
Acta Sei. Math. 46 (1983), 59—72 

¿"-unitary covers and varieties of inverse semigroups 

MARIO PETRICH and NORMAN R. REILLY* 

1. Introduction and summary 

is-unitary inverse semigroups have attracted considerable attention as a result 
of the remarkable work of M C A L I S T E R [5], [6] concerning their structure and proper-
ties. He proved, inter alia, that every inverse semigroup S has an is-unitary cover, 
in the sense that there exists an is-unitary inverse semigroup P and an idempotent 
separating homomorphism of P onto S. Various properties and constructions of is-
unitary covers were further established by M C A L I S T E R and REILLY [7]. On the other 
hand, the lattice of varieties of inverse semigroups as algebras with a binary and a 
unary operation has been the focus of extensive investigations by several researchers; 
we mention only KLEIMAN [ 3 ] , [ 4 ] . 

The purpose of this note is to establish some surprising relationships between the 
two areas of research discussed above, viz., is-unitary covers and varieties of inverse 
semigroups. The main points of our consideration are: (i) which varieties admit is-
unitary covers for their members, (ii) for a given variety of groups "U, which varieties 
of inverse semigroups V have is-unitary covers over in the sense that every member 
S of "T has an is-unitary cover P such that Pjad^U- The class $ of all is-unitary 
inverse semigroups plays an important role in our investigation. 

The content of the paper is briefly as follows. Some preliminary material is 
discussed in Section 2 in order to establish the notation and terminology. Several 
characterizations of varieties with ¿'-unitary covers are established in Section 3. This 
is followed, in Section 4, by a description of subhomomorphisms in terms of homo-
morphisms of inverse semigroups, a result needed in the next section. The principal 
result of the paper, proved in Section 5 along with some consequences, provides sev-
eral criteria for the existence of an ¿'-unitary cover of an inverse semigroup S over 
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a group variety All varieties of inverse semigroups having ¿'-unitary covers over a 
fixed group variety % are described in Section 6 in several ways. The relation v3 

defined on the lattice of varieties of inverse semigroups by: "ttvzY if aUC\g='V C\& 
is discussed briefly in Section 7. 

2. Preliminaries 

We will follow the notation and terminology of H O W I E [ 2 ] . For background con-
cerning inverse semigroups, we also refer the reader to this book. 

Let S be an inverse semigroup. Then S is E-unitary if it satisfies the implication 
xy=y=>x2 = x. The semilattice of idempotents of S will be denoted by Es, the least 
group congruence by a, the universal congruence by co. The closure of a nonempty 
set A of S will be denoted by Aco. An inverse semigroup P is an E-unitary cover of 
S if P is ¿-unitary and there is an idempotent separating homomorphism of P onto 
S", if P/(T=G then P is an E-unitary cover of S over G. 

Let Q be a congruence on S. The set 

ker Q = {s£S\sQe for some e£Es} 

is the kernel of Q, tr Q = g|£s is the trace of Q. The least congruence on S with the 
same trace as q will be denoted by gmin. For a full discussion of these concepts, see 
PETRICH [ 9 ] . The natural homomorphism S-*S/Q will be denoted by If <P: S-*T 
is a homomorphism, we will denote by ker q> the kernel of the congruence on S in-
duced by (p. 

For any nonempty set X, we will denote the free inverse semigroup on X by Ix 

and the free group on X by Gx. The variety of all inverse semigroups will be denoted 
by J , that of all groups by ^ and the lattice of all varieties of inverse semigroups by 
& { J ) . The variety generated by the semigroup S will be denoted by (S). 

For a countably infinite set X and any "f £ £ £ ( J ) , let Q("V") denote the fully 
invariant congruence on I x corresponding to "f. 

3. Varieties with ¿-unitary covers 

The principal result here gives several characterizations of the varieties of inverse 
semigroups which have ¿-unitary covers. These characterizations involve free objects, 
¿-unitary inverse semigroups and the kernel of the corresponding fully invariant con-
gruence on the free object. 

We start with a simple useful result. 
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L e m m a 3.1. Let Q be a congruence on an inverse semigroup S. Then S/Q is 
E-unitary if and only if ker Q is closed. 

P r o o f . Suppose that S/Q is ¿-unitary and let a£(ker Q)CO. Then ea£ker Q 
for some e£Es and thus eaQ(eaf which implies that aoa2 since S/Q is ¿-unitary. 
But then ker Q and thus ker Q is closed. 

Conversely, assume that ker Q is closed, and let xy ox. Then (x~lx)ygx~1x 
so that j£(ker 0)oj=ker g and thus y2gy. Hence S/Q is ¿-unitary. 

The following concept is basic for our considerations. 

D e f i n i t i o n 3.2. A variety •f of inverse semigroups has E-unitary covers if, 
for every S€ f , there is an ¿-unitary cover of S in "V. 

We can now establish the first highlight of the paper. 

T h e o r e m 3.3. The following conditions on a variety ~f of inverse semigroups 
are equivalent. 

(i) "V has E-unitary covers. 
(ii) The free objects in "V are E-unitary. 
(iii) V is generated by its E-unitary members. 
(iv) ker Qi'f) is closed. 

P r o o f , (i) implies (ii). Let F be a "V-free inverse semigroup and S be an ¿-uni-
tary cover for F in "T. There is an (idempotent separating) epimorphism CP: S—F. 
Let XQ F be a set of "V-free generators of F, and let T be a cross section of the con-
gruence on S induced by <p. Define a bijection i¡J:X-*T by x\p = t if t£T and 
tcp—x. Then \j/ extends uniquely to a homomorphism ij/ of F into S. For any x£X, 
we have xi¡/(p=x so that \[/(p is an endomorphism on F which restricts to the identity 
on X. Since X is a set of •F -free generators of F it follows that t¡/cp is the identity map 
on F. But then i¡/ is one-to-one and thus a monomorphism of F into S. Since S is 
¿-unitary, so also is FIJ/. Since i¡/ is a monomorphism, it follows that F is ¿-unitary. 

(ii) implies (iii) trivially. 
(iii) implies (i). Let S(i V. By the general theory of varieties and the hypothesis, 

there exist ¿-unitary inverse semigroups Ta in Y , an inverse semigroup T which is a 
subdirect product of r a ' s and an epimorphism (p: T-+S. Let Q be the congruence 
on T induced by <p. Letting gmin be the least congruence on T with the same trace as Q, 
we obtain the following diagram of epimorphisms: 

T ^ S 

+ 
T/e^—^—T/Q 
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where T: tQmin-»tg (t£T), and Tj/ is an isomorphism. Since g and gm-m have 
the same trace, T is one-to-one on idempotents, that is to say, it is idempotent 
separating. In view of ([10], Theorem 4.2), a gmia b if and only if ae=be and 
e Q a~*a Q b^b for some e£Es. Thus a¡5 emin. This together with the fact that 
T is ¿-unitary implies 

ker gm!n Q ker a = ET 

and thus ker Qm-m=ET=ETa>. This implies by Lemma 3.1 that T/emia is ¿-unitary. 
Since T/Q^ay, we have proved that S has an ¿-unitary cover in "V. 

The equivalence of items (ii) and (iv) follows by Lemma 3.1. 

Remark . Part of Theorem 3.3 has been obtained independently by 
F . P A S T U N [ 8 ] . 

4. Subhomomorphisms 

The results proved in this section contain a description of subhomomorphisms 
in terms of homomorphisms and will be used in the construction of subdirect products 
which in turn will be needed in a construction of ¿-unitary covers. 

We start with a concept which will prove quite useful. 

De f in i t i on 4.1. Let S and T be inverse semigroups. Then a mapping 
(p: S—2T is a subhomomorphism of S into T if, for all s, t£S, 

(i) sq> * 0; 

(ii) (scp) (tip) g (si) <p; 

(iii) s~1q> = (s<p)~\ 

where, for any subset A of T, A~x = {a~i\a^A). 
From (ii) and (iii) it follows that S<p= U {s<p: is an inverse subsemi-

group of T and cp is said to be surjective, if S(p=T. 
If T is a group, then the subhomomorphism <p above is unitary if for any 

s£S, l£s(p implies s£Es. 

The following result will be needed. 

P ropos i t i on 4.2. [7] Let S and T be inverse semigroups and let <p be a 
(surjective) subhomomorphism of S into T. Then 

II(S, T, <p) = {(s, t)£SX T\t£s(p} 

is an inverse semigroup (which is a subdirect product of S and T). 
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Conversely, suppose that V is an inverse semigroup which is a subdirect product 
of S and T and let ip be the induced monomorphism of V into SXT. Then 
q> defined by 

scp = {/er|(s, o e m 

is a surjective subhomomorphism of S into T. Furthermore, Vij/—n(S,T,<p). 
Theorem 4.3. Let R, S and T be inverse semigroups. Let a: R—S bean 

epimorphism and fi:R-*T a homomorphism. Then (p =a-1/? is a subhomomorphism 
of S into T and every such subhomomorphism is obtained in this way. I f , in addition, 
T is a group, then <p is unitary if and only if ker pQ ker a. 

Proof , (i) It is clear that scp^ft (s£S), since a is an epimorphism. 
(ii) Let x£s(p, ydtcp. Then there exist x, y'dR with x'a=s, x'P=x, y'ot = t, 

y'P=y. Hence (x'y')a.—st while (x 'y ' )P=xy and xy£(st)(p. Therefore (s(p)(t<p)Q 
Q(st)q>. 

(iii) With x, x' as in (ii), (x') -1a=.y_1, Hence 
(scp^Qs^cp and conversely. Thus <¡9 is a subhomomorphism. 

Conversely, if <p is a subhomomorphism of S into T, let R=II(S, T, cp). 
Let a.:(s,t)—s and P:(s,t)—t be the projections of R onto S and onto T, 
respectively. Now, (i, t)£R if and only if t£scp while if and only if 
(s,t)£R which gives cp=a.~1p. 

Let T be a group, cp be unitary and r£ker p. Then rp=1 and 1 £(ra)<p. 
Since <p is unitary, ra£Es, r£ker a and so k e r k e r a. Conversely, if this 
inclusion holds and l£sq>, then for some r£R, ra=s and rp=1. Hence r£ker 
g k e r a so that s2=s and <p is unitary. 

The usefulness of Theorem 4.3 lies in the fact that by choosing R appropriately, 
for example to be a free inverse semigroup, it is possible to generate subhomo-
morphisms. This technique will be used in the next section. 

In fact, in order to obtain all subhomomorphisms it suffices to let R range 
over all free inverse semigroups, as we now show. 

P ropos i t i on 4.4. Let 9: S-+T be a subhomomorphism of the inverse semi-
group S into the inverse semigroup T. Then there exist a free inverse semigroup F, 
an epimorphism a.: F-+S, and a homomorphism p.F—T with 0 = a~1P 

Proof . By Theorem 4.3, there exist an inverse semigroup R, an epimorphism 
y:R—S and a homomorphism 5: R—T with d=y~15. Let IR be the free inverse 
semigroup on the set R and let n :IR—R be the homomorphism defined by the 
identity mapping on the set of generators R. Let a=ity, P=n8 and let x£S. 
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If y£xd, then x=zy, y=zd, for some z£R and so, considering z as a generator 
of IR, we have x=zny=za, y=zn5=zfi and so y€xa-1/?. Conversely, if ydxa^fl, 
then x—za=(zn)y, y=zf}=(zn)d, for some z£lR, and so y£xy~13—0. Therefore 
e=<x-'ip. 

5. ¿-unitary covers over a group variety 

The question that we now wish to consider is the following: for a given inverse 
semigroup S, or variety of inverse semigroups "V, and a given group variety 
when will S or every member of "V possess an ¿-unitary cover over some member 
of <U1 

For the purposes of the following discussion, we consider inverse semigroups 
and groups as algebras in the variety of unary semigroups, that is as algebras with 
a binary operation ( f x , y)-~xy) and unary operation x - 1 ) . 

N o t a t i o n 5.1. Let X be a countably infinite set. We denote the free unary 
semigroup on X by Ux. 

Any law in a unary semigroup is of the form u = v, for some u,v£Ux. A con-
struction for Ux was recently given by CLIFFORD [1] . 

For each set X, there exist fully invariant congruences x, X on Ux such that 
Ix and Gx are isomorphic to Uxjx and Uxjk, respectively, since Ix and Gx 

are free objects in their respective varieties. We will identify Ix and Gx with 
Ux\x and Ux\X, respectively. 

N o t a t i o n 5.2. Let X be any countably infinite set. For any variety of inverse 
semigroups "V, let Kr = ker g(Y) and for any variety of groups let Nv 

denote the corresponding fully invariant subgroup of Gx. 

Def in i t i on 5.3. Let f be a variety of groups, S an inverse semigroup 
and Y a variety of inverse semigroups. We will say that S (respectively, V ) 
has E-uniiary covers over if (for every SdY) there is a group for which 
there is an ¿-unitary cover of S over G. 

It follows that "V has ¿-unitary covers if and only if it has ¿-unitary covers 
over "VCYS. 

Recall that an inverse monoid S with a group of units G is called factorizable 
if for each s£S, there exists g£G such that s^g. We will need the following 
results. 

Theorem 5.4. [7] Let G be a group and let S be an inverse semigroup. Let 
F be a factorizable inverse monoid with group of units G which contains S as an 
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inverse subsemigroup. Suppose that, for each g£G, there exists s£S such that 
s^g. Then 

{ ( s , g ) € S x G M g} 

is an E-unitary cover of S over G. Conversely, each E-unitary cover is isomorphic 
to a cover obtained in this way. 

Propos i t i on 5.5. [7] Let S be an inverse semigroup and let G be a group. 
Suppose that <p is a surjective unitary subhomomorphism of S into G. Then 
fl(S, G, (p) is an E-unitary cover of S over G. Conversely, let P be an E-unitary 
cover of S over G with associated homomorphisms a: P—S, fS: P—G and let 
ij/:P—SxG be the induced monomorphism. Then <p defined by 

*<P = g)ePip} 

is a surjective unitary subhomomorphism of S into G and P=I1(S, G, cp). 

We are now ready for one of the main results of the paper. 

Theorem 5.6. Let S be an inverse semigroup, °U be a variety of groups and 
X be a countably infinite set. The following are equivalent. 

(i) S has an E-unitary cover over °U. 
(ii) If u2=u is a law in then it is also a law in S. 

(iii) For all homomorphisms a: IX~*S, AT^Ckera. 

Proof , (i) implies (ii). Let and P be an ¿-unitary cover of S over G. 
By Theorem 5.4, P is isomorphic to an inverse subsemigroup of a factorizable 
inverse monoid F with group of units G. Let u2=u be a law in say u= 
=u(xx, ..., x„). Let ¿i, ..., s„dS. Since F is factorizable, there exist •••, g„dG, 
with s^gi (i = 1,..., n). Then 

"(si> •••> «J ^ "(gi> g„) 

where u(glt ..., gn) is the identity of G, since and u2=u is a law in 
Hence u(slt ...,s„) is an idempotent and u2=u is a law in S. 

(ii) implies (iii). Let u£Ux be such that ux£Ky. Then uk£Nm so that 
u2=u is a law in % and so, by assumption, also in S. Hence, for any homomor-
phism f}:Ux—S, we have u2j?=ujS. In particular, for any a: 7X—S, = 
=u(x$a) or (u2x, ux)dctox~1. Hence kera. 

(iii) implies (i). Let a : I s—S be the homomorphism defined on the generators 
of Is by s—s, let G be the free group in % on the set of generators S and let 
ft: IS-*G be the natural homomorphism. By Theorem 4.3, 9=<x~1f} is a subhomo-
morphism of S into G. Since p is surjective so also is 9. 

We next show that ker p c ker a. The following diagram illustrates the proof. 

5 
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<A> 

Since it will help to clarify the discussion, we will denote by S the underlying 
set of S. 

Let a£ker Then there exists a finite subset A = {x±, ..., x„} of S such that 
a is contained in the inverse subsemigroup (A) of Js generated by A. Let us 
identify A with a subset of X and extend a|A arbitrarily to a mapping a.': X-+S. 
Let a": I X -~S be the unique extension of a' to a homomorphism of Ix into 5. 
Then 

Let Hx be the relatively free group in % on the set X and let /?': X-+Hx 

embed X identically. Let /?": lx—Hx be the unique extension of /?' to a homo-
morphism of Ix into Hx. Then ker fj"=K%. Furthermore, since P'\A=P\A 
we have P"\(Ay=P\(A)- Since agker/?, we have aGker Hence, by (iii), 

ker a" and so ker a. Thus ker/Sgker a. 
Hence by Theorem 4.3, 8 is a unitary subhomomorphism and by Proposition 

5.5, there exists an ¿-unitary cover of S over G. 

Theorem 5.6 has an obvious analogue for any variety of inverse semigroups "V, 
obtained by letting S range over "V. 

Coro l la ry 5.7. Let Y be a variety of inverse semigroups and % be a variety 
of groups. The following are equivalent. 

(i) "V has E-unitary covers over 
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(ii) If u2=u is a law in °U, then it is also a law in " f . 
(iii) Km<gK r. 

Coro l l a ry 5.8. Let S be an inverse semigroup and be a group variety. 
If S has an E-unitary cover over then (S) has E-unitary covers over ^U. 

Proof . Let u2=u be a law in aU. By Theorem 5.6 (ii), u2=u is also a law 
in S. But then u2=u is also a law in (S), and the desired conclusion follows from 
Corollary 5.7. 

As an application of the above theory, we now produce a variety of inverse 
semigroups which has ¿-unitary covers over almost all varieties of groups, but 
which does not itself have ¿-unitary covers. 

P ropos i t i on 5.9 . Let B2 denote the 5-element Brandt semigroup with 3 idem-
potents. Then (B2) has E-unitary covers over any nontrivial group variety. 

Proof . Let /x denote the free inverse semigroup on one generator. It follows 
from [9] that, for each integer n > 1, there is a congruence Q„ on such that 
Pn=hlQn is an ideal extension of the cyclic group Z„ of order n by B2 which is 
¿-unitary. Furthermore, the projection of P„ onto B2 is idempotent separating, 
since the ideal is a group. Hence each P„ is an ¿-unitary cover for B2. Now 

(P„) is simply the variety sin of abelian groups of exponent n. Thus B2 and 
so, by Corollary 5.8, (B2) has ¿-unitary covers over each variety sin («=> 1), of 
abelian groups of exponent n, and so over every nontrivial variety of groups. 

We shall now see how the equivalence of (iv) and (i) in Theorem 3.3 can be used 
to establish that varieties have ¿-unitary covers. 

In the various varieties generated by groups, semilattices and Brandt 
semigroups constitute an ideal isomorphic to the product of JSP(^) and a three 
element chain. (See KLEIMAN [ 3 ] . ) Following [ 9 ] , we will call any semigroup in any 
of these varieties a strict inverse semigroup. Each variety of strict inverse semigroups 
which is not a variety of groups and semilattices of groups is generated by a single 
Brandt semigroup. Moreover, if TT = (B) where B = JlQ (I, G, I; J) , then 
"V=(G)W(B2) where (G) is now a variety of groups. Similarly, any variety of 
semilattices of groups which is not a variety of groups is of the form where 
Ql is a variety of groups and y is the variety of semilattices. For more details 
on this subject, see KLEIMAN [ 3 ] : 

Propos i t i on 5.10. If "V is a variety of strict inverse semigroups containing 
nontrivial groups, then "V has E-unitary covers. 

Proof . First let "V=aU\](B^), where is a nontrivial variety of groups 
and let SZY. By the general theory of varieties, there exist T,A,B where A^fy, 

5* 
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BZ(B2) and TQAXB is a subdirect product of A and B together with an epi-
morphism <p of T onto S. Since % is nontrivial, by Proposition 5.9 there exists 
an ¿"-unitary cover P, say, of B over 01. Then Pd^\j(B2)=-r by ([7], Corollary 
1.8). Let a : P—B be an idempotent separating epimorphism and let T' = {(a, p)\ 
(a, pa)€T}<^ AXP. Since A is a. group and P is ¿-unitary, AXP is ¿-unitary. 
Hence T' is also ¿-unitary. Moreover, T'SjV and (a,p) —(a, pa)<p is an epi-
morphism of T' onto S. By Theorem 3.3 (iv), "V has ¿-unitary covers (overM). 
A similar argument will show that any variety of semilattices of groups has ¿-unitary 
covers and clearly varieties of groups do also. 

R e m a r k 5.11. The arguments of Proposition 5.10 would also apply to any 
variety of the form <%\j(B\), where "U is a non-trivial variety of groups. 

6. The Malcev product 

For any group variety we will now characterize the class of all inverse semi-
groups "V. which have ¿-unitary covers over tfl. It will turn out that the variety 
generated by the Malcev product Sf otfl, where denotes the variety of semi-
lattices, is the greatest variety of inverse semigroups having ¿-unitary covers over °ll. 
The variety generated by ¿Pofy. will be characterized in several ways. 

N o t a t i o n 6.1. We will denote by if the variety of all semilattices. For any 
variety of groups 6U, 

£foQl = {PdJ\P is ¿-unitary and P/u^} 

is the Malcev product of Sf and For any family of laws ua=va, ad A, we write 
(ux=vJadA) for the variety of inverse semigroups determined by these laws. 

Another highlight of the paper can now be established. 

T h e o r e m 6.2. The following statements are valid for any group variety fy. 
(i) (Sfo%)=(u2 = u\u2 is a law in 

(ii) (SPo<%)={S£J\S has an E-unitary cover over <%}. 
(iii) (f/'o6ll) is the largest variety of inverse semigroups with E-unitary covers 

over 
(iv) fy is the smallest variety of groups over which (Sf has E-unitary 

covers. 

Proo f , (i) Let '"T={Sf>o^i) and i(r-{u2=u\u2=u is a law in °U). First let 
SZSfo<%. and let » 2 =w.be a law in By the definition of tfo<?/, we have 
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SI<t£<% and thus ui=u is a law in Sja. Hence, for any substitution u of u in S, 
it follows that u2<ru, whence u£ker a=Es. Thus u2=u is a law in S. Consequently, 

and thus SPoWQiV. But then also Y=(SPoW)<gir. 
Conversely, let S^iV. Then by Theorem 5.6, S has an ¿-unitary cover 

P over G for some It follows that P^tfoqi and hence S£(SPo<%)=Y. 
Therefore "WQY and equality prevails. 

(ii) This is a direct consequence of part (i) and Theorem 5.6. 
(iii) This is an obvious consequence of part (ii). 
(iv) Let Y be a variety of groups over which (¿fofy) has ¿-unitary covers, 

and let G£°U. Then G^{9'o<}ll) and hence has an ¿-unitary cover P over Y. 
Now, P being an ¿-unitary cover of a group must itself be a group. Since G is 
a homomorphic image of P, we obtain that G£Y. Consequently as 
required. 

An interesting property of the varieties Y between °U and is provided 
by the next result. 

P ropos i t i on 6.3. For any variety of groups aU and any variety Y of inverse 
semigroups, the following holds: 

ker Q = ker Q(Y) YQ {¿TOif). 

Proof . First assume that ker ¿>(<20=ker Q(Y). This means that w3=w 
is a law in if and only if w2=w is a law in Y. It follows from Theorem 6.2 (i) 
that YQ{SPo%). Since is a group variety, tr QC%)=CO and thus t r g ( ^ ) 5 
¡2tr Q(Y). This together with the hypothesis that ker g(ty)=ker g(Y) implies 
that and thus <%QY. 

Conversely, assume that "UQYQ{i/'o6U). The first inclusion implies 
^ Q ( Y ) and thus ker g(<^)5ker g(Y). The second inclusion implies ker g(W)Q 
cke r g(Y) by Theorem 6.2 (i), as above. Therefore ker g(<%)=ker g(Y). 

7. An equivalence relation on .£?(</) 

We introduce a relation on which relates any two varieties if they have 
the same ¿-unitary members and consider some associated properties. 

In order to put the relation we are introducing into the proper perspective, 
we include two known relations vx and v2 in our scheme. For any Y£J§?(./), let 

°U\xY-oallC\st = YC\sJ, oilv^Y-oqiVW = YV\e§, f v , f « <%C\£ = Yf\S. 
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Here si, eS, and & denote the classes of all antigroups (fundamental inverse semi-
groups), groups and ¿-unitary inverse semigroups. The relations Vj and v2 were 
introduced by KLEIMAN [3], who showed that they are congruences. He defined vx 

as follows: and then proved the above equivalence. The 
relation v3 is new and the subject of our study in this section. 

We can say that "llv^f precisely when <2f and f have the same ¿-unitary 
members. 

P r o p o s i t i o n 7.1. v1Dv2Qv3gv2 . 

Proof . Let ^(vxPIv^tT and Since S is ¿-unitary, j f f l ( j = £ , 
the equality relation. Hence pC\a=s and thus 5 is a subdirect product of S/p 
and Sy<7. Here S/neWHs/ and S/o£<%C)<g. Since ^v^V, we have Sln^TCls/, 
and since <%v2f, we get But then S d { " f C \ f l Q "T, which 
proves that a t t D £ ' = i r r \ £ . By symmetry, we conclude that This proves that 
v1Dv2gv3 . If ° U C \ t h e n intersecting by we get aUV\<S="f^\'S. 
Hence VJQVJ. 

Remark 7.2. It should be noted that v3 is not a congruence on S£(J). If 
if=(B2),if'=(B\), then i f v 3 i f . However, (if\l<8)C\g c ( i T ' V ^ ) n 8. 

Proposition 5.9 shows that, in general, for a given variety of inverse semigroups 
- f , there is no minimum variety 6U of groups such that f has ¿-unitary covers 
over °U. This may be contrasted with the next result. 

P ropos i t i on 7.3. The following statements are true for any variety of inverse 
semigroups f . 

(i) ( f f l i f ) is the smallest member of the vs-class containing 1V. 
(ii) { f { M ) is the largest variety contained in having E-unitary covers. 

(iii) ("fC\S)={S£J\S has an E-unitary cover in - f ) . 

Proof , (i) First note that 

< f n * > n * g r e u s g < * n < f > n * 

which shows that (irC\S')v3r. Now let ifv^r. Then ifC\$="TC\S which 
implies that {"f{\g) = ( i f f \ g ) < ^ i f , as required. 

(ii) Since ( f n<?> is generated by ¿-unitary inverse semigroups, it has ¿-unitary 
covers by Theorem 3.3. Let if be a variety of inverse semigroups contained in 
"f and having ¿-unitary covers. Again by Theorem 3.3, we get i f = ( i f f l £ ) . 
Since also (if ( f f ) S ) , we conclude that i f ^ ^ f V s S ) , as required. 

(iii) We have already observed that every S in ( f f \ S ) has an ¿-unitary 
cover in < ) and thus in " f . Conversely, let S have an ¿-unitary cover 
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P in f . Hence P£Y f]SQ(Y f ) i ) and S is a homomorphic image of P so 
that S e ( Y n S ) . 

It can be verified easily that any group variety "ll alone constitutes a v3-class. 
If Y is a variety of inverse semigroups contained in <x"=x"+1), then no S in 
Y which is not a semilattice is ¿-unitary since a"=a"a and a2^a for any non-
idempotent element a in S. In view of this and the results of KLEIMAN [3 ] , we 
conclude that the join of all varieties v3-equivalent to Sf is equal to J . 

Some additional information about ( S f o i s provided by the following 
statement. 

P r o p o s i t i o n 7.4. For any group variety 1i, we have 

Proof . Let and let u2=u be a law in By Theorem 5.6, 
u2—u is also a law in G, and thus since every law in except xx~1=yy~\ 
can be written in the form u2=u. Consequently, {S/'o<1ll)C\eS'Q.%\ the opposite 
inclusion is obvious. 

Let Then S l a ^ o ^ l ) ^ = by the first formula. Since 
S is ¿-unitary, we obtain that S^Sfo^U. Therefore ( ^ o Q Sfo<%\ the 
opposite inclusion is trivial. 

In connection with the congruences and v2, and Theorem 3.3, the next 
proposition seems to be of some interest. For it, we need a known result. 

L e m m a 7.5. [3] For any variety of inverse semigroups Y , the minimum element 
of Y(vxflv2) is ( f f l ^ ) . 

P r o p o s i t i o n 7.6. Let Y be a variety of inverse semigroups. Consider the 
following conditions on Y. 

(i)—(iv) The conditions of Theorem 3.3. 
(v) For every S£Y, there exists G(zYfl^, an inverse semigroup T which 

is a subdirect product of S/fi and G, and an idempotent separating epimorphism 
(p: T-*S. 

(vi) Y is the minimum element of its vx fl v2-class. 
Then (i) implies (v) and (v) implies (vi). 

P roof , (i) implies (v). Let S, TdY where T is an ¿-unitary cover of S. 
Then T is a subdirect product of T/fi and Tja since fiC\<T—e. Since T is an 
¿-unitary cover of S it follows that T/fi^S/p, so that T is a subdirect product 
of S/n and S/a, where the latter is in Y 



72 Mario Petrich and Norman R. Reilly: E-unitary covers and varieties of inverse semigroups 

(v) implies (vi). Let the notation be as in part (v). Then S£(S/nXG)Ç= 
g < y r w > v ( m y ) which proves that Y V\<S)\ the opposite 
inclusion is trivial. By Lemma 7.5, we have that Y is the minimum element of 
its vx fl v2-class. 

The first implication in the above proposition cannot be reversed. For example, 
the variety V = ( x 3 = x 2 ) of inverse semigroups satisfies part (v) but not part (i). 
We have no counterexample for the converse of the second implication. 

References 

[1] A. H. CLIFFORD, The free completely regular semigroup on a set, J. Algebra, 59 (1979), 434—451. 
[2] J. M. HOWIE, An introduction to semigroup theory, Academic Press (London, 1976). 
[3] E. I. KLEIMAN, Some properties of the lattice of varieties of inverse semigroups, Ural. Gos. 

Univ. Mat. Zap., 10 (1977), no. 3, Issled. po Sovremen. Algebre, 56—72; correction: 
ibid. 12 (1979), 207. (Russian) 

[4] E. I. KLEIMAN, On basis of identities of Brandt semigroups, Semigroup Forum, 13 (1977), 209— 
218. 

[5] D. B. MCALISTER, Groups, semilattices and inverse semigroups, Trans. Amer. Math. Soc., 
192 (1974), 227—244. 

[6] D. B. MCALISTER, Groups, semilattices and inverse semigroups. II, Trans. Amer. Math. Soc., 
196 (1974), 351—370. 

[7] D. B. MCALISTER and N. R. REILLY, E-unitary covers for inverse semigroups, Pacific J. Math., 
68 (1977), 161—174. 

[8] F. PASTIJN, Inverse semigroup varieties generated by E-unitary inverse semigroups, Semigroup 
Forum, 24 (1982), 87—88. 

[9] M. PETRICH, Inverse semigroups (book manuscript). 
[10] N. R. REILLY and H. E. SCHEIBLICH, Congruences on regular semigroups, Pacific J. Math., 23 

(1967) , 3 4 9 — 3 6 0 . 

SIMON FRASER UNIVERSITY 
BURNABY, BRITISH COLUMBIA, CANADA 


