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On classes of ordered algebras and quasiorder distributivity 

GÁBOR CZÉDLI and ATTILA LENKE HEGYI 

0. Introduction. Many kinds of partially ordered algebras have appeared in the 
literature so far, for example partially ordered groups, rings, fields, etc. In some cases 
all the fundamental operations were supposed to be monotonic, but in some others 
there are operations having only special monotonity domains; moreover, some opera-
tions may be order reversing (or „antitone") with respect to a (may be the whole) 
part of their variables. (See F U C H S [ 5 ] , [ 6 ] . ) There is no doubt that one gets the most 
general concept, if one imposes no assumption on the monotonity or antitonity do-
mains of the operations. But then it seems to be hopeless to develop such an elegant 
(or at least approximately so elegant) theory, as the theory of varieties, equational 
logic, Mal'cev conditions, and so on. The circumstances for obtaining such results 
become far more advantageous if we require all operations to be monotonic in all of 
their variables. So we accept the following definition (the exact origin of which is not 
known for us): 

De f in i t i on 0.1. By a partially ordered algebra (in the sequel simply ordered 
algebra) we mean a triple 21=(A; F, =), where (A; F) is a universal algebra, ^ is a 
partial ordering on A, and all the operations / € F are monotone with respect to this 
ordering. (If there is no danger of confusion, we shall simply say „ / i s monotone".) 

Note that, according to this definition, partially ordered algebras are essentially 
the same as the algebras in the category of partially ordered sets (see F R E Y D [ 4 ] , 

PAREIGIS [ 9 ] ) . 

In our work we make an attempt to give a unified theory for these algebras, 
using such concepts as subalgebras, direct products, homomorphic images, subdirect 
decompositions, congruences, inequalities, Mal'cev conditions. 

1. Basic concepts and facts. In this section we remind the reader of the concepts 
of homomorphisms, subalgebras, direct and subdirect products, and then we define 
two kinds of congruences. 
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The operations on subalgebras and direct products are given as usual, the ordering 
is restricted to the subset in question and is understood componentwise. It would be 
possible to define subalgebras such that the ordering on them is obtained by weaken-
ing the restricted ordering, but we need not use such subalgebras, so we do not allow 
them. This agreement will seem to be natural after investigating varieties and their 
Birkhoff-type characterization, due to S . L. B L O O M [1]. 

By a homomorphism we mean a monotone, operation-preserving map from one 
algebra to another. A homomorphism (p: 91—© is said to be a Q-homomorphism, 
if the ordering of S restricted to Im cp cannot be weakened so that (p remains still 
monotone and the operations on Im cp remain still isotone („isotone" is used as a 
synonym for „monotone"). (It would be possible to describe g-homomorphisms 
constructively, but since it is straightforward from the proof of Theorem 1.1 below, 
it will be omitted.) 

S is a homomorphic image (resp. Q-homomorphic image) of 91, if there exists a 
surjective homomorphism (Q-homomorphism) 91—S. 

Def in i t i on 1.1. A binary relation 0 over A will be called an order-congruence 
of 21, if the following hold: 

(i) 0 is a congruence on (A; F); 
(ii) whenever for some natural numbers n,m and elements a,b, alt ...,a„-1, 

bx, we have 

a 0 f l x S a20 a3 S ...a„ = b 0 bt S b2 0 b3 S ...bm = a, 

we always have also a0b. (The sequence of elements of this form is a 0-circle with 
distinguished elements a, b.) 

It is clear, that finitely many 0-circles (with fixed distinguished elements) can 
always be unified so that they have common n and common m, moreover, n and m 
can be required to be equal. 

For a homomorphism (p: 91—© let Kcr <p denote the kernel of <p, i.e. the rela-
tion {(a, b)£A2\a(p=b(p}. The proof of the following theorem can also be found in 
[3], so here we give only the necessary construction. The theorem justifies Defini-
tion 1.1. 

Theorem 1.1. 0 is an order-congruence ofH i f f 0 =Ker q> for some homo-
morphism cp: 91—23 (SB is an ordered algebra of the same similarity type), or equiv-
alently, 0 = Ker cp' for some surjective Q-homomorphism cp': 91 —S'. 

P r o o f . The „if" part is obvious. Assume 0 is an order-congruence, and consi-
der the ordered algebra (A/0; F, where (A/0; F) is the corresponding 
quotient algebra, and 

[a]0 ^[b]0 iff fl0fl1Sa!0fl3S...a„ = i) for some n and -alt ..., an_^A. 
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Then the natural map a>-+[a] 0 is a surjective O-homomorphism onto the con-
structed ordered algebra (which will be usually denoted by 21/0). 

However, the order-congruences or, what are the same, the kernels of homomor-
phisms are not sufficient to reproduce the corresponding homomorphic images in the 
case when the homomorphisms are surjective, unless they are g-homomorphisms. 
But we need also homomorphic images, which are not g-images. So it is desirable to 
introduce such relations on the ordered algebras, which enable us to describe all 
homomorphic images completely. The following definition can be found implicitly 
i n B L O O M [ 1 ] . 

Def in i t i on 1.2. Let <p: 21—23 a homomorphism. By the directed kernel of <p_ 
we mean the relation 

Ker <p = {(a, b)£A2\aq> S bcp in 8}. 

The isomorphisms are those homomorphisms having a two-sided inverse map, 
which is also a homomorphism. 

It is obvious that knowing Ker (p for a surjective homomorphism (p, we can 
construct — up to isomorphism — the corresponding homomorphic image, thanks 
to the fact that Ker <p determines on Im <p the equality, the ordering and the opera-
tions, as well. 

The directed kernels can be characterized as follows: 

Theorem 1.2. A binary relation 0 over A is the directed kernel for some homo-
morphism o/2l into some ordered algebra if and only if 0 is a quasiorder compatible 
with the operations, which extends the ordering of 21 (i.e. a^b implies a0b). 

P r o o f . The „only if" part is trivial; for the converse let us consider the relation 
$ = 0 P l 0 _ 1 . It is easily seen, that 4> is an order-congruence; let [a] <PS[¿] <Z> iff 
a0b. Then S is a (well-defined) partial ordering on A/<P preserved by the operations 
of the quotient algebra. Now obviously 0 = K e r rj with rj the natural map a>—-[a] $ 
onto (A/4>; F, (The latter need not be equal to 2I/4>!) 

(Note that Bloom called such quasiorders „admissible preorders".) 
Let us denote the ordered algebra constructed in the previous proof by 21/0. 

We essentially proved also 

Theorem 1.3 (Homomorphism Theorem). If <p:2I —8 is a surjective homo-
morphism, then 21/Ker <p = 33, an isomorphism is given by [a] <P>-»a(p, where $ 
denotes the order-congruence Ker (p fl (Ker <p)-1. 

Next we investigate the connection between order-congruences and directed 
kernels (in the sequel we refer to the latter simply as quasiorders, as they are quasior-
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ders compatible with the operations, which extend the partial order on the 
algebra). 

P r o p o s i t i o n 1.4. The order-congruences are exactly the relations ©Pi© - 1 , 
where 0 is a quasiorder. 

P r o o f . We have already seen (proof of Theorem 1.2), that the relations © fl 0 
are all order-congruences. Now if $ is an order-congruence, then let 0 be the directed 
kernel of the natural homomorphism of 21 onto the quotient algebra 21/0 (see Theo-
rem 1.1). It is clear that $ = 0 D 0 - 1 . 

If 0 is a quasiorder, then 0 f l 0 _ 1 is called the order-congruence associated 
with 0; cf. B L O O M [1], where it is shown that 0 H 0 - 1 is a congruence in the usual 
sense. The same order-congruence may be associated with distinct quasiorders, as 
trivial examples show. But always there is a smallest among the them: namely, for 
an order-congruence <P the 0 in the proof of Proposition 1.4 is the least quasiorder 
such that = 0 fl 0 - 1 ; call it the quasiorder associated with <t>. It can also be defined 
as the only quasiorder 0 for which the natural map of 21 onto 2 1 / i s a g-homomor-
phism of 21 onto 21/0. 

For every binary relation HQ A2 there is a smallest quasiorder 0 on 21 such 
that HQ0; this is the quasiorder generated by H (denoted by 0(H)), and is equal 
to the intersection of all quasiorders containing H. If H consists only of the pair (a, b), 
then we say that 0 (H) is the principal quasiorder generated by (a, b), and denote it by 
0(a,b). 

T h e o r e m 1.5. The quasiorders of an ordered algebra 21 form an algebraic 
lattice under set inclusion with the universal relation of A as the unit and the ordering of 
21 as the zero. The join V of the quasiorders 0 , is given by 

ver 
a ( V @y)b iff a0yia10y2a2...an-10y b for some elements yer 

a x , . . . , and y1,...,y„£r. 

From now on, this lattice is denoted by Cqu (21) ("compatible quasiorders"). 
The straightforward proof of the next theorem will be omitted. 

T h e o r e m 1.6 (Second Isomorphism Theorem). Let 0 l 5 0 2 be quasiorders on 
SSL with 0\ — 0 2 , and let denote the order-congruence associated with 0t, i= 1,2. 
Then the relation 0 2 on 21/0! defined by 

M ^ S j i ] ^ iff a02b 

is a quasiorder on 21/0! and (2I/01)/02 is isomoprhic 21/02 via the map 
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where <P2 is the order-congruence associated with 02. Hence, the quasiorder-lattice of 
91/0 is isomorphic to the interval [0) of Cqu (91). 

The following statement is equally trivial: 

Theoerem 1.7 (First Isomorphism Theorem). Given an ordered algebra 91, 
a subalgebra 93 o/9l and a quasiorder 06Cqu (91), define [B] = {a£A\a$b for some 
b£B}, where $ is the order-congruence associated with 0 . Let 23 be the subalgebra 
of 91 determined by [5]. Then the mapping [Z>](<iH.8)>->-[i]($f[.B]) is an isomorphism 
between &/(0tB) and 23j(0\[B]). (Here t stands for restriction.) 

Now turn back to considering quasiorders generated by given set of pairs of 
elements. 

P ropos i t i on 1.8. For c,d,a,b£A (c, d)£0 (a, b) if and only if there exists 
a natural number n, unary algebraic functions q1 (x), ..., q„(x) over 91 and a sequence 
c = ult u2, ..., u2n=d of elements of A such that 

(i) M2i^M2i+1 for i = l, ...,n-l and 
(ii) u2i-1—qi(a), u2i=qt{b) for i=l,...,n. 

We omit the easy proof. Of course, if a^b, then 0(a, b) is just the ordering of 
91, as it follows at once from the definition of 0 (a, b), but it also follows from this 
proposition. Replacing (a, b) in (ii) by an arbitrary (vh we get the descrip-
tion of 0(H). 

For every HQ A2 let 0O(H) denote the congruence on (A; F) generated by H, 
and for any congruence 0 of (A; F) let 0 denote the smallest order-congruence of 91 
containing 0 . Then we can state: 

P ropos i t i on 1.9. Let 0 be a congruence of (A; F). Then for any a,b£A, 
a0b if and only if there is a sequence of the form 

a 0 ^ a20 a3 S•..«„= b 0 i)^ b20 b3 ^...bm = a. 

Consequently, 0$(H) is the order-congruence generated by H. 

By means of Proposition 1.9 and the well-known Mal'cev lemma concerning 

0O(H) it would be possible to give an explicit description for 0O(H), but we omit 
this. Obviously, Proposition 1.9 defines also the join of (arbitrarily many) order-
congruences. The formulation and the proof of the analogue of Theorem 1.5 is left to 
the reader (cf. also [3], Proposition 2.2). The order-congruence lattice o/9I is denoted 
by Con (91), and the order-congruence generated by (a, b) is 0 (a, b). 
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Finally, note that the Second Isomorphism Theorem holds also for order-con-
gruences, but in general the First does not, because the ordering of the congruence 
classes is defined by means of certain sequences of elements, and it can happen that 
there is no such sequence between two elements of B inside of B, but there is already in 
[B] (see Theorems 1.1 and 1.7). The corresponding variant of the Homomorphism 
Theorem is true for Q-epimorphisms (of course, replacing Ker by Ker). 

2. Operators on classes of ordered algebras. Varieties. Classes will always consist 
of ordered algebras of the same similarity type. Let I, H, Q, S, P and P s be the 
operators of forming all isomorphic, homomorphic, (7-homomorphic images, sub-
algebras, direct products and subdirect products, respectively (products of empty 
families — with the obvious meaning — are also allowed). A class Jf is a variety 
(resp. Q-variety) provided it is closed under H, S and P (resp. Q, S and P). It is easy 
to check (cf. [1]) that 

Theorem 2.1. For any class JT, HSP(X) is the smallest variety containing X. 

One would expect an analoguous result for g-varieties, but it does not hold in 
general, because the operator inequality S Q s Q S may be false, as it is seen from 
very simple counterexamples (see also the remark at the end of the previous section 
on the First Isomorphism Theorem). The characterization of the Q-variety generated 
by a class in terms of operators is an open problem yet. 

By an inequality of type x we mean a sequence of symbols f ^ g , where f and g 
are -r-terms. The expression "f~g holds in an algebra 21" (or more generally, in a 
class X ) has the obvious meaning. 

There is a BirkhofF-type characterization for varieties (BLOOM [ 1 ] ) : 

Theorem 2.2. A class JT is a variety if and only if X consists exactly of all 
the algebras satisfying a given set of inequalities. 

For any fixed type x, the varieties of type x are in one-to-one correspondence 
with the fully invariant quasiorders (i.e. invariant under all endomoprhisms) of the 
absolutely free t-algebra of rank Xo • From this fact one can easily conclude Bloom's 
four rules for the corresponding „inequational logic": 

(i) t ^ t ; 
(ii) t ^ t 2 and / 2 s r 3 imply t i ^ t 3 ; 

(iii) t ^ t ' f , i=\, ..., n, imply / ( / l 5 ..., ..., 0 for any n-ary opera-
tion symbol / ; 

(iv) /(*!, . . . ,xB)S/ ' (*i . •••»*«) implies t{qi, ..., q„)^t'{qi, ..., qn) for arbi-
trary terms qly ..., qn. (Of course, we are inside of T). 

Now we will consider free algebras over arbitrary posets; they will play an im-
portant role in the investigation of Mal'cev-type conditions. 
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Def in i t i on 2.1. Let X be a class of ordered algebras, £=(<¥; s ) a poset, 
JT, and let Q be a map X—F. g is the free algebra over X in Jf" with the canoni-

cal map Q, if the following hold: 
(i) Q is monotone, and XQ generates F; 

(ii) given any monotone map q>:X —21 into an algebra 2 t h e r e exists 
a (unique) homomorphism ij/: g—Ui such that 

3 is denoted by or simply by ($?*-(£), if we do not want to refer to <? 
explicitly. (Cf. [2] for topological algebras). 

P ropos i t i on 2.3. is unique in the sense that always there is an iso-
morphism £ between g^j(X) and HsfyiX) such that 

In what follows let us call the ISP-closed classes prevarieties. 

Theorem 2.4. If JT is a prevariety, then for any poset X, 0r£-(£) exists with 
some Q. Q is an order-isomorphism onto a subset of F, provided Jf contains a nontrivi-
ally ordered member, or X is trivially ordered and Jf contains an at least two-element 
member. 

P r o o f . The existence of can be seen in the usual way. For the second 
statement let x, y£X, x^=y, and a,b£21, 2t€JT. Then there is a monotone 
map cp: £—21 such that ycp=a, x<p=b. But then xg^yg, otherwise with the if 
of(ii) in Definition 2.1 we would get XQ\¡J^YGIP, i.e. bsa, a contradiction. The third 
statement is obvoius, since in that case we essentially work with usual universal al-
gebras, and the statement simply expresses that g is 1—1. 

So, in the two cases mentioned above, we may think X to be embedded in 
Sjr(X). If X is trivially ordered, then depends only on the cardinality of 
X. We will freely use such notations as b, c), etc. if this will result 
no confusion. 

The structure of 3^(3;) is given very easily, when X is trivially ordered: p^q 
in (where p, q are terms applied to elements of X) iff-the inequality p^q 
is identically true in X . This remark will be frequently used later on. In the general 
case we have no satisfactory description yet. 

3. Subdirect decompositions. For an ordered algebra 2 l=(A; F, s ) , let 
Or (21) denote the ordering of 21, i.e. the relation S . If 21 is a subdirect product of 
the algebras 2If, i£l, then 

A Ker7rf = Or (21), 
i<H 

where jr, is the i tb natural projection. We show that this condition characterizes sub-
direct decompositions. 
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T h e o r e m 3.1. Let 21 be an ordered algebra, ©¡$Cqu(21), i£I, and 
A{®i|?€/}=Or (21). Then 21 is isomorphic to a subdirect product of the algebras 
2 i / e t . 

P r o o f . Themap »//: №->•([«] where 0 t is the order-congruence associated 
with @i, gives the desired isomorphism (for the definition of 21/0 ( see Theorem 1.2 
and the remark after it). 

An ordered algebra is subdirectly irreducible, if in all its subdircct decomposi-
tions some of the projections is in fact an isomorphism, which by the preceding theo-
rem is equivalent to saying that Or (21) is completely meet-irreducible in Cqu (21), 
or in other words, Cqu (21) contains a smallest nonzero element. 21 is called simple 
(resp. weakly simple), provided Cqu (21) (resp. Con (21)) is the two-element chain. 
A simple algebra is always weakly simple, but not conversely. 

The analogue of Birkhoff's subdirect decomposition theorem holds: 

T h e o r e m 3.2 . Every ordered algebra is isomorphic to a subdirect product of 
its subdirectly irreducible quotient algebras. 

P r o o f . The claim follows from the fact that, Cqu (2i) being an algebraic lattice, 
every quasiorder of 2t is the meet of completely meet-irreducible quasiorders, from the 
definition of the orderings on the quotient algebras, and from the preceding theorem. 
For a more direct proof, let us consider for every a, 2>£2i with a a^b a maximal 
quasiorder ¡¡/(a, b) not containing (a, b). Then A {«A b)\a^b}=Or (21), and 
I¡/(a, b)\J0(a, b) is the least nonzero element of Cqu (2t/i¡/(a, b)), from which the 
assertion follows. 

Of course, there are several necessary and sufficient conditions on families of 
quasiorders to determine a finite direct decomposition. We formulate only the simplest 
of them: 

T h e o r e m 3.3. Let 0 X , 0 2 be quasiorders on 21, and let <I\, be the associated 
order-congruences. The correspondence 

defines an isomorphism between 2t and the direct product 2i/0!X2i/02 if and only if 
the following are satisfied: 

(i) 0 iA0 2 =Or(2 I ) ; 
(ii) <l\o <I>2 = <I\o <!>!=i (the universal relation). 

Obviously, (i) implies that <I\/\<I\=(a (the identity relation), but it is easily seen, 
that the latter is not sufficient for (i). 
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4. Conditions in quasiorder-lattices. The analogue of Jonsson's lemma. In this 
section we investigate the analogues of such properties, as («-) permutability and dis-
tributivity of all congruences on every algebra from a class, having so great impor-
tance in the theory of universal algebras. 

P ropos i t ion 4,1. Let X be a prevariety of ordered algebras with a nontriviqlly 
ordered member. Then there exist non-permutable order-congruences on an algebra 
from X. 

Proof . See [3]. 

We shall not deal with the «-permutability of, order-congruences for n>-2, 
because the idea of the proof of the next statement carries over easily. (Cf. [7].) 

P ropos i t ion 4.2. Under the assumption of the above proposition, the n-per-
mutability of quasiorders does not hold in ."/tí. 

Proof . For technical reasons, let n—2m. Assume that the quasiorders 0 — 
= V ®(a2i,a2i+1) and '!>= V ®(a2i+i> %+a) of the free algebra ..., 

I<m i<m 
...,an) are w-permutaWe. Then (a0, a„)€0o4>o0o implies the existence of a 

-v ' n times 
sequence ao=bo<I>b10b2(Pb3...bn^10bn—an. Here bi=qt(a0, ..., a„) for a term qt. 
If i is even, then 

qt(a0, a1,a1, a3> a3, a1, a2, as, a4 , ...)<2> 

®<li +1(«0> «1, «2, «3> «4> •••)®<li +l(«0> «2= «2, «4> «4» •••)• 
Consider the endomorphism £ of ¡y, • which leaves a0 fixed, and sends au+1 and 
a2i+2 to a2¡+2 for every i<m. Then Ker so 

<h(ao> fl2> «2> «4» «4) •••) = o> ai> ai> fl3> fl3> •••)£ — 
- ¿̂ + l(«0. «2» «2! «4> «4> •••)£ = tfi + lOo, «2. «2. «4. «4> •••)• 

Similarly, for i odd we have 

#¡(«1> «1, «3» «3. •••) — + «3» «3> •••)• 

Now let pi(x,y,z)—qi(x>...,x,y,z,...,z) with A* occurring i times for 1 
/?o(x, y, z)=x and p„(x, y, z)—z. Then in X there hold the following inequalities; 

(*) Pi(x, x, z) si pi+1(x, z, z), i — 1, ..., n 1. 
But take elements a~~b in some member of C/f and compute: 

b = p0(b, b, a) pi(b, a, a) sS p^b, b, a) á p2(6, a, a) =S pa(6, 6, a) 
...spn(b, a, a) = a; 

this is a contradiction. (Note, that pt(b, a, a)^Pi(b, b, a) is true by monotonity.) 
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This means that in nontrivially ordered prevarieties the description of the join 
of quasiorders cannot be reduced so that we take sequences of elements of a fixed 
length. 

C o r o l l a r y 4 .3 . Let JT be a prevariety of universal algebras, nfe2 a natural 
number, and suppose that all compatible quasiorders on algebras in Jf are n-permu-
table. Then all these quasiorders are congruences (i.e. are also symmetric). 

P r o o f . Endow all Jf-algebras with trivial order. Considering a pair (a, £>)£ 
€£>£Cqu (21), and defining the pt(x, y, z) as above, we can compute by ( * ) 
(which gives now equations!) and the compatibility of Q: 

b = p0(b, b, a) = p1(b, a, a)gp1(b, b, a) = Pz(b, a, a)QPz(b, b, a) = 

...= pn{b, a, a) — a, from which (b, a)£g follows. 

Fortunately, besides the negative phenomena mentioned so far, there are positive 
facts, too. The concept of quasiorder distributivity of all algebras in a prevariety is 
already useful. The significance of quasiorder distributivity is seen from the next two 
statements. All algebras are ordered algebras of a fixed type. We follow J6NSSON'S 
[8] original proofs mutatis mutandis, keeping also his notations. 

L e m m a 4.4. 7/21 is a subalgebra of Cqu(2I) is distributive and 
SU/cp is subdirectly irreducible, where <p£Cqu (21), then there exists an ultrafilter U 
over I such that U~\A ^q>. (For any filter V over I, V denotes the relation defined 
by xV'y iff {i\x(i)Sy(i)}£V.) 

P r o o f . Obviously, the V" are always quasiorders on (£=]]((£¡¡¡£1). Write 
J" instead of V", if V is the principal filter generated by a subset J of I. Let 
D={J\JQI and /~M=<p}, and let U be a maximal filter contained in D (Zorn's 
lemma applies since I£D). Then £/ ' — U ( J~ \J€ .U) , so U~\A^cp. We show, that 
U is an ultrafilter. For every J,KQI 

(1) I ^ J ^ K and KZD implies J$D, 

and (J[JK)"\A = ( / " M ) n ( A : " M ) , so by distributivity 

(2) tp = <pV({J\JKy\A) = (q>V(jr\A))n((pV(K-\A)) if JUK£D. 

But <p is meet-irreducible, so cp\J{J'\A)—<p or cp\J(K~\A)=(p, i.e. 

(3) JUkeD implies J£D or K£D. 

If U were not an ultrafilter, then we would have /(£ U and U for some JQI. 
Then by (1) and the maximality of U there exist sets K', K"£U such that JCiK'^D 
and (l\J)C)K"<tD. However, K=K'f}K"<iU, so and 
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U ( ( / \ / ) n K ). But this contradicts (3), since the members of the latter union do not 
belong to D by (1). 

Lemma 4.5. (Jonsson-lemma). If JT is a class of ordered algebras, is the 
variety generated by Jf", and all the Cqu(9l), , are distributive, then all sub-
directly irreducible members of "V belong to HSP^CjT), where Py denotes the model-
theoretic operator of forming ultraproducts. Consequently, "V =IP sHSP l /( jT) . 

P r o o f . Every algebra in Y is of the form 9l/<p, where 91 is a subalgebra of a 
direct product [J{<i¡|/'€/}, G ^ J f , and <p£Cqu(9t). If 91 ¡cp is subdirectly irre-
ducible, then for a suitable ultrafilter U over I by the preceding lemma. 
Therefore, 9l/q> is a homomorphic image of 91 (U"\A), and the latter is obviously 
a subalgebra of № {&i\i£I})IU". 

It remains to show, that ^ a n ultraproduct of members of 
J f . We point out, that this is just the ultraproduct of the over the ultrafilter U. 
Indeed, let [f]U denote the equivalence class modulo U of any function /6JJCf 
according to the definition of ultraproduct, and let 0 be the order-congruence asso-
ciated with £T, i.e. O ^ t r n C C T ) - 1 . Now [f]0=[g\0 means that {i|/(i) = 
^g(i)}fM and {i\g(i)^f(i)}£U, which is equivalent to {i\f(i)=g(i)}£U, i.e. 
[/] U=[g] U. From this it follows at once, that the operations are also the same. Let 
[f]0^[g]0, then fU~g (see the proof of Theorem 1.2), which means {'|/(;) = 
— B u t this expresses just the fact that [f]U^[g]U in the ultraproduct. 

Let us mention, that many results of Jonsson's fundamental paper [8] on congru-
ence distributivity can be reformulated and proved for ordered varieties, using 
quasiorders instead of congruences. To work with order-congruences is generally 
more difficult, although not always: for example, the authors succeeded in charac-
terizing order-congruence distributivity of prevarieties in [3] by Mal'cev-type con-
ditions, while for quasiorder distributivity there is no such result yet; there is only a 
criterion in terms of weak Mal'cev conditions (see below). 

5. Characterization of quasiorder-distributivity. Some examples. Now we intend 
to characterize the distributivity of quasiorders in a prevariety by a (weak) Mal'cev 
condition. This characterization will enable us to present some nontrivial examples, 
too. 

Theorem 5.1. Let X be a class of ordered algebras closed under I, S and P 
(i.e. a prevariety). Then the following two conditions are equivalent: 

(i) Cqu (91), the lattice of quasiorders of 91, is distributive for any member 91 
of 

(ii) For any even integer n S 2 there exists a positive multiple k of n/2 such that 
U(n, k) holds in <3f, where U(n, k) is a (strong) Mal'cev condition defined as follows 
((*„, :.., x„) is denoted by x and n/2 by m): 

4* 
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"There exist ((n+\)-ary and (n+2)-ary) terms 

Po(*), Pi 00, •••, pk(x), 

q}(t, x) for 1 & i, j S k, 

rlj(t, x) for 1 S i S / c , i odd, and O s j s f c - 1 , and 

s'j (/, x) for 1 s i, j S. k, i even, 

such that the following inequalities and identities hold: 

p0(x) = x0 , pk(x) = xn, 

Pi-i(x) = qi(x0, x), Pi(x) = q'k(x„, x) for l ^ i s fc, 

x) == qi+1(x0, x) /or 1 S i ^ f c , l S l < / c , 

Pi-i(x) = ri(*o> x), P;(x) = r i . ^ x ^ i , x) for i odd, 1 i =2 fc, 

r'(xaJ+1, x) =§ r{+1(*2J+2 , x) for i odd, l = i = fc, 0 S ; < m , O s / < f e - l , 

j=l(m), where + is understood modulo n so that 0 s 2 j + 2 < n , 

Pi-i(x) = si(x l5 x), pt(x) = s£(x„, x) /or i euen, 1 < i s /c, 

si(x2J, x) S s j + 1 ( x y + 1 , x) /or i euen, 1 < i s f c , 0 1 I < fc, j = /(m), 

w/iere + w understood modulo n so that 0 < 2 j + l S n . " 

P r o o f . Suppose (i) holds, n is an even positive integer, and consider the quasi-
orders a = 0 ( x o , ,r„), j?=0({(xo , *i), (xt, xs), ..., (x„_2, xB-i)}), y=0({(x 1 ,x 2 ) , 
(x3, Xi), ..., (x„-i, *»)}) o n the free algebra + freely generated by 

•••,*»}• Since (xo>*nKaA(0Vy), we have (x0, x„)£(af\P)\J(a/\y) as well. 
Therefore, x0=p0a/\Pp1aAyP2«A^P3^Ay•••Pk=xn holds for some multiple k of 
m and elements Pi=Pi{\) of g. Since (Pi-i, Pi)^a—0(xo, x„), by Proposition 
1.8 there are unary algebraic functions q\(t) on %, which can be considered as (M+2)-
ary terms q\(t, x) such that q\(x0,x)=pi-1(x), q'k(xn, x)=p f(x) and 
q\(x„, x)^q'l+1(x0, x) for 1 Both k and can be enlarged by repeating 
the last terms, whence they can be assumed to be equal. Now all the identities and 
inequalities involving some q\ hold for the generators of therefore they hold through-
out J f . The case of the rf and is a little bit more complicated from technical 
point of view, but can be handled similarly, while p0(x)=jc0 and pk(x)=x„ are 
evidently true in X . 

Conversely, let (ii) be satisfied. Assume 2l£X, a, /?, y€Cqu (91) and (a, fc)£ 
€aA(fiWf)\ then (a, fe)€(aAj5)V(aAv) has to be shown. From the assumption we 
obtain a sequence of the form a=a^axyazPa3y ...pan-xyan—b for some even n; 
moreover a0aatt. Let k be such a multiple of n/2 for which U(n, k) holds in J f . It 
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is sufficient to show that for p0(a0, ..., an)=p0(a) (notation!), />i(a), ...,pk(z) we 
have 

«0 = A>(a) a A/? ^ ( a ) a Ay p2( a) aA0 />3(a) ccAy ...pk{ a) = a„. 

Indeed, /Vi(a) = q[(a0, a)aq[(an, a) si q'2(a0, a)aq'2(a„, a.)^q'3(a0, a)a...si 
32 a)a^(a„, a) =pi(a) yields G?i-i(a), /»¡(a))^, for i odd />,_x(a) = 
= ro(ao, a ) ^ ( a i , a) S r[(a2, a)Pr[(a3, a) a)0r i

k_1(an-1, a) = />,(a) 
implies (pi-xi*), Pi(a))£l}, while (/>i_1(a), />;(a))6y for / even follows similarly. 

Before formulating a corollary to this theorem, two relevant remarks will be 
made. Firstly, the theorem is obviously applicable for any class J f of ordered alge-
bras, containing all free algebras ft^iX) for finite unordered X. Secondly, any uni-
versal algebra can be considered as a trivially ordered algebra. Thus the theorem 
also holds for certain classes (including varieties and prevarieties) of universal 
algebras. In this case Cqu (21) is the lattice of all compatible, reflexive and transitive 
binary relations of 91, and the inequalities in U(n, k) simply turn into identities. 

Coro l la ry 5.2. Let JT be a class as in Theorem 5.1, and let there exist a ternary 
term u(x, y, z) for which the identities u(x, x, y) = u(x, y, x) = u(y, x, x)—x hold 
throughout Jf" (i.e. u induces a majority function on the members of X ) . Then Cqu (91) 
is distributive for any 91 in j f . 

P roo f . It is sufficient to show that U(n, n) holds in X for any even n. Let us 
agree that all the terms p, q, r, s, h, g (with indices) contain at least the variables 
x0,xl3 ...,xn, but, for the sake of brevity, these common variables will not be in-
dicated. First we define p0, ...,p„ and h0(t), ...,h„(t) by induction: 

K(i) = t, p0 = h0(x0), 

= "(p.--1, xn, hi_1(t)), Pi = hi(Xi). 

The terms £i(0> •••> £»(0 a r e determined by 

i i ( 0 = K(t), g f+1(i) = u(gt(t), x„, ft;-i(*,)). 

For l^i^n set qi(t)=q2(t)=... =q'n_1(t)=Pi_1 (so in fact these terms do not 
depend on t) and q'n(t)=u(pi-1, gf(i)> ^¡-lfo))- For /odd, 1 let j=(i—1)/2, 

"4( f ) = ... = r } - i ( i ) = A - i . 

'•}(0 = "(Pi-1. *n> fti-iW), and r)+1(t) =... = r i_ x(i) = Pi. 

For i even, 1 set /=/ /2 , 

si(0 =•••= s}-i(0 = Pt-i, 

s}(i) = u(pi_1,xn, /ij-jCO), and s)+1(J) = . . . = s£(i) = 
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A trivial induction shows that hi(x„)=xa (O^/^n), gi(x„)=xn and gi(x0)=pi_1 

(l^iSn). Thus it is not difficult to check that the terms p, q, r, s (with the corre-
sponding indices) satisfy the identities and inequalities required in U(n, ri). 

We note that it is possible to state and prove an analogous general theorem which 
„translates" every lattice identity holding in all quasiorder-lattices of members in a 
prevariety, similarly as it was done in [3] for order-congruence lattices. This is 
straighforward enough, so we omit it. 

To conclude our paper, we present some examples. Since lattices are ordered 
algebras with their natural orderings and u(x,y, z)=(x [\y)\!(x [\z)\](y t\z) induces 
a majority function on any lattice, Cqu ( i f ) is distributive for any lattice =Sf. To give 
another example which is far from lattice orders, set SH=(A; u, S ) where A = 
— {a,b,c}, u is a ternary majority function such that u(x, y, z)=c provided 
{x, y, z}={a, b, c}, and a<c, are the only comparable pairs of distinct ele-
ments in (A, s ) . Then 91 is an ordered algebra, and any member of HSP(9l) is 
quasiorder distributive by corollary 5.2. 
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