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Disjoint sublattices of lattices 

M. E. ADAMS and J. SICHLER 

1. Introduction 

M. Sekanina asked whether there exist lattices A and B such that A contains 
an arbitrarily large finite number of pairwise disjoint sublattices isomorphic to 
B but does not contain infinitely many pairwise disjoint sublattices isomorphic 
to B. Independently, I. K O R E C [2] and V. K O U B E K [3] have shown that such lattices 
do indeed exist. In fact, Koubek has shown that both A and B may be chosen 
to be distributive. 

The aim of the present paper is to strengthen Koubek's result by showing that 
the distributive lattices A and B may be chosen to be totally ordered sets. Actually 
more will be shown. The principal result will be the following: 

Theorem. There exist totally ordered sets A and Bx, for a<22i*°, such that 
(i) \A\ —2^, (ii) Bx^Bp if and only if a=p, and (iii) if a<22t<0 then, for n<a>, 
A contains n disjoint copies of Ba, but it does not contain infinitely many such copies. 

That A is uncountable is no coincidence. A routine proof, using Hausdorff's 
classification of the countable order types, shows that if A is a countable totally 
ordered set that contains an arbitrarily large number of finite disjoint copies of 
a totally ordered set B then A contains infinitely many disjoint copies of B. 
(We shall not include the details.) 
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2. The construction 

The construction of the totally ordered set A involves a new variation of 
a technique first introduced by B . D U S H N I K and E . W . MILLER [1] . 

Let A denote the real line [0, 1) and t\ its rational members. The Dedekind 
completion of a totally ordered set C will be given by C Observe that for two 
totally ordered sets C and D any order preserving injection of C into D can be 
extended to an order preserving injection of C + into D+. Since a monotone 
function on A has at most countably many discontinuities, it is readily seen that 
there are 2S° order preserving injections of A into itself. With the exception of 
the identity function, let G = be a list of all the order preserving 
injections of A into itself. 

We now define a distinguished countable subset of G. For lsi'<ct> and 
1 Sk-^il define 

I* = [(*-l)/(i!), fc/(i!)); 

that is, for each /, {Iik: 1 s&^z!} is a system of pairwise disjoint intervals of length 
l/(/!) covering A. If l^j^i+l, define an order preserving injection ftJ: A—A by 

fuix) = x/(i + 1 ) + ( ( k — 1 ) i + 0 — l ) ) / ( i + 1 ! ) 

for xaik and k = l, ..., i\. Observe that / y ( / i / t )=[(A:- l ) /0 ' ! )+0 ' - l ) /0 '+l ! ) , 
(k-l)/(il)+j/(i+ll))=JiJkQIik for every j = l, ..., i+l. The function fu is 
said to be of type i. 

By way of example, it follows that there are exactly two functions of type one: 

fu is an order preserving bijection of [0, 1) to [0, 1/2) given by / n ( x ) = y x ; 

/ i 2 ( x ) = y x + y is an order preserving bijection of [0, 1) to [1/2, 1). There are 

three functions of type two: f21 is the order preserving bijection of [0, 1) to 

K)u y , j j defined by / 2 i ( x ) = y x, for 0 ; § x < y , and / a ( x ) = j x + y for 

- J - S x < l ; / 2 2 is the order preserving bijection from [0,1) to [—, —) U [—, —) 
2 [6 3 J [ 3 6 J 

given by, for / 2 2(x)=—x+— and, for — 1, /22(x)=-^-x+-^-; finally, 
2 3 6 2 3 2 

/2 3 is the order preserving bijection from [0,1) to | y , y j U l | such that 

/ 2 s ( * ) = y * + y , for 0 s x < y , and / 2 3 ( x ) = y X + y for y ? = x < l . 

Let F = {ftJ\i^i^a> and l;§/=5i + l}; for x£A, denote F(X)={/(X)1/IEF}; 
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and, for XQX, Jet F ( Z ) = U ( f (*): x£X). Note that, for every f£F, x is rational 
if and only if f(x) is rational. Since F is countable, we may conclude the following: 

Lemma 1. |{x£l|x€F(x)}| = K0. 

We shall also need the following lemma. 

Lemma 2. For X, YQX, if 1*1=2*° and |F |<2S° then there exists xdX 
such that F(x)C\Y 

Proof . Suppose that for every x£X there exists an / 6 F with / (x)€T. For 
y€Y, let Xy={xeXly€F(x)}. Thus, XQ\J(Xy: y£Y). Since \X\=2*° and 
|y|-=28», it follows that Xy is uncountable for some y£Y. However, F is 
countable. Hence, there are two distinct elements x of Xy such that f(x) = y 
for the same /€F . Since each / € F is one-to-one, this is a contradiction. The proof 
is complete. 

Some further notation is necessary. For g£G, define gF={x^X| g(x)$F(x)}. 
Then set GF = {g€G||gf|<2!<»}. Clearly, FQGP follows from fF=& for every 
/€ F ; it is also easy to see that the inclusion is proper. 

We are now ready to define the totally ordered sets A and Bx for a<2 i t°. 
As will transpire, the totally ordered set A will be a subset of X that contains rj; 
the definition will be given by transfinite induction. For /?<28», sets AP,CP, 
D^X will be defined; subsequently, A will be the set X\\J(Ap: and, 
for a<22"0, (J(Cy jS<2s»). Intuitively, the mappings 
from F will be used to exhibit arbitrarily many finite disjoint copies of Ba in A 
and the construction will ensure that no g$GF can be used to provide an order 
preserving injection of Bx into A. 

Let Ao = 0, A'0=t], C0 = t], Co = 0, and D„=0. By transfinite induction we will 
define, for A„, A'p, C„, C'p, DfiQX such that (i) \AP\, \A'f\, \Cf\,\C'p\, \D„\<2\ 
(ii) for AyQA„, A;QA;, CyQCfi, c ; g c ; , and D^Dp, ( i i i ) ^ n 4 = 0 , 
c „ n c ; = 0 , and ( c ^ u c ; ) 0 ^ = 0 and (iv) F(Cp) Q A'p and F(Dp)QA'p. (Note 
that these conditions are satisfied for P—0.) Suppose that, for Ay,A'y, 
Cy,C'y, Dy are defined and satisfy (i), (ii), (iii), and (iv). 

Since X is not the identity and is order preserving, there are 2"° elements 
X such that x^gp(x). Thus, because gp is injective, the set of all elements 

*<EA such that x*g„(x), y^P)U{J(Dy: and £,(*)<£ U(Cy: y</5)U 
U1J(D y:y<P) has cardinality 2X°. By Lemma 2, choose such an x£X for which 
F ( x ) n L M : y < / * ) = 0 - Let C; = { ^ ) } U U ( C ; : y < / i ) . 

By Lemma 2, there exists U U(CA: X<P)[JC'p U (J(£»y: y^P) such 
that F ( j ) n U ( A : Choose such a y£X. Let D , , = W U U ( ^ : y < j ! ) . 

There are now two cases to consider. 
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First, suppose gp£GF. Let Afi = \J(Ay: y^p), A'fi=F(x)UF(y)U\J(A'y: 
and C0={x}U\J(Cy: y<P). Clearly (i) and (ii) are satisfied. By the choice of 
x€A, C p n C p = 0 and, by the choice of x, AfiC]A'p=9 and (CpUC'fi)DDfi=9; 
thus, (iii) holds. Obviously, by definition, (iv) is also valid. 

Second, suppose gfi$GF. Thus, =2**°. Thus there are 2s» elements 
z£(gfi)F such that z$C'fiUI>fi and, since gp is an injection, gfi(z)$ F(;t)UF(j>)U 
UU(A' y:y<P). By Lemma 2, we may choose the element z such that, in addition, 
F ( Z ) n U ( ^ : y < / ? ) = 0 . Let ^ = W z ) } U U ( ^ : y < / i ) , A;=F(x)UF(y)(JF(z)U 
UU(A'y:y-=P), and C,={x}U{z}UU(C7:y<jS). Clearly, (i) and (ii) are valid. 
The choice of z£A is such that ge(z)^F{z)\ thus, since (F(x) U F(y) U F(z)) fl 
n U M y : it follows that Aff)A'p=&. By choice, Cpf\C'fi=9. As in the 
first case C'eC\Dp=d and, by inspection, CeC\Dp=Q; thus (iii) also holds. Once 
more it is clear that (iv) is valid. 

As indicated earlier, we set y 4 = A \ U ( ^ : £<2*°), A'=[J(A'p: j?<2N°), 
C={J(Cfi: £<2X"), D=\J(D„\ j?<2*°), and B=CUD. It follows, by (iii), that 
A'QA. However, by (iv), F(B)QA'QA. Thus f\B is an order preserving injection 
from B into A for each /£F . By (ii), |D|=2*°. Let (Sa: a<22S°) be an indexing 
of the power set of D, let Bx=CUSa for a<2z\ Since Ba<gB, the mapping 
f\Bx is an order preserving injection of Bx into A for <x<22S° and / €F . 

3. Proof of the theorem 

We first show that, for distinct a, p<2**0, Bx^B f i . If a ^ p , then S a ^ S p . 
Suppose, with no loss of generality, that there exists s£Sx\Sp. If Sxs=Sp then 
there is an order preserving injection g:Bx—Bp. In which case, g extends to an 
order preserving injection g+:B+-~Since rjQB„,BfiQX, it follows that 
g+:A—A. By (iii), Cn£>=0; thus, Consequently, g + is not the identity 
function and, hence, g+£G. Whence, for some 7<2S°, g+=gy. However, for 
gy, there is x£A for which x£C and gy(x)£C'. By (iii), C n C ' = 0 and Z)nC'=0. 
Since CQBX, BpQCUD, we conclude that x£Bx and gy(x)$Bfi. However, 
gy is an extension of g: Bx—Bf; that is to say, gy(x) = g(x)dBp. By contradiction, 
we conclude that there is no order preserving injection g: BX-*B0. We have shown 
the following: 

Lemma 3. For a, ^<22'to, Bx^Bf if and only if a=p. 

For the interested reader, we remark that, in the construction, a more judicious 
choice of subsets of D yields the following stronger result: for distinct a, 
Ba is not a sublattice of Bf and Bf is not a sublattice of Ba. 
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For a<22i<0, we have already observed that, for l s / < c o and 1 ^ j = i + 1 , 
fij\ Bx is an order preserving injection from Bx into A. We now show that, for 
n-cco, A contains n disjoint copies of Ba. As stated previously, for 1 
and fy: Iik-~J,jk is an order preserving bijection for every l ^ f c s / ! . 
Since, for distinct l^j,l^i+l,JiJkr\JUk=Q, it follows that fij{X)C\fa{X)=®. 
Consequently, the restrictions of the functions of type i to Bx yield / + 1 order 
preserving injections of Bx into A such that, for distinct 1 S j , l^i+l, fijl(Bx)(~} 
C\fn\(Ba)=9. Thus, we have shown: 

Lemma 4. Let a<2zHo. For n<<o, the totally ordered set A contains 
n disjoint copies of Bx. 

It remains to show that, for a<2 2 A does not contain infinitely many disjoint 
copies of Bx. Since, for every ot<22*°, CQBX, it is sufficient to show that A does 
not contain infinitely many disjoint copies of C. 

Suppose that g: C—A is an order preserving injection. Then g extends to 
an order preserving injection g+\ C + —A+. Again, since y QA, CQ A, it follows 
that g+: A—A; that is to say, if g + is not the identity function then g+€G. 

Lemma 5. Let g: C—A be an order preserving injection. If g is not the 
identity function, then g+£GF. 

Proof . Suppose g+ By the above comments, there exists 1 
such that g+=gpl thus, g0$GF. Hence, by the definition of At and Cf, there 
is z£(gp)F such that z£Cf and gp(z)£Ap. Consequently, z£C. and gf(z)$A. 
However, is an extension of g; whence, gp(z)£A. By contradiction, we conclude 
g+€GF. 

Before considering infinitely many order preserving injections from C into 
A we must derive Lemma 8. 

Let g£GF and I be a nonempty open interval of A. Since g£GF, 
$F(x)}|S|gF |<2 i t". Hence, 1 g(x)6F(x)}|=2s» and, by Lemma 1, 
|{x€/| x?ig(x)}|=28«. Consequently, there exists x£ l such that x ^ g i x ) and 
X7±{k—l)/(j!) for any and l s f c s / ! . Select such an x. Since I is 
open there exists </=>•0 such that (x—d, x+d)QI. For d' — \g(x)-x\, choose 
1 ^ / x c o such that 1 /(/>!)-«= min {d, d'}. Hence, there exists 1 Sr^pl such that 
x 6 / p r g / but g(x)<f/p,. 

Lemma 6. There is a nonempty open interval such that, for ydl', 
either y£gF or g(y)=ftj(y) for some 1 p and lS/Si + 1. 

Proof . For l^q^p + l, fpq(Ipr)=Jpir<^Ipr. .Furthermore, by definition, 
for p^i^co and 1 ^ / +1, fij(Ipr)gjIpr• Since, by hypothesis, X7±(r—\)/(p\) 

6 
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and x?*g(x), there is a nonempty open interval I'QIp, such that g ( / ' ) n / p r = 0 . 
Thus, for y£l', either g(y)$ F(y) (in which case, ydgF), or there exists 
and l^j^i+l such that fij(y)=g{y)$Ipr- Since ydlpr, it follows that i<p. 
The proof is complete. 

Since g£GF is assumed, it follows that the set of all yd/' with g(y)=f{j(y) 
for some 1 and ¡ = j = i + 1 has cardinality 2s». Furthermore, any non-
empty open interval contained in / ' has the same property. 

Lemma 7. There is a nonempty open interval I"QI\ p, and l^j^i+l 
such that, for yd I", g{y)=f,j(y)-

Proof . Since / ' is nonempty and open, I'=(u0, v0) for some distinct 
u0, vad?.. Let I0—T. For n<a>, we inductively define a nonempty open interval 
/„=(«„, v„) such that, for n^m<cx>, / „5 / m . Assume that /„ has been defined 
and choose, if possible, distinct u„+1, vn+1£ln such that, for some y(Lln, either 
there exist 1 p and 1 ^ j = i + 1 such that g(y)=ftj(y) but, for all 
z€(u„+1,v„+1), g(z)^f0-(z),. or yegF but, for all z€(u„+1, v„+1), z$gF. If u„+1 

and vn+1 exist then set /„+i=(w l l+i, i>„+1); otherwise, let /„+!=/„. Since there 
are only finitely many possibilities for i and j, there exists some w<co such that 
I„—Im for all n^m<co. Let / " = / „ . We must show that I" satisfies the require-
ments of the lemma. By the remark preceding Lemma 7, there exists ydl" such 
that, for some 1 Si<p and l ^ / ^ i + l , (y, g(y))dfij. Hence, by construction, 
for any distinct u, vdl", there exists M < Z < U such that (z, g(z))dfu for the same 
i and j; that is to say, the set of all elements zdl" such that g(z)—ftJ(z) is dense 
in /". Since g is order preserving and f{j is continuous on I" (recall that 
J"QTQIpr and f j is continuous on Ipr), it follows that g(z)=ftJ(z) for all 
z£/". The lemma is verified. 

The statement of the next lemma is immediate from the discussion following 
Lemma 5 together with Lemma 6 and Lemma 7. 

Lemma 8. Let g(LGF and let I be a nonempty open interval of /.. Then there 
exist a nonempty open interval JQI and fdF such that g(x)= f(x) for all xdJ. 

Suppose that, for n<co, h„: C-»A is an order preserving injection. 

Lemma 9. There exists a nonempty open interval IQX such that if y£l is 
rational then y=h0(x) for some rational x. 

Proof . If h0 is the identity function then, since t]QC, any open interval 
IQ A will satisfy the lemma. If h0 is not the identity then, by Lemma 5, h^dGF. 
Thus, by Lemma 8, there is a nonempty open interval JQ). , 1 S/<co, and = 
S / + 1 such that, for xdJ, h£(x)=fij(x). Since A=|J( / j t : l s f c s / ! ) , there is 
some l s f c ^ / ! such that I^ClJ^Q. Choose a nonempty interval I'QIikOJ. 
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By definition, /¡J is continuous on Iik and, hence, it is a continuous order preserving 
injection on / ' . Thus, / y ( / ' ) is a nonempty open interval of X. Let / = / | / / ' ) -
If y£l then y=fu(x)=h+(x) for some x£l'. By the definition of fu, if y is 
rational it follows that x is rational. Again, since i j g C , h^(x)—hQ(x) and the 
proof is complete. 

Lemma 10. There exist x, y£rj and distinct n, m<co such that hn(x)=hm(y). 

Proof . Let I be given as in Lemma 9. Suppose that, for some 1 
h„ is the identity function. In particular, for y£l, y=h+(y). If y is rational 
K(y)—K(y) and, by Lemma 9, the proof is complete. Thus, we assume that, 
for h„ is not the identity function. 

Choose 1 such that for some 1 Ip rQI. Recall that, for all 
/ „ = / € F of type i^P,fu(Ipr)^Ipr^I. 

By Lemma 5, all h+ belong to GF. Lemma 8 yields the existence of an open 
nonempty interval h Q Ipr such that /i* agrees with some f w £ F on I1. Define 
inductively I„+1QIn as a nonempty open subinterval on which h++l agrees with 
some /(„+i)€F. If some/ ( n ) is of type i^p, choose a rational x £/„. Then hn(x)~ 
=h+(x)=fin){x)£l is rational, and, by Lemma 9, hn(x)=h0(x') for some rational x'. 
Therefore, each f(n) for 1 ^«<ct> is of type i„<p. Since there are only finitely 
many of these functions, there exist with h+\I„—fw\I„=fm)\I„ = 
=/i+t/„. For any rational x£/„ it follows that h„(x)=h+(x)=h*(x)=hm(x). The 
proof is complete. 

Since iQC, Lemma 10 implies that there are distinct n, m<co such that 
/I„(C)n/Im(C)^0. 

Lemma 11. I f , for n<co, h„: C-*A is an order preserving injection then there 
exist distinct n,m<co such that hn(C)Ohm(C)7i0; that is to say, A does not 
contain infinitely many disjoint copies of C. 

Lemmas 3, 4, and 11 yield the Theorem. 
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