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Disjoint sublattices of lattices.

M. E. ADAMS and J. SICHLER

1. Introduction

M. Sekanina asked whether there exist lattices 4 and B such that 4 contains
an arbitrarily large finite number of pairwise disjoint sublattices isomorphic to
B but does not contain infinitely many pairwise disjoint sublattices isomorphic
to B. Independently, I. Korec [2] and V. Kousek [3] have shown that such lattices
do indeed ‘exist. In fact, Koubek has shown that both 4 and B may be chosen
to be distributive.

The aim of the present paper is to strengthen Koubek’s result by showing that
the distributive lattices 4 and B may be chosen to be totally ordered sets. Actually
more will be shown. The principal result will be the followmg

Theorem. There exist totally ordered sets A and B,, for 0<2%% such that
O |4]= =2% (ii) B,=By if and only if a=B, and (iii) if a<22 then, for- n<w,
A contains n disjoint copies of B,, but it does not contain infinitely many such copies.

That A4 is uncountable is no coincidence. A routine proof, using Hausdorff’s
classification of the countable order types, shows that if A is a countable totally
ordered set that contains an arbitrarily large number of finite disjoint copies of
a totally ordered set B then A contains infinitely many d1s;ornt copres of B
(We shall not include the details. )
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2. The construction

The construction of the totally ordered set A involves a new variation of
a technique first introduced by B. DUsHNIK and E. W. MILLER [1].

Let A denote the real line {0, 1) and 7 its rational members. The Dedekind
completion of a totally ordered set C will be given by C *. Observe that for two
totally ordered sets C and D any order preserving injection of C into D can be
extended to an order preserving injection of C* into D*. Since a monotone
function on A has at most countably many discontinuities, it is readily seen that
there are 2% order preserving injections of A into itself. With the exception of
the identity function, let G={g;|1=p<2%} be a list of all the order preserving
injections of A into itself.

We now define a dlstmgulshed countable subset of G. For l1=i<w and
l=k=i! define

Iy = [(k—D)/GY, k/GD);

that is, for each i, {I,;: 1=k=i!} is a system of pairwise disjoint intervals of length
1/(i!) covering A. If 1=j=i+1, define an order preserving injection f;;: A~4 by

i) = x/G+D+((k—Di+(—-D)/G+11)

for x€l; and k=1,...,il. Observe that f;(I,)=[(k—D/EN+(—1D/GE+1)),
(k=D/EN+jl+1D)= ”,‘_Iik for every j=1,...,i+1. The function f;; is
said to be of #ype i.

By way of example, it follows that there are exactly two functions of type one:

. . e . . 1
/11 Is an order preserving bijection of [0,1) to [0, 1/2) given by fn(x)=?x,

1 | . T
fm(x)=?x+3 is an order preserving bijection of [0, 1) to [1/2,1). There are
three functions of type two: f; is the order preserving bijection of [0, 1) to
1 1 1
[ ] [— ——J defined by fgl(x)——x, for 0<x<?, and fm(x)——x—i—— for

1
?Sx<1 ; fa2 is the order preserving bijection from [0, 1) to [ ] [

1 1 i
given by, for 0<x<— f,z(x)--——x-i- 5 and, for -2-Sx<l _ﬁm(x)— 2 ; finally,

.o . 5
fes 18 the order preserving bijection from [0,1) to [?, ?] U[z, 1] such that

1 1 1
f%(x)=?x+?, for 0§x<7, and ﬁza(x)=?x+? for 5§x<1.

Let F={f;|1=i<w and 1=j=i+1}; for xcA, denote F(x)={f(x)|feF};
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and, for XS, let F(X)={J(F(x): x€X). Note that, for every fcF, x is rational
if and only if f(x) is rational. Since F is countable, we may conclude the following:

Lemma 1. |{x€i|lx€ F(x)}|=
We shall also need the following lemma.

Lemma?2 For X,YE2, zf [X|=2% and |Y|<2® then there exists x€X
such that F(x)Y =0.

Proof. Suppose that for every x€X there exists an f€F with f(x)€Y. For
yeY, let X,={x€X|y€F(x)}. Thus, XS|J(X,: y€Y). Since |X|=2% and
|Y|<2%, it follows that X, is uncountable for some ycY. However, F is
countable. Hence, there are two distinct elements x of X, such that f(x)=y
for the same f¢F. Since each f¢F is one-to-one, this is a contradlctlon The proof
is complete.

Some further notation is necessary. For g€G, define gp={x€l|g(x)¢ F(x)}.
Then set Gp={g€G||gel<2%}. Clearly, FSGy follows from fy=0 for every
f€F; it is also easy to see that the inclusion is proper.

We are now ready to define the totally ordered sets 4 and B, for a<2%.
As will transpire, the totally ordered set A will be a subset of A that contains 7;
the definition will be given by transfinite induction. For B<2%, sets Ag, Cy,
DS will be defined; subsequently, 4 will be the set ANUJ(4;: f<2%) and,
for «<2", | J(C,: f<2%)S B,SU(C,UD,: B<2%). Intuitively, the mappings
from F will be used to exhibit arbitrarily many finite disjoint copies of B, in A4
and the construction will ensure that no g¢ Gy can be used to provide an order
preserving injection of B, into A.

Let Ay=0, Ag=1, Co=n, C4=0, and D,=9. By transfinite induction we will
define, for f<2%, 4;, 45, Cy, Cp, DS A such that (i) | 4], [4y], |Cyl, IC31, |Dg|<2%,
(ii) for y<B, 4,S 4, A;S 45, C,ECy, C;SCy, and D,C Dy, (iii) 4,NA; =0,
CyNC; =0, and (C,UC;)ND;=0 and (iv) F(Cp)S A4, and F(Dy)S4;. (Note
that these conditions are satisfied for f=0.) Suppose that, for y<f<2%, 4 , A;,
C,,C;, D, are defined and satisfy (i), (ii), (iii), and (iv).

Since gz: A4 is not the identity and is order preserving, there are 2% elements
x€A such that xs£ggz(x). Thus, because g, is injective, the set of all elements
x€A such that x=gy(x), x¢ U(C;: y<B)UU(D,: y<B), and gz(x)§ U(C,: y<B)U
UUD,: y<p) has cardinality 2%. By Lemma 2, choose such an x¢4 for which
Fx)NUMA,: y<p)=0. Let C;={ggx)}UU(C;: y<B).

By Lemma 2, there exists y€AN({x} UU(C;: A<p)UC; UUD,: y<p) such
that F(»)NU(4,: y<B)=90. Choose such a y€i. Let Dy={y}UU(D,: y<}p).

There are now two cases to consider.
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First, suppose gs€Gp. Let Ap=(4,: y<B), 4;=F(x)UF(»)UU(4,: y<B),
and Cp={x}U(C,: y<p). Clearly (i) and (ii) are satisfied. By the choice of
x€4, CgNCy =0 and, by the choice of x, y€4, 4;N A4, =0 and (C,UC;)NDy=0
thus, (iii) holds. Obviously, by definition, (iv) is also valid.

Second, suppose gz¢Gr. Thus, [(gp)r]=2%. Thus there are 2% elements
z€(gp)r such that z4C,UD, and, since g, is an injection, g4z(z)¢ F(x)UF(y)U
UU(4;:y=<B). By Lemma 2, we may choose the element z such that, in addition,
F@NU4,: y<p)=0. Let A,={g,(2)}UU(4,: y<B), 4;=F(x)UF(y)UF(z)U
UU4;: y<B), and Cp={x}U{z}U(C,: y<p). Clearly, (i) and (ii) are valid.
The choice of z€A is such that gx(z)¢ F(z); thus, since (F(x)UF(»)UF(z))N
NU4,: y<B)=0, it follows that 4;NA4;=0. By choice, C,NC;=9. As in the
first case C;NDy=0 and, by inspection, C,,ﬂDp @; thus (iii) also holds. Once
more it is clear that (iv) is valid.

As indicated earlier, we set A=A\U(4y: f<2%), A'=)(4;: f<2%),
C=J(Cy: B<2%), D= J(Dy: f<2%), and B=CUD. It follows, by (iii), that
A’C A. However, by (iv), F(B)S A’C 4. Thus f}B is an order preserving injection
from B into A for each f¢F. By (ii), |[D|=2%. Let (S,: 2 <22") be an indexing
of the power set of D, let B,=CUS, for a<22", Since B,C B, the mapping
f1B, is an order preserving injection of B, into 4 for a<2% and f¢F.

3. Proof of the theorem

We first show that, for distinct o, f<22'%, B, B;. If af, then S,=S;.
Suppose, with no loss of generality, that there exists s€S,\Ss. If S,==S; then
there is an order preserving injection g: B,—~B,. In which case, g extends to an
order preserving injection g*: Bf —~B;. Since nZB,, B;SA, it follows that
g*t:A—A. By (ili), CND=P; thus, s¢ B;. Consequently, g* is not the identity
function and, hence, g*€G. Whence, for some y<2%, g*=g . However, for
g,, thereis x€A for which x€C and g(x)€C’. By (iii), CNC’=H and DNC’'=0.
Since C&B,,B;SCUD, we conclude that x€B, and g,(x)¢B;. However,
g, is an extension of g: B,—~By; that is to say, g,(x)=g(x)€B,;. By contradiction,
we conclude that there is no order preserving injection g: B,—~B;. We have shown
the following:

Lemma 3. For a, <2, B,~B, if and only if a=§.

For the interested reader, we remark that, in the construction, 2 more judicious

choice of subsets of D yields the following stronger result: for distinct a, B <22“"
B, is not a sublattice of B; and B, is not a sublattice of B,.
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For a<22“°, we have already observed that, for ‘1=i<w and 1=j=i+1,
fit B, is an order preserving injection from B, into 4. We now show that, for
n<w, A contains n disjoint copies of B,. As stated previously, for lI=i<w
and 1=j=i+1, f;: Iy—~J;; is an order preserving bijection for every 1=k=il.
Since, for distinct 1=j,/=i+1,J;NJiu=0, it follows that f£,(A)Nf,(1)=0.
Consequently, the restrictions of the functions of type i to B, yield..i+1 order
preserving injections of . B, into A such that, for distinct 1=j, I=i+1, f;;}(B,)N
Nfut(B,)=9. Thus, we have shown:

Lemmad. Let a<2® For n<w, the totally ordered set A contains
n disjoint copies of. B,.

It remams to show that, for az<22 % 4 does not contain infinitely many disjoint

copies of B Since;, for every a<22k° CZC B,, it is sufficient to show that 4 does
not contain infinitely many disjoint copies of C.

Suppose that g: C—~4 is an order preservmg mjectlon Then g extends to
an order preserving injection g’r C*—-A+ Agam since #& 4, CE A, it follows
that g+ A~2A; thatis to say, if g " is not the 1dent1ty function then g*¢G.

Lemmas5. Let g:C—+A4 be an order preserving injection. If g is not the
Identzty Sfunction, then g+€Gg. . . : .

Proof. Suppose g*¢Gp. By ‘the a'bove’ 'comments there exists 1=pg<2%
such that g*=g,; thus, g,¢Gr. Hence, by the definition of Ag and Cg, there
is ze(gﬂ)p such that zEC,, and gg(z)€4,. Consequently, z¢€C. and g,(z)QA
However, gg 1san extension of g; whence, g,,(z)EA By contradiction, we conclude
g+eGy. :

Before considering infinitely many order preserving 1njectlons from C into
A we must derive Lemma 8.

Let g€Gr and I be a nonempty open interval of A. Since geGy, |{x€l |g(x)¢
¢ F(x)}|=|gpl<2%. Hence, |{x€1|g(x)€F(x)}]—2“° and, by Lemma I,
{xel I x#g(x)}|=2%. Consequently, there exists xc/ such that x=g(x) and
x#(k—1) /(i") for any 1=i<w and 1=k=il. Select such an x. Since I is
open there exists d>0 such that (x—d, x+d)S1. For d’=|g(x)—x|, choose
1=p<w such that 1/(p')<m1n {d, d’}. Hence, there exists ISrSp' such that
x€L,S1 but g(x)¢l, .

Lemma 6. There is a nonempty open interval 1’ S 1, such that, for - y€l’,
either ycgp or g(y)=1;(y) for some 1=i<p and 1§j§i+l.

Proof. For 1=q=p+1, f,,(,)=Jp;E1,.  Furthermore, by definition,
for psi<w and 1sjsi+l, fi;(I,)E1, Smce ,by hypothesis, x=(r—1) /(p!)

6
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and x#g(x), there is a nonempty open interval I’S 1, such that g(I")N1,,=0.
Thus, for yelI’, either g(y)¢ F(») (in which case, y€gy), or there exists 1=i<w
and 1=j=i+1 such that f(y)=g(y)¢1l,. Since y€l,, it follows that i<p.
The proof is complete.

Since g€Gy is assumeéd, it follows that the set of all ycI” with g(y)= f j(y)
for some 1=i<p and i=j=i+1 has cardinality 2%. Furthermore, any non-
empty open interval contained in I’ has the same property.

Lemma 7. There is a nonempty open interval 1"C1l’, 1=i<p, and 1§j§f+1
such that, for yel”, g(y)=f;(y).

Proof. Since I’ is nonempty and open, I'=(uy,v,) for some distinct
Uy, 05€4. Let Iy=I". For n<w, we inductively define a nonempty open interval
I,=(u,,v,) such that, for n=m<w, I,21,. Assume that 1, has been defined
and choose, if possible, distinct #,4,, v,+:€1, such that, for some y€I,, either
there exist 1=i<p and 1=j=i+1 such that g(y)=f;(y) but, for all
2€(Ups15 Vor1)y () ESj(2),. o yEgp but, for all z€(Uyi1, Vy41), 2¢8r. I 44y
and v,,; exist then set I,,,=(4,+1, v,41); otherwise, let' I,,,=1,. Since there
are only finitely many possibilities for i and j, there exists some n<w such that
I,=I, forall n=m—<=w. Let 1”=1,. We must show that 7” satisfies the require-
ments of the lemma. By the remark preceding Lemma 7, there exists y€I” such
that, for some l1=i<p and 1=j=i+1, (y, g(»))€f;;. Hence, by construction,
for any distinct #, v€l”, there exists u<z<v such that (z, g(z))¢f;; for the same
i and j; that is to say, the set of all elements z€1” such that g(z)=f;;(z) is dense
in 1”. Since g is order preserving and f;; is continuous on I” (recall that
I"CI'CI, and f; is continuous on I,), it follows that g(z)=f;;(z) for all
z¢l”. The lemma is verified.

The statement of the next lemma is immediate from the discussion following
Lemma 5 together with Lemma 6 and Lemma 7.

Lemma 8. Let gcGy andlet 1 be a nonempty open interval of ' A. Then there
‘exist a nonempty open interval JSI and fCF such that g(x)=f(x) for all x€J.

Suppose that, for n<w, h,: C ~4 is an order preserving injection.

Lemma 9. There exists a nonempty open interval IS ). such that if y€l is
rational then y=hy(x) for some rational Xx.

Proof. If hy is the identity function then, since #SC, any open interval
IS will satisfy the lemma. - If h, is not the identity then, by Lemma 5, h €G.
Thus, by Lemma 8, there is a nonempty open interval JS A, 1=i<w, and 1=sj=
=i+1 such that, for x€J, hf (x)=f;(x). Since A={: 1=k=i!), there is
some l=k=i! such that I;;NJ0. Choose a nonempty. interval 'S I;NJ.
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By definition, f;; is continuous on I;; and, hence, it is a continuous order preserving
injection on I’. Thus, f;(I’) is a nonempty open interval of A. Let I=f(I’).
If yeI then y=f;;(x)=hi(x) for some x€l’. By the definition of f;;, if y is
rational it follows that x is rational. Again, since 3 ESC, hf(x)=h,(x) and the
proof is complete.

Lemma 10. There exist x,yen and distinct n,m<w such that h,(x)=nh,(y).

Proof. Let I be given as in Lemma 9. Suppose that, for some l=n<o,
h, is the identity function. In particular, for y€l, y=h}(y). If y is rational
hf(y)=h,(y) and, by Lemma 9, the proof is complete. Thus, we assume that,
for 1=n<uw, h, is not the identity function.

Choose 1=p<w such that for some 1=r=p!, [,S1 Recall that, for all
ﬁ1=f€F of type iéps ﬁj(lpr)glprgl’

By Lemma 5, all A} belong to Gp. Lemma 8 yields the existence of an open
nonempty interval 7,S1, such that hf agrees with some f;)€F on I,. Define
inductively 7,,,E1, as a nonempty open subinterval on which A}, , agrees with
some fi,,EF. If some f,, is of type iz p, choose a rational x€1,. Then h,(x)=
=h; (x)=fn)(x)€I is rational, and, by Lemma 9, h,(x)=hy(x") for some rational x’.
Therefore, each f,, for 1=n<w is of type i,<p. Since there are only finitely
many of these functions, there exist l=m<n<w with hf\l,=f,,=fim,=
=h}tl,. For any rational x¢I, it follows that h,(x)=h}(x)=h}(x)=h,(x). The
proof is complete.

Since #EC, Lemma 10 implies that there are distinct »n, m<w such that
h,(C)Nh,(C)=0.

Lemma 11. If, for n<w, h,: C—~A is an order preserving injection then there
exist distinct n,m<cw such that h,(C)Nh,(C)=0; that is to say, A does not
contain infinitely many disjoint copies of C.

Lemmas 3, 4, and 11 yield the Theorem.
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