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On Jonsson modules over a commutative ring

ROBERT GILMERY and WILLIAM HEINZER®

1. Introduction. Let R be a commutative ring with identity, let M be a unitary
module over R, and let « be an infinite cardinal. Following the terminology of univer-
sal algebra [5], [3], we call M a Jdnsson a-module over R if |M|=a, while |N|<a
for each proper submodule N of M. Our attention to this topic was attracted by a
recent paper of SHELAH [13], who answered affirmatively the following old question
of Kurosh: does there exist a Jénsson w, -group — that is, a group G of cardinality w,
such that each proper subgroup is countable? Like Shelah, we concentrate primarily
on the cases where € {w,, w;} in this paper, because these are the cases of principal
interest within our context.

If I is an ideal of R and if Z, considered as an R-module, is a Jonsson a-module,
then we refer to I as a Jonsson a-ideal of R. By passage to the idealization of R and
an R-module M, the theory of Jénsson a-modules is equivalent to the correspon-
ding theory for ideals, but we shall only occasionally make this transition to ideals
via idealization.

Section 2 of the paper deals with Jénsson a-modules, Section 3 with J6nsson
wy-modules, and Section 4 presents some pertinent examples. Corollary 3.2 shows
that a finitely generated Jonsson a-module is simple, and hence the set of such modules
over a given ring R is easily determined. Theorem 2.4 shows that if the cardinal « is
countably inaccessible from below and if R belongs to the class & of rings over which
each (**)-module is finitely generated (see Section 2 for terminology; in particular,
Z includes the class of Noetherian rings and the class of finite-dimensional chained
rings), then each Jénsson a-module over R is finitely generated, hence simple; in
particular, this result applies to Jénsson @, -modules over a ring in &. Proposition
2.5 is in this context a useful result; it states that if M is a non-finitely generated
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Jonsson a-module over R, then Ann (M) is a prime ideal and rM=M for each
ré R—Ann (M).

Assume that M is a non-finitely generated Jonsson wy-module over the ring R.
Theorem 3.1 shows that there exists a maximal ideal Q of R such that Ann (x) is a
Q-primary ideal of finite index for each nonzero element x of R; moreover, the powers

of Q properly descend and ﬁ Q‘is a prime ideal of R. It follows from Theorem 3.1
i=1

that in considering Jonsson w,-modules over R, there is no loss of generality in assum-
ing that the module is faithful and R is a quasi-local integral domain. Proposition
3.2 shows that M can be expressed as the union of a strictly ascending sequence of
cyclic submodules, and this leads both to a construction of classes of non-finitely
generated Jonsson w,-modules by means of generators and relations (Theorem 3.5)
and to a determination of the isomorphism class of non-finitely generated Jonsson
wy-modules over a Priifer domain J (Proposition 3.7 and the paragraph preceding
that result).

The examples of Section 4 indicate certain restrictions on what can be said about
the structure of a quasi-local domain D such that D admits a non-finitely generated
Jonsson wy-module. Such a domain D need not be Noetherian, for example, and even
for a Noetherian domain D, no restrictions can be placed on the (Krull) dimension
of D.

All rings considered in this paper are assumed to be commutative and to con-
tain an identity element; all modules considered are assumed to be unitary.

2. Jonsson modules. If R is a commutative ring with identity and M is a maximal
ideal of R such that |R/M|=« is infinite, then R/M is a Jonsson a-module over R.
One of our purposes in this section is to attempt to determine the class of rings S
such that each Jonsson module over S arises essentially in this way — that is, as
S/M for some maximal ideal M of S with infinite residue field.

The main results of this section are Corollary 2.3 and Theorem 2.4. In parti-
cular, Theorem 2.4 resolves the question of Jénsson modules over the rings normally
encountered in commutative algebra. While the proof of Proposition 2.5 is not diffi-
cult, this result is an important tool in the development of Section 3 material.

According to the terminology of [2, Ex. 17, p. 245], the infinite cardinal « is
said to be regular if a#—%‘ a; for each nonempty family {«;};c,; of cardinals with

[f[|<a and o;<a for each i. As noted by Simis [14], this condition is equivalent to
the statement that there is no cofinal set of cardinality less than « in the set of ordinals
preceding the first ordinal of cardinality «.

Proposition 2.1. Assume that M is a Jénsson o-module over R, where o is a
regular cardinal. If {M};c, is a nonempty family of proper submodules of M, where
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[[{<w, then M= 3 M,. In particular, M is indecomposable and M has at most one
iel

maximal submodule.

Proof. Since |Mj|<a for each i and since « is regular, it follows that | >’ Mj|<
<a, and hence > M7 M. The statements in the second sentence of the pr:)ialosition
follow immedia{él; from the first sentence.

Proposition 2.2. Assume that each proper ideal of the ring R has cardinality
less than |R|. Then either R is finite or R is a field. :

Proof. We prove that if |R|=« is infinite, then R is a field. Proposition 2.1
shows that R has a unique maximal ideal P. Since |P|<a, it follows that |R/P|=«;
let {r;};c be a complete set of representatives of the residue classes of P in R. If
x€P, then {ryx}SP, so there exist distinct f,y€B so that rgpx=r,x. Since
rg—r,is a unit of R, then x=0, so P=(0) and Ris a field, as asserted.

Corollary 2.3. Let M be an infinite, finitely generated R-module and let
a=|M|. Then M is a Jonsson module if and only if M is cycllc and Ann (M) is a maxi-
mal ideal of R such that {Rf/Ann (M)|=a. ‘

Proof. It’s clear that the stated conditions are sufficient for M to be a Jénsson
module. Conversely, if M is a Jonsson module and M=Rm;+Rmy+ ...+ Rm,,
then Proposition 2.1 implies that M=Rm,; for some i. Thus, M and R/Ann (M)
are isomorphic modules over R and over R/Ann (M), so that R/Ann (M ) is a field
of cardinality a« by Proposition 2.2.

Following the terminology of [1], we call a module M a (**)-module if M cannot
be expressed as the union of a strictly ascending sequence M;<M,<...<M,
of submodules; we denote by & the class of rings R such that each (**)-module over
R s finitely generated (clearly a finitely generated module is a (**)-module for any R).
Theorems 4.2, 4.7, and 4.10 of [1] show that & contains the subclasses of Noetherian
rings, finite-dimensional chained rings, and W*-rings; Theorem 6.1 of [10] shows that
Z also contains each ring R such that (1) R has Noetherian spectrum, (2) the de-
scending chain condition for prime ideals is satisfied in R, and either (3) each ideal of R
is countably generated, or (4) each ideal of R contains a power of its radical.

If « is an infinite cardinal, we say that « is countably inaccessible from below if

as# 3 o, for each nonempty countable family {;};c; of cardinals @;<a. According
ict
to this terminology, @, is countably accessible from below, while each infinite cardinal

with an immediate predecessor (in particular, ,) is countably inaccessible from below.
The next result deals both w1th the concept of countable 1nacceSS1b111ty from below
and with, the class #.



6 Robert Gilmer and William Heinzer

Theorem 2.4. Assume that R is in the class & and that the cardinal a is count-
ably inaccessible from below. To within isomoprhism, the set of Joénsson x-modules is
{RIM};c1, where {M};, is the set of maximal ideals of R whose associated residue
class field has cardinality a.

Proof. Clearly each R/M; is a Jonsson «-module over R. Conversely, let L be
a Jénsson a-module over R. If {L;}72., is an ascending sequence of proper submodules

of L, then as in the proof of Proposition 2.1, it follows that L ZL Thus, L is

a (**)-module over R, and since R€, then L is finitely generated It then follows
from Corollary 2.3 that as an R-module, L=R/M; for some icl.

In our further consideration of Jénsson a-modules, we shall begin in Section
3 to concentrate our attention on the cases where a=w, or a=w,. Even for w,,
Theorem 2.4 resolves the question of Jonsson modules over the rings normally en-
countered in commutative algebra. Because w, is countably accessible from below,
however, Theorem 2.4 does not apply to this case. We know, in fact, that a Jénsson
w,-module over a principal ideal domain need not be finitely generated; the p-quasi-
cyclic group Z(p™), considered as a Z-module, illustrates this statement. (It is well-
known, in fact, that the p-quasicyclic groups are the only Jénsson w,-modules over
Z [6, Ex. 4, p. 105])

We conclude Section 2 with a proposition and a corollary that are valid for ar-
bitrary cardinals «. In particular, Proposition 2.5 is used frequently in the rest of this

paper.
Proposition 2.5. Let M be a Jonsson a-module over the ring R.
() If reR, then either tM=M or rM=(0).
(2) Ann (M) is a prime ideal of R.

Proof. To prove (1), assume that rM=M and let N={mecMjrm=0}. We
show that N=M. We write rM as {rm;};¢;, where |I|<a. If mcM, then rm=rm,
for some i so that mém,+ N. It follows that M= L€JI (m;+N), and hence |M|=
=|I]-|N|. By hypothesis on M and I, we conclude that |N]=a so that N=M as
we wished to prove. It follows from (1) that if x, y¢ R—Ann (M), then M=xM=
=yM, and hence M=xyM. Thus xy¢ Ann (M), and Ann (M) is prime in R, as
asserted.

Corollary 2.6. Assume that I is a Jénsson a-ideal of the ring R. If I*#(0),
then I is a field, and hence I is a direct summand of R.

Proof. Take r,s€l such that rs=0. Then r/=I=sI by Proposition 2.5,
and since r, s€I, then I=(r)=(s). By Corollary 2.3, it follows that I is a simple
R-module, so (rs)=I=12 We conclude that as an ideal of R, I is principal and is
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generated by an idempotent. Hence 7 is a direct summand of R and the structure of I
as an R-module is the same as its structure as a ring. Consequently, / is a field, as
asserted.

It’s clear that the converse of Corollary 2.6 is also valid. Namely, if X is an in-
finite field of cardinality « and if S is a nonzero ring, then Kis a Jdnsson a-ideal of the
ring S®K and K?%=(0).

3. Jonsson w,-modules. We restrict our consideration in this section to the case
where a=w,, the first infinite cardinal, and in view of Corollary 2.3, we consider
only Jénsson wy-modules that are not finitely generated. Such a module M has a partic-
ularly simple description: M is not finitely generated, is countably infinite, and each
proper submodule of M is finite3.

Assume that M is a non-finitely generated Jénsson wy,-module over the ring R.
What restrictions are imposed on the structure of R and M? Theorem 3.1 and Prop-
osition 3.2 provide some answers to this question. In particular, these two results
allow us to restrict to the case where the module M is faithful and the ring Ris a
quasilocal integral domain. In the case of a Priifer domain R, we determine the iso-
morphism class of non-finitely generated Jonsson w,-modules over R.

If N is an R-module, we say that N is a torsion module if Ann (n)(0) for each
n€N. On the other hand, the module N is torsion-free if Ann (n)=(0) for each non-
zero element n€N. The statement of Theorem 3.1 uses this terminology.

Theorem 3.1. Let M be a Jénsson wy-module over the ring R, where M is
not finitely generated. Then M is a torsion R-module, and there exists a maximal ideal
O of R such that the following conditions are satisfied: (1) Ann (x) is a Q-primary ideal
of finite index for each xc M —{0}, (2) R/Q is finite, (3) the powers of Q properly

descend, (4) ﬁ Q' is a prime ideal, and (5) if H;={xcM|Q'x=(0)}, then {H),
i=1

is a strictly ascending sequence of submodules of M such that M= D H;.
i

Proof. As the first step in the proof, we show that PM=M for each maximal
ideal P of R. Thus, if PM = M, then Proposition 2.5 shows that PM=(0), and hence
M is a Jénsson wy-module over the field R/P. Since M is indecomposable, M is a
one-dimensional vector space over R/P. This implies, however, that M is a cyclic
R-module, contradicting the fact that M is not finitely generated. Therefore PM =M
for each maximal ideal P of R.

For P, maximal in R, let M, be the set of elements x of M such that
P,SVAnn(x). Then M, is a submodule of M since the inclusion Ann (x—y)2

3) We remark that ‘“‘countably infinite” is redundant in this definition — ir M is not fini-
tely generated and each proper submodule of M is finite, then M is countably infinite.
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DAnn (x)NAnn (y) implies that YAnn(x—p)2VAnn(x)NYAnn(y). We show
that M is the direct sum of the family {M,}, taken over all maximal ideals P, of R.
If xéeM—{0}, then Rxc M implies that Rx is finite, so R/Ann (x) is a finite ring.

Therefore, Ann (x) is uniquely expressible as a finite intersection (j) C,,‘ of primary
" ideals with distinct (maximal) radicals Pa‘=}/_C:. If Bj:iDj 'C—,‘:‘ for 1=sj=n,
then no maximal ideal of R contains each B;, so R=B;+..+B,, and
1=by+by+...+b, with bcB, for each i. Then x= 1=21 b;x, where C,b;x=(0)
for each j, and hence b;x¢M;. This proves that M= 3 M,. Thesumisdirect, forif

meM,N(M, +...+M, ), withas=q; for each j, then Ann (m)2P, + (P, N...NP, )=
=R, so m=0. Because M is indecomposable, we conclude that M=M, for some a.
Let Q=P,; by definition of M,, Ann (x) is a Q-primary ideal of finite index for
each x¢é M —{0}; in particular, Q has finite index in R. Let H, be defined as in the
statement of Theorem 3.1. Clearly each H, is a submodule of M, and H;S H;,,
for each i. Moreover, for xé M, Ann(x) contains a power of Q since R/Ann (x)

is finite, so that x€ H; for some i; that is H =G H;. Observe that H; is a proper

submodule of M for each isince M=Q'M#(0). lFlinally, we note that the assumption
H;=H,,, leads to the contradiction that M= H;; it suffices to show that H;=H,,,
implies that H,,,=H,,,. Thus, if x¢H,,,, then QxCH,,,=H;, so Q'Qx=(0)
and x€H;,,, as was to be proved. The fact that H,<H;,, for each i shows that
Q'=Q'*! for each i; in particular, Q'#(0) for each i so that Ann (x)#(0) for each

x€M—{0}, and M is a torsion module. The equality M =D H; implies that
i=1

ﬁ Q'=Ann (M), and Proposition 2.5 shows that Ann (M) is prime in R. This
i=1

completes the proof of Theorem 3.1.

If M is a non-finitely generated Jénsson w, -module over R, then replacing R by
R/Ann (M), there is no loss of generality in assuming that M is faithful, and Proposi-
tion 2.5 shows that R/Ann (M) is an integral domain. Under these assumptions on R
and M, let Q be as in the statement of Theorem 3.1 It is then possible to consider M
as a module over the quasi-local domain Ry. To wit, for m€¢M and r/sc Ry, we
define the product (r/s)-m to be rm,, where sm,=m. The product is well-defined,
for Proposition 2.5 and Theorem 3.1 show that left multiplication by s induces an
R-automorphism of M. It is somewhat lengthy, but routine, to verify that M is an
R,-module under this definition, and we omit the details. We note that Rm=R,m
for each me M; for a proof, we need only show that R,mES Rm — that is, we need
to show that if s€e R—Q and if sm,=m, then m,€ Rm. This statement follows since
Rm is finite and since left multiplication by s induces an injection of Rm into Rm
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so that Rm=sRm. We conclude that the structure of M as an Ry-module is essen-
tially the same as the structure of M as an R-module [7, Ex. 2, p. 8]. In particular, M
is a Jénsson wy-module over Ry. Thus, in considering non-finitely generated Jénsson
w,-modules M over a ring R, we are led to consider the case where R is a quasi-local
domain and M is faitful. The next result is stated for this hypothesis, and is somewhat
analogous to Theorem 3.1.

Proposition 3.2. Assume that M is a non-finitely generated faithful Jonsson
wqy-module over the quasi-local domain (D, P). For x¢P—{0}, denote by M(x) the
submodule of M consisting of elements annihilated by x. Then M(x) is finite and non-

zero, M(x)<M(x)<M(x*)<..., and M= D M(x"). Moreover, if m€ M(x)—{0}
i=1
and if elements my, my, ...€ M are chosen successively so that m;=xm;., for each i,

then Dmy<Dmy<... and M= G Dm,.
i=1
Proof. Since M is faithful, then M(x)># M, and hence M(x) is finite. Pick
méeM —{0}. Since x€P=YAnn (m), there exists a positive integer k so that x*m=0
while' x*~1m 0. Thus x*~'m is a nonzero element of M (x). For a given i, we assume
that seM(x*t)—M(x). Then s€xM implies s=xt for some tcM. Thus

X+ =xt1g=0, but x'*it=x's#0 so that r&¢ M(x'*2)—M(x**?). Since CJ M (xH
i=1

is an infinite submodule of M, we conclude that M= U M(xY.

If my, m,, ... are as described in the hypothesis of Proposmon 3.2, then the proof
above shows that My €M (x*+1)— M (x%) for each i so that Dm;<Dm;,, and
M= D Dm;, as asserted.

i=1

The next result is a partial converse of Propositidn 3.2. The proof of this result
is routine and will be omitted.

Proposition 3.3. Let M be an R-module that can be expressed as the union of
an infinite strictly ascending sequence {M}:> , of finite submodules. The following con-
ditions are equivalent.

(1) M is a Jonsson wy-module.

(2) Each proper submodule of M is contained in some M.

) If x, ¢ M—M, for each i, then {x;};., generates M.

If the notation and hypothesis are as in the statement of Proposition 3.2, if F
is a free D-module on the countably infinite set {y;};>,, and if ¢ is the natural sur-
jection of F onto M induced by the mapping y;,—~m;, then, of course, M= F/ker ¢,
where ker ¢ contains the submodule generated by the set {y;—xy;..1};z,. This



10 . Robert Gilmer and William Heinzer

observation provided the original motivation for Theorem 3.5. The next result provi-
des some motivation for the hypothesis in the statement of Theorem 3.5.

Proposition 3.4. Assume that P is a maximal ideal of the ring R such that the
powers of P properly descend and such that P=P*+(R for some t€R. Then Pi:(t)=
=P~ for each i.

Proof. Since P/P? is a one-dimensional vector space over R/P, there are no
ideals of R strictly between P and P2. It is known that this implies that P=P"+ R
and that {Pf};f=1 is the set of ideals between P and P" for each n [7, (38,2)]. If i=1
then the inclusion P*~*C P*: (¢) is clear. Moreover, ¢4 P’ implies that P%: () S P.
Now p'~*E P': (1), for otherwise, P~'=P'"%[P24(:)]S P contrary to the
hypothesis that the powers of P properly descend. We conclude that P‘: (1)=Pi-1,
as asserted.

Theorem 3.5. Assume that P=A,, A, As, ... is a sequence of ideals of R and
{t.}2, is a sequence of elements of R-such that the following conditions are satisfied:
(1) P is a maximal ideal of R and R/P is finite, (2) the powers of P properly descend, and
(3) for each i=>1, P=A,+(t)), A;2 P', and A;: (t)S P'~. Then there exists a non-
finitely generated Jonsson wy-module M over R such that Ann (x) is P-primary for
each x€M—{0}.

Proof. Let Fbe a free R-module on the set {x;};=,, let 4 be the submodule of F
generated by {4,x;}> ,U{x;—t;41x:41}50,, and let M=F/4; we prove that M
has the required properties. Let y,=x;+ 4 for each i. Itis clear that {y,};z, generates
M and that (y)S(y;+1) for each i. We prove that the inclusion (y,)S{(y;-,) is
proper by establishing the following property of the submodule A: if a€ A — {0}
and if a= Zk' rjx;, where r, 0, then r,€ P. For some n, we can write a=a,x;+

Jj=1
. a,x,+hy (o — )+ .+, (X, 1~ 1, X,), where a,€A; and h;€R. If k=n, then
r.=a,—h,t,€ P. Otherwise, we obtain a sequence of equations

a,—h,t,=0

hn+an—l_hn—1tn—1.= 0

Mo+ a1 — Pty = 0.

The first equation implies that h,€4,: (1,) S P"~%, and hence, from the second equa-
tion, h,_3t,_1=h,+a,_1€A4,_, so that h,_,€A, ,:(¢,_)) S P""% Inductively, we
obtain A,..€P* If k=1, it follows that r,=hy . +a,—ht,€P, and if k=1,
then r,=#h,+a, is also in P. This establishes the assertion concerning A4, and hence
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(yy#(y;+1) for each i. Thus, no finite subset of {y;};2, generates M, and this implies
that M is not finitely generated. ’

We show next that each (y;) is finite. Since PSAnn (y,) and R/P is finite, the
submodule (y,) is finite. Assume that (y,) is finite. To prove that (y;.,) is finite, it
suffices to prove that (y;,,)/{y;) is finite. The annihilator of (y;,,)/(y;) contains
A; ;1 and the element ¢;,,, hence the ideal A;,,+(t;,,)=P: Therefore (y,+1)/(y,)
is finite, and (y,,,) is finite.

To complete the proof, we show that y ¢ (y;) implies that y,£(y). Choose k so
that y€(yx41), y4{(y); thus k=i. Then y=ry,,,, and since Py, E{y), it
follows that r¢ P. Hence R=A,,,+rR and we write 1 =q+rs for some g€ 4, and
SER. Then yy 1 =qYVis1+75Vrs1=5y and p;€ (yi+1) E (¥). This is sufficient to show
that each proper submodule of M is finite, for if L is a submodule of M that is con-
tained in no {y;), then L contains {y;};", and hence L=M. It is clear from the con-
struction that Ann (x) is P-primary for each x¢M — {0}.

Assume that (R, P) is a quasi-local domain such that P=¢R is principal and
R/P is finite. Then the hypothesis of Theorem 3.5 is satisfied for 4;,=P' and 1=t
for each i. In this case, the module M constructed in the proof of Theorem 3.5 is
isomorphic to R[1/t]/R, and in the case where this module is faithful (that is, where

ﬂ P=(0)), then R is a rank-one discrete valuation ring and R[1/¢] is the quotient

ﬁeld of R. The next result determines equivalent conditions in order that the D-module
K/D, where D is an integral domain and K is the quotient field of D, should be a
Jonsson w,-module. The statement of Theorem 3.6 uses the following terminology
from [12]. The ring R is sa1d to have the finite norm property (FNP) if R/A is finite
for each nonzero ideal 4 of R (such a ring is said to be residually finite in [4]).

Theorem 3.6. Let D be an integral domain with quotient field K= D. Let D*
be the integral closure of D. Then K/D is a Jonsson wy-module over D if and only if the
following conditions are satisfied. ‘

(1) D has the finite norm property,

2 D* is a rank-one discrete valutation ring, and

(3) D* is a finite D-module.

Proof. Assume that K/D is a Jénsson wy-module. If 4 is a nonzero nonunit of
D, then Dd~YD is a proper submodule of K/D, and hence is finite. Since Dd~1/D
and D/dD are isomorphic D-modules, it follows that dD has finite norm, and D has the
finite norm property. Let J= K be an overring of D. Since J/D is finite, J is integral
over D; hence JSD* and X is the only proper overring of D*. Therefore D* is a
rank-one valuatxon ring finitely generated over D, a rmg w1th (FNP), and hence D*
is rank-one discrete with (FNP).
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Conversely, assume that conditions (1)—(3) are satisfied, and write V instead of
D*. Assume that = is a generator of the maximal ideal of V. Since V is a finitely gen-
erated D-module, the conductor C of D in V is nonzero; say C=n*V. We know
that K= U n 'V, where n 'V <n"tV<.... To prove that K/D is a Jénsson w,-

=1
module, 1t suffices to show that n~'¥/D is finite for each i and that each proper sub-

module of K/D is a submodule of n='V/D for some i. n~'V/D is a finitely generated
D-module and ni+* belongs to the annihilator of this module. Since the ring D/'+*D
is finite, it follows that n='¥/D is finite. To prove that each proper submodule of K/D
is contained in some n~iV/D, it suffices to show that if N is a D-submodule of K such

that NEn~'V for each i, then N=K. Since K= U n~'D, it is enough to show

that 7 '€ N for each positive integer i. Choose nGN n=G+Oy We write n as
n~°u, where uis a unit of ¥ and s>i+k. Then n*~'¢C and n*~‘u~ln=n"‘'¢DnC
€ N. This established Theorem 3.6.

Considerations similar to those in the proof of Theorem 3.6 and in the para-
graph preceding that result enable us to determine to within isomorphism the class
%(J) of all non-finitely generated Jénsson w,-modules over a Priifer domain J. In
order for ¥ (J) to be nomepty, we know from Theorem 3.1 that it is necessary that
there should exist a maximal ideal M of J such that J/M is finite and the powers of M
properly descend. Assume that J has such a maximal ideal and let {M,};, be the

famlly of all such maximal ideals of J. Since J is a Priifer domain, P;= ﬂ Mk

is prime in J and there is no prime of J properly between P; and M; [7, Chap. 23].
Moreover, V;= (J/P)(M =Ty /PJ is a rank-one valuation ring with residue
field J/M;, and to within 1somorphlsm €)= U % (V). According to the next

result, Proposition 3.7, the unique faithful, non-ﬁmtely generated Jénsson w,-module
over V;is K,/V;, where K; is the quotient field of V;, and this in turn yields a deter-
mination of ¢ (J).

Proposition 3.7. Let V be a rank-one discrete valuation ring ‘with quotient
field K and with finite residue field V/P. To within isomorphism, K|V is the unique faith-
ful, non-finitely generated Jénsson wq-module over V.

Proof. Let M be a non-finitely generated faithful Jénsson w,-module over V
and assume that p generates P. According to Proposition 3.2, M can be expressed as
U Vx;, where x;#0, px,=0, and px,,,=Xx; for each i. Noting that the set

{p"+ V}i>, generates K/V, it is then routine to verify that the mapping p~'+ V- x;
can be extended to a V-module isomorphism of K/V onto M,
Assume that (D, P) is a quasi-local domain that admits a non-finitely generated
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faithful J6nsson wo-module From Theorem 3.1 and Proposition 3.2, it follows that
D/P is finite, that r] P'=(0), and that (0) can be expressed as the intersection of a

strictly decreasmg sequence {Q}r, of P-primary ideals such that each D/Q; is
finite. Based on considerations up to this point, it seems reasonable to ask if D must
be one-dimensional, or Noetherian, or if the residue class rings D/P! are finite. We
present in Section 4 examples that show that each of these questions has a negative
answer; moreover, if D is one-dimensional, then D need not be Noetherian, and con-
versely.

4. Examples. The examples in this section indicate certain limitations on what
can be said about the structure of a quasi-local domain (D, P) such that D admits a
non-finitely generated faithful Jénsson w,-module. In particular, the class of examples
included in Example 4.1 is large enough to show that D need not be Noetherian, and
that no restriction on the dimension of D is possible.

Example 4.1. Assume that (V, M(V)) and (W, M(W)) are independent valua-
tion rings on a field K, that V is rank-one discrete, and that there exists a finite field so
that V=k+M(V) and W=k+M(W). Set D=k+P, where P=M(V)NM(W).
Then (D, P) is quasi-local, dim D=dim W, and W/D is a non-finitely generated faith-
Jul Jénsson wy-module over D.

Proof. Corollary 5.6 of [8] shows that (D, P)is quasi-local and dim D=dim W.
Let v be a valuation associated with ¥ and choose, by the approximation theorem for
independent valuations [7, (22.9)], an element x¢ W—V so that »(x)=-—1. If
deD—{0} and if v(d)=r=0, then dx'+'¢ D, so W/D is a faithful D-module. To
prove that W/D is a non-finitely generated J6nsson wy-module, we show that the
sequence {(D+Dx%)/D};z, of submodules of W/D satisfies the hypothesis and con-
dition (2) of Proposition 3.3. To do so, we prove first the following assertion.
™ If reW, if seW-—V, and if v(s)<uo(r), then r€ D+Ds.

To prove (*), consider first the case where s is a unit and r is a nonunit of W.
Then r/s¢ M(W), and since »(r/s)=0, then r/s€e M(V) as well. Hence réDs in
this case. On the other hand, if s is a2 nonunit of W, then we can replace s by the unit
5;=s5+1 without affecting the hypothesis or the conclusion since s;€ W—V¥, »(s)=
=v(s)) and D+ Ds=D+ Ds,. Similarly, if r is a unit of W, then r=r—uc M(W)
for some nonzero element r of k, and replacing r by r, yields the desired conclusion.
This establishes (*).

"It follows from (*) that W=D (D+Dx") and that D+Dx'CD+Dx'*1,
i=1

The minimum of the v-values of elements of D+ Dx'is —i, so x'*1¢ D+ Dx’ and
the inclusion D+ Dx!C D+ Dx'*! is proper. Statement (*) also implies that if N is a
proper D-submodule of W containing D, then the set of v-values of elements of N is
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bounded below, and hence NC D+ Dx' for some i. Thus, to complete the proof of
Example 4.1, we need only show that (D4 Dx')/D is finite for each i. It is clear,
however, that M(W)N(M(¥V))' is contained in the annihilator of (D+ Dx‘)/D.
As [V/(M(V))|=|k|' is finite, the subring D/M(W)N(M(V))] is also finite.
Since (D+ DxY)/D is a finitely generated D-module, we conclude that (D +Dx')/D
is finite.

If k is a finite field and {X;};z, is a set of indeterminates over k, then the field
K=k({X,};) admits independent valuations », w such that » is rank-one discrete, the
valuation ring V of v is of the form k+ M (V), and the valuation ring W of w is of the
form k+M(W). Example 4.1 shows that W/D, where D=k+(M(V)NM(W)),
is a Jénsson w,-module, and dim D=dim W can be any positive integer or it can be
infinite. Moreover, if W is chosen so that M (W) is unbranched [7, p. 189], then no
principal ideal of D is primary for M (V)N M(W). Thus the assumption that a quasi-
local domain admits a faithful non-finitely generated Jénsson w,-module does not
imply that the domain is Noetherian, and it imposes no restriction on its dimension.
We remark that the approximation theorem for independent valuations can be avoid-
ed in the proof of Example 4.1 and that the conclusion concerning W/D remains
valid for any quasi-local domain W=k+M(W) with quotient field K such that
W E V. Using this fact, we see that if W is rank-one nondiscrete, if B M(W) is
any M(W)-primary ideal and if J= k+(M (V)N B), then J admits the non-finitely
generated faithful Jénsson w,-module (k+B)/J and yet J/(M (V)NB)" is infinite
for each n>1.

There is an analogue, for generating sets, of the concept of a J6nsson a-module.
Namely, we say that a unitary module M over a commutative ring R with identity is
a Jonsson a-generated module if M has a generating set of cardinality a, no generating
set of smaller cardinality, and each proper submodule of M has a generating set of
cardinality less than «. We have developed a theory of Jénsson a-generated modules
in [11]. This theory contains many similarities, but also some differences, with the
theory of Jénsson a-modules. The differences stem frequently from the fact that, by
definition, a Jonsson a-generated module is not finitely generated, whereas a J6nsson
a-module may be cyclic. In particular, a modification of the proof of [11, Example 3.3]
establishes the followmg result.

Example 4.2. Assume that D is an integral domain with quotient field K, that
(W, M) is a rank-one discrete valuation ring on K containing D, and that W/M = D/P
is a finite field, where P is the center of W on D. Then K/W is a Jénsson w,-module
over D. '

Example 4.2 can be used to show that even in the case of a Noetherian domain D,
existence of a non-finitely generated faithful Jénsson w,-module over D iniposes no
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restriction on the dimension of D. For example, let k be a finite field, let n be a posi-
tive integer, and choose x,, Xs, ..., X,€ Yk[[¥]] such that {x;};_, is algebraically
independent over k. Then D=k[x;,...,x), ., i5 an n-dimensional regular
local ring and W=k[[Y]]Nk(x,, ..., x,) is a rank-one discrete valuation overring
of D such that D and W have residue field k. By Example 4.2, k(x,, ..., x,)/W is a
faithful Jénsson wy-module over D.

We remark that, in general, a Noetherian ring R admits a non-finitely generated
Jénsson wy-module if and only if R contains a maximal ideal M of positive height
such that the residue field R/M is finite. This result follows from Theorem 2.7 of [11].
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