Asymptotically commuting finite rank unitary operators without commuting approximants

DAN VOICULESCU

Dedicated to Professor Béla Szőkefalvi-Nagy on the occasion of his 70th birthday

The following is an old unsolved problem: Given selfadjoint operators $A_n, B_n \in \mathcal{L}(\mathcal{H}_n)$, dim $\mathcal{H}_n < \infty$ (n=1, 2, ...), such that $\sup_n (||A_n|| + ||B_n||) < \infty$ and $\lim_{n \to \infty} ||[A_n, B_n]|| = 0$, do there exist selfadjoint operators $A'_n, B'_n \in \mathcal{L}(\mathcal{H}_n)$ so that $[A'_n, B'_n] = 0$ and $\lim_{n \to \infty} (||A_n - A'_n|| + ||B_n - B'_n||) = 0$? We present in this note an example showing that the answer to the corresponding question for unitaries instead of selfadjoints is negative.

We shall take $\mathscr{H}_n = \ell^2(\mathbb{Z}/n\mathbb{Z})$ consisting of functions $\xi: \mathbb{Z}/n\mathbb{Z} \to \mathbb{C}$ and consider the unitary operators

$$(U_n\xi)(k+n\mathbf{Z}) = \xi(k-1+n\mathbf{Z}), (V_n\xi)(k+n\mathbf{Z}) = \exp(2k\pi i/n)\xi(k+n\mathbf{Z})$$
 (k = 0, 1, ..., n-1).

Proposition. Let U_n, V_n be the unitary operators defined above. Then we have $\lim_{n \to \infty} \|[U_n, V_n]\| = 0$, but there do not exist unitary operators $U'_n, V'_n \in \ell^2(\mathbb{Z}/n\mathbb{Z})$ such that $[U'_n, V'_n] = 0$ and $\lim_{n \to \infty} (\|U_n - U'_n\| + \|V_n - V'_n\|) = 0$.

Proof. We have $U_n V_n = \exp(-2\pi i/n)V_n U_n$, which implies $||[U_n, V_n]|| \to 0$ as $n \to \infty$. Assuming the existence of the commuting approximants U'_n, V'_n we will reach a contradiction.

Consider on the unit circle $\mathbf{T} = \{z \in \mathbf{C} \mid |z| = 1\}$ the arcs $\Gamma, \Gamma', \Gamma'', \Phi^{(1)}, \Phi^{(2)}$ given respectively by

$$\Gamma: \frac{\pi}{5} \leq \arg z < \frac{4\pi}{5}, \quad \Gamma': \frac{2\pi}{5} \leq \arg z < \frac{3\pi}{5}, \quad \Gamma'': 0 \leq \arg z < \pi,$$
$$\Phi^{(1)}: 0 \leq \arg z < \frac{2\pi}{5}, \quad \Phi^{(2)}: \frac{3\pi}{5} \leq \arg z < \pi.$$

Received October 8, 1982.

D. Voiculescu

Let E_n be the spectral projection of V'_n corresponding to Γ and let $E'_n, E''_n, F^{(1)}_n, F^{(2)}_n$ be the spectral projections of V_n corresponding to $\Gamma', \Gamma'', \Phi^{(1)}, \Phi^{(2)}$, respectively. Note that $E''_n = E'_n + F^{(1)}_n + F^{(2)}_n$. Also, since $[V'_n, U'_n] = 0$, we have $[U'_n, E_n] = 0$ and hence

(1)
$$\|[U_n, E_n]\| \to 0 \text{ as } n \to \infty.$$

We shall use the following folklore-type fact. If N_n, N'_n are normal operators, $||N_n - N'_n|| \to 0$, $||N_n|| < C$ and P_n, P'_n are spectral projections of N_n , respectively N'_n , corresponding to Borel sets Ω, Ω' such that $\overline{\Omega} \cap \overline{\Omega}' = \emptyset$, then we have $||P_n P'_n|| \to 0$. This gives, in particular,

$$\lim_{n \to \infty} \|(I - E_n'')E_n\| = \lim_{n \to \infty} \|(I - E_n)E_n'\| = 0.$$

It is also easily seen that $\lim_{n \to \infty} ||F_n^{(1)}E_nF_n^{(2)}|| = 0$. So we find selfadjoint projections \tilde{E}_n such that $E'_n \leq \tilde{E}_n \leq E''_n$ and $\lim_{n \to \infty} ||\tilde{E}_n - E_n|| = 0$. One may define \tilde{E}_n for instance as follows. Let $X_n = E'_n + F_n^{(1)}E_nF_n^{(1)} + F_n^{(2)}E_nF_n^{(2)}$ so that $||X_n - E_n|| \to 0$ and hence $||X_n^2 - X_n|| \to 0$. Define \tilde{E}_n (for *n* big enough) as the spectral projection of X_n for the interval [1/2, 2]. Remark also that $\tilde{E}_n = \tilde{F}_n^{(1)} + E'_n + \tilde{F}_n^{(2)}$ where $\tilde{F}_n^{(1)} \leq F_n^{(1)}$ are selfadjoint projections.

Consider now the projection $E_n^+ = F_n^{(1)} + E_n' + \tilde{F}_n^{(2)}$ and assume from now on $n \ge 10$. We have

(2) and

$$E_n^+ \leq E_n''$$

(I-E_n^+)U_n F_n^{(1)} = (I-E_n^+)U_n \tilde{F}_n^{(1)} = 0,

so that

$$(I-E_n^+)U_nE_n^+ = (I-E_n^+)U_n\widetilde{E}_n = (I-E_n^+)(I-\widetilde{E}_n)U_n\widetilde{E}_n.$$

Since, by (1), $\lim_{n \to \infty} ||(I - \tilde{E}_n)U_n\tilde{E}_n|| = 0$, we infer that

(3)
$$\lim_{n \to \infty} \|(I - E_n^+) U_n E_n^+\| = 0.$$

Define the isometric operator $W_n: \ell^2(\mathbb{Z}/n\mathbb{Z}) \to \ell^2(\mathbb{Z}_{\geq 0})$, by

$$(W_n\xi)(k) = \begin{cases} 0 & \text{if } k \ge n, \\ \xi(k+n\mathbf{Z}) & \text{if } 0 \le k < n. \end{cases}$$

Then for $P_n^+ = W_n E_n^+ W_n^*$ and the unilateral shift S on $\ell^2(\mathbb{Z}_{\geq 0})$, we have

$$W_n(I-E_n^+)U_nE_n^+W_n^* = W_n(I-E_n^+)W_n^*W_nU_nW_n^*W_nE_n^+W_n^* = \\ = (W_nW_n^*-P_n^+)SP_n^+ = (I-P_n^+)SP_n^+$$

since, by (2), $(W_n U_n W_n^* - S) P_n^+ = 0$ and $(I - W_n W_n^*) S P_n^+ = 0$. Thus we have rank $P_n^+ < \infty$, s- $\lim_{n \to \infty} P_n^+ = I$ and, using (3), $\lim_{n \to \infty} ||(I - P_n^+) S P_n^+|| = 0$. This contradicts the non-quasitriangularity of the unilateral shift [1] and hence concludes the proof.

Remark. The approximation problems for selfadjoint and unitary operators can be interpreted in terms of singular extensions (see [2], [3]). Consider the C^* -algebra

$$\mathscr{A} = \{ (T_n)_1^{\infty} | T_n \in \mathscr{L}(\mathscr{H}_n), \sup ||T_n|| < \infty \}$$

and $\mathscr{I}\subset\mathscr{A}$, the ideal of sequences $(T_n)_1^{\infty}$ such that $\lim_{n\to\infty} ||T_n|| = 0$. Then the approximation problem for selfadjoint operators amounts to the question whether every *-homomorphism $C(X) \to \mathscr{A}/\mathscr{I}$ can be lifted to a *-homomorphisms $C(X) \to \mathscr{A}$, where $X = [0, 1] \times [0, 1]$ and the problem for unitary operators to the same question for $X = \mathbf{T}^2$, the 2-torus. In connection with this we should mention that from our strong non-splitting result in [4] for the singular extension in the C^* -algebra of the Heisenberg group one can construct a *-homomorphism $C_0(\mathbf{R}^2) \to \mathscr{A}/\mathscr{I}$ which does not lift (here $C_0(\mathbf{R}^2)$ denotes the continuous functions on \mathbf{R}^2 vanishing at infinity). Adjoining a unit to $C_0(\mathbf{R}^2)$ one gets a C^* -algebra isomorphic to $C(S^2)$, where S^2 is the two-sphere, and hence the answer to the lifting problem is negative also for $X = S^2$. Like $[0, 1] \times [0, 1]$, the spaces \mathbf{T}^2 and S^2 are not due only to the dimension of these spaces but rather to their non-zero two-dimensional cohomology and hence it seems improbable that these examples will have a direct bearing on the problem for selfadjoint operators.

References

- [1] P. R. HALMOS, Quasitriangular operators, Acta Sci. Math., 29 (1968), 283-293.
- [2] M. PIMSNER, S. POPA, and D. VOICULESCU, Remarks on ideals of the Calkin-algebra for certain singular extensions, in: *Topics in Modern Operator Theory*, Birkhäuser Verlag (Basel, 1981); 269-277.
- [3] RU-YING LEE, Full algebras of operator fields trivial except at one point, Indiana Univ. Math. J., 26 (1977), 351---372.
- [4] D. VOICULESCU, Remarks on the singular extension in the C*-algebra of the Heisenberg group, J. Operator Theory, 5 (1981), 147-170.

DEPARTMENT OF MATHEMATICS THE NATIONAL INSTITUTE FOR SCIENTIFIC AND TECHNICAL CREATION BDUL PÁCII 220 79622 BUCHAREST, ROMANIA