Z)}{z^{n}-1} \frac{t^{n}-1}{\omega_{n}(t, Z)}\right|\right\}^{1 / n}
\end{gathered}
$$

Now turning to the second and third problems of [1] we may assume that (geometric) overconvergence takes place at least at one point $z_{0},\left|z_{0}\right|>\varrho$, because these problems have interest only from the point of view of the overconvergence. In this case we prove the following rather surprising (see [1]) result.

Theorem. If $\Delta_{l}\left(z_{0}, \varrho, Z\right)<1$ for some $\left|z_{0}\right|>\varrho$ then

$$
\mathfrak{W}=\left\{z \mid \Delta_{l}(z, \varrho, Z)=1\right\}
$$

is a circle with center at the origin, $\Delta_{l}(z, \varrho, Z)<1$ inside and $\Delta_{l}(z, \varrho, Z)>1$ outside this circle.

Proof. Let

$$
g_{n}(z, t)=\left|1-\frac{\omega_{n}(z, Z)}{z^{n}-1} \frac{t^{n}-1}{\omega_{n}(t, Z)}\right|
$$

and

$$
h(\varrho)=\limsup _{n \rightarrow \infty}\left\{\max _{|t|=e}\left|1-\frac{t^{n}-1}{\omega_{n}(t, Z)}\right|\right\}^{1 / n} .
$$

First we prove the equality

$$
\begin{equation*}
g(z, \varrho)=h(\varrho) \quad\left(|z| \geqq \varrho>\varrho^{\prime}\right) \tag{3}
\end{equation*}
$$

provided either side is less than one.
Suppose $g(z, \varrho)<q<1$. Then for some $n_{0}$ and $n \geqq n_{0}$ we have

$$
\begin{equation*}
g_{n}(z, t) \leqq q^{n} \quad\left(|t|=\varrho, \quad n \geqq n_{0}\right) . \tag{4}
\end{equation*}
$$

This yields

$$
1-q^{n} \leqq\left|\frac{\omega_{n}(z, Z)}{z^{n}-1} \frac{t^{n}-1}{\omega_{n}(t, Z)}\right| \leqq 1+q^{n} \quad(|t|=\varrho)
$$

and so for any $\left|t_{1}\right|=|t|=\varrho$,

$$
\begin{equation*}
\left.1-K q^{n} \leqq\left|\frac{t^{n}-1}{\omega_{n}(t, Z)}\right| \frac{t_{1}^{n}-1}{\omega_{n}\left(t_{1}, Z\right)} \right\rvert\, \leqq 1+K q^{n} \tag{5}
\end{equation*}
$$

For fixed $t$ the function inside the absolute value marks is homomorphic for $\left|t_{1}\right|>\varrho$ without zeros and with removal singularity at $t_{1}=\infty$, so we obtain from the maximum modulus principle that (5) holds for all $\left|t_{1}\right| \geqq \varrho$. Letting $t_{1} \rightarrow \infty$ we get

$$
1-K q^{n} \leqq\left|\frac{t^{n}-1}{\omega_{n}(t, Z)}\right| \leqq 1+K q^{n} \quad(|t|=\varrho)
$$

Again by the maximum modulus principle this is true for every $|t| \geqq \varrho$, so specially

$$
\begin{equation*}
1-K q^{n} \leqq\left|\frac{z^{n}-1}{\omega_{n}(z, Z)}\right| \leqq 1+K q^{n} . \tag{6}
\end{equation*}
$$

(4) and (6) yield

$$
\begin{equation*}
\left|\frac{t^{n}-1}{\omega_{n}(t, Z)}-\frac{t_{1}^{n}-1}{\omega_{n}\left(t_{1}, Z\right)}\right| \leqq K q^{n} \tag{7}
\end{equation*}
$$

for every $|t|=\left|t_{1}\right|=\varrho$ and hence also for every $|t|=\varrho \leqq\left|t_{1}\right|$. Letting here $t_{1} \rightarrow \infty$ it follows

$$
\left|1-\frac{t^{n}-1}{\omega_{n}(t, Z)}\right| \leqq K q^{n} \quad\left(|t|=\varrho, n \geqq n_{0}\right)
$$

by which $h(\varrho) \leqq q$. Since $g(z, \varrho)<q<1$. was arbitrary, we obtain that $h(\varrho) \leqq g(z, \varrho)$.
Now let us suppose conversely that $h(\varrho)_{0}<q<1$. Then for some $n_{0}$ we have

$$
\left|1-\frac{t^{n}-1}{\omega_{n}(t, Z)}\right|<q^{n} \quad\left(|t|=\varrho, n \geqq n_{0}\right)
$$

Applying the maximum modulus principle once more we obtain that

$$
\frac{z^{n}-1}{\omega_{n}(z, Z)}=1+\varepsilon_{n}(z), \quad\left|\varepsilon_{n}(z)\right| \leqq q^{n}, \quad|z| \geqq \varrho
$$

by which

$$
\frac{\omega_{n}(z, Z)}{z^{n}-1}=1+\eta_{n}(z), \quad\left|\eta_{n}(z)\right| \leqq K q^{n} .
$$

Multiplying this by

$$
\frac{t^{n}-1}{\omega_{n}(t, Z)}=1+\varepsilon_{n}(t), \quad\left|\varepsilon_{n}(t)\right| \leqq q^{n}, \quad|t|=\varrho
$$

it follows readily that

$$
g_{n}(z, t) \leqq K q^{n} \quad\left(|t|=\varrho,|z| \geqq \varrho, \quad n \geqq n_{0}\right),
$$

and the inequality $g(z, \varrho) \leqq h(\varrho)$ can be deduced as the opposite inequality above.
Let

$$
\varphi(\varrho)=\max \left(\frac{h(\varrho)}{\varrho} ; \frac{1}{\varrho^{l+1}}\right)
$$

So far we have proved (see (2) and (3)) the formula

$$
\begin{equation*}
\Delta_{l}(z ; \varrho, Z)=|z| \varphi(\varrho) \quad(|z|>\varrho) \tag{8}
\end{equation*}
$$

under the assumption $\min \left(\varphi(\varrho), \Delta_{l}(z) /|z|\right)<1 / \varrho$, and by the first part of our paper here $\varphi(\varrho)\left(\varrho>\varrho^{\prime}\right)$ is a monotonically decreasing convex function of $\varrho$ with bounds

$$
\frac{1}{\varrho^{l+1}} \leqq \varphi(\varrho) \leqq \frac{1}{\varrho-\varrho^{\prime}}
$$

The Theorem follows immediately from (8).

Remarks. 1. We have proved somewhat more, namely for a $\varrho>\varrho^{\prime}$, (geometric) overconvergence occurs if and only if

$$
\limsup _{n \rightarrow \infty} \max _{|l|=e}\left|1-\frac{i^{n}-1}{\omega_{n}(t, Z)}\right|^{1 / n}<1
$$

and in this case the "overconvergence radius" is

$$
\frac{1}{\varphi(\varrho)}=\min \left(\varrho^{t+1} ; \frac{\varrho}{\lim _{n \rightarrow \infty} \sup _{|t|=e}\left|1-\frac{t^{n}-1}{\omega_{n}(t, Z)}\right|^{1 / n}}\right)
$$

2. The Theorem does not hold without the assumption " $\Delta_{l}\left(z_{0}, \varrho, Z\right)<1$ for some $\left|z_{0}\right|>\varrho$ ". Indeed, if the points $z_{k, n}(1 \leqq k \leqq n)$ are "very near to $(-1)^{n}$ " then the interior of the set

$$
\left\{z \mid \dot{\Delta}_{l}(z, \varrho, Z)<1\right\}
$$

is the common part of the discs $|z-1|<\varrho-1$ and $|z+1|<\varrho-1$ and $(5$ is on its boundary.
3. The formula (8) yields very easily the following result of J. Szabados and R. S. Varga (see [2, Theorem 2, 3]): If

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{\max _{1 \equiv k \leqq n}\left|z_{k, n}-\exp 2 \pi i k / n\right|} \leqq \delta<1
$$

then

$$
\Delta_{1}(z, \varrho, Z) \leqq \frac{|z|}{\varrho} \max \left(\frac{1}{\varrho^{l}}, \delta\right)
$$

Indeed, for any $\varepsilon>0$ we have for large $n$

$$
\begin{aligned}
\mid 1 & -\left.\frac{t^{n}-1}{\omega_{n}(t, Z)}\right|^{1 / n}=\left|1-\prod_{k=1}^{n} \frac{t-\exp 2 \pi i k / n}{t-z_{k, n}}\right|^{1 / n} \leqq \\
& \leqq\left|\prod_{k=1}^{n}\left(1+\frac{(\delta+\varepsilon)^{n}}{\varrho-\varrho^{\prime}}\right)-1\right|^{1 / n} \leqq(K n)^{1 / n}(\delta+\varepsilon)
\end{aligned}
$$

and so $h(\varrho) \leqq \delta$.

## References

[1] J. Szabados and R. S. Varga, On the overconvergence of complex interpolating polynomials. II. Domain of geometric convergence to zero, Acta Sci. Math., 45 (1983), 377-380.
[2] J. Szabados and R. S. Varga, On the overconvergence of complex interpolating polynomials, J. Approx. Theory, to appear.

