A note on multifunctions

ORHAN ÖZER

1. Introduction

A function $F: X \rightarrow p(Y) - \{\emptyset\}$ is called a multifunction from X to Y and is usually denoted by $F: X \rightarrow Y$, where p(Y) is the power set of Y. The graph of F is the subset $\{(x, y) \mid x \in X \text{ and } y \in F(x)\}$ of $X \times Y$. We will denote the graph of F by G(F). If X and Y are topological spaces and $F: X \rightarrow Y$ is a multifunction we will say that F has a closed graph if G(F) is a closed subset of $X \times Y$. The graph G(F) is closed iff for each point $(x, y) \notin G(F)$, there exist open sets $U \subset X$ and $V \subset Y$ containing x and y, respectively, such that $F(U) \cap V = \emptyset$. The graph G(F) is said to be strongly closed [4] if for each point $(x, y) \notin G(F)$, there exist open sets $U \subset X$ and $V \subset X$ containing x and y respectively, such that $F(U) \cap \overline{V} = \emptyset$, where \overline{V} denotes the closure of V. A multifunction $F: X \to Y$ is called upper semicontinuous (weakly upper semicontinuous) if for each $x \in X$ and each open set $V \subset Y$ containing F(x), there exists an open set $U \subset X$ containing x such that $F(U) \subset V(F(U) \subset \overline{V})$. It is not difficult to see that F is upper semicontinuous iff $F^{-1}(K) = \{x \in X \mid F(x) \cap K \neq \emptyset\}$ is closed in X whenever K is closed in Y. We will say that a multifunction $F: X \rightarrow Y$ is point closed (point *compact*) if F(x) is closed (compact) in Y for each $x \in X$. The definition of an open or closed multifunction is analogous to the definition of an open or closed single valued mapping.

A multifunction $F: X \to Y$ is said to be *almost upper semicontinuous* if for each point $x \in X$ and each open set $V \subset Y$ containing F(x), there exists an open set $U \subset X$ containing x such that $F(U) \subset \overline{V}$, where \overline{V} denotes the interior of the closure of V.

A subset K of a topological space X is called *quasi H-closed relative to X* if for each open cover $\{G_{\alpha} \mid \alpha \in \Delta\}$ of K, there exists a finite subfamily $\{G_{\alpha_i} \mid i=1, 2, ..., n\}$ such that $K \subset \bigcup_{i=1}^{n} \overline{G}_{\alpha_i}$. If X is quasi H-closed relative to X, then it is

Received June 16, 1982, and in revised form December 14, 1982.

called quasi H-closed. When X is Hausdorff, the word "quasi" is omitted in these two definitions.

A Hausdorff space X is said to be locally *H*-closed [4] if every point of X has a neighbourhood which is *H*-closed. A space X is called *c*-compact [3] if every closed set of X is quasi *H*-closed relative to X.

Let X be a topological space and $A \subset X$. If D is a directed set and $\Phi: D \rightarrow A$ is a net, then we say it *r*-accumulates [3] to $x \in A$ if for each open set $V \subset X$ containing x and every $b \in D$, $\Phi(T_b) \cap \overline{V} \neq \emptyset$, where $T_b = \{c \in D \mid c \geq b\}$. A space X is *c*-compact iff for each closed set $A \subset X$ and each net $\{x_{\alpha}\}$ in A, there exists a point $x \in A$ such that $\{x_{\alpha}\}$ *r*-accumulates to x [3, Th. 3].

2. c-compact, H-closed spaces and multifunctions with strongly closed graph

Theorem 2.1. Let $F: X \rightarrow Y$ be a multifunction and Y be a c-compact space. If F has strongly closed graph, then F is upper semicontinuous.

Proof. Suppose there exists a closed subset K in Y such that $F^{-1}(K)$ is not closed in X. Take $x_0 \in \overline{F^{-1}(K)} - F^{-1}(K)$. Hence there exists a net $\{x_\alpha\}_{\alpha \in A}$ in $F^{-1}(K)$ such that $x_\alpha \rightarrow x_0$. Now let $\{y_\alpha\}_{\alpha \in A}$ be a net in K such that $y_\alpha \in F(x_\alpha) \cap K$ for each α . Since K is closed and Y is c-compact, there exists a point $y_0 \in K$ such that the net $\{y_\alpha\}_{\alpha \in A}$ r-accumulates to y_0 . Since $y_0 \notin F(x_0)$, then $(x_0, y_0) \notin G(F)$ and since G(F) is strongly closed, there are open sets $U \subset X$ and $V \subset Y$ containing x_0 and y_0 , respectively, such that $(U \times \overline{V}) \cap G(F) = \emptyset$. But $x_\alpha \rightarrow x_0$ implies there exists an $\alpha_0 \in A$ such that for every $\alpha \in A$ and $\alpha \ge \alpha_0, x_\alpha \in U$, and $\{y_\alpha\}_{\alpha \in A}$ r-accumulates to y_0 implies there exists some $\alpha_1 \in A$ and $\alpha_1 \ge \alpha_0$ such that $y_{\alpha_1} \in \overline{V}$. From this it follows that $(x_{\alpha_1}, y_{\alpha_1}) \in (U \times \overline{V}) \cap G(F)$ which is a contradiction. Hence F is upper semicontinuous.

Theorem 2.2. Let $F: X \rightarrow Y$ be a point compact multifunction and Y a locally H-closed (H-closed) space. If for each subset K, H-closed in Y, $F^{-1}(K)$ is closed in X then F has strongly closed graph.

Proof. Suppose Y is locally H-closed. Take any point $(x, y) \notin G(F)$. Then $y \notin F(x)$. Since Y is Hausdorff, F(x) is compact and $y \notin F(x)$, there are disjoint open sets V_1 and W in Y such that $y \in V_1$ and $F(x) \subset W$ [1, p. 225]. $V_1 \cap W = \emptyset$ implies $\overline{V_1} \cap W = \emptyset$. On the other hand, there exists a neighbourhood V_2 of y which is H-closed. Put $V = V_1 \cap \dot{V_2}$. Then V is an open set containing y and $W \cap \overline{V} = \emptyset$. Since Y is Hausdorff and V_2 is H-closed in Y, then V_2 is closed in Y. Thus $\overline{V} \subset V_2$. \overline{V} is a regularly closed subset in the H-closed set V_2 . Therefore \overline{V} is H-closed in Y. According to our assumption, $F^{-1}(\overline{V})$.

is closed in X. Put $U = X - F^{-1}(\overline{V})$. Then U is an open set in X containing x and $F(U) \cap \overline{V} = \emptyset$. This shows that G(F) is strongly closed.

Theorem 2.3. Let $F: X \rightarrow Y$ be an almost upper semicontinuous point compact multifunction and Y Hausdorff. Then F has a strongly closed graph.

Proof. Let $(x, y) \notin G(F)$. Since F(x) is compact, $y \notin F(x)$ and Y is Hausdorff, there are disjoint open sets V and W containing y and F(x), respectively. We can write $\overline{V} \cap \overset{\circ}{W} = \emptyset$. Since F is almost upper semicontinuous there is an open set U in X containing x such that $F(U) \subset \overset{\circ}{W}$. Now we have $F(U) \cap \overline{V} = \emptyset$. That is, G(F) is strongly closed.

Corollary. Let $F: X \rightarrow Y$ be a point compact multifunction and Y an H-closed space. The following are equivalent:

- (i) F is almost upper semicontinuous,
- (ii) F has strongly closed graph,
- (iii) For each subset K, H-closed relative to Y, $F^{-1}(K)$ is closed in X,
- (iv) For each H-closed subset K of Y, $F^{-1}(K)$ is closed in X.

Proof. According to Theorem 2.3, (i) implies (ii). (ii) implies (iii), by Theorem 4.15 [4]. Since an *H*-closed subset of *Y* is *H*-closed relative to *Y* (the converse need not be true), the implication (iii) \Rightarrow (iv) is obvious.

Let us prove that (iv) implies (i). For any $x \in X$, let W be an open set containing F(x). \overline{W} is a regularly open set containing F(x). $Y - \overline{W}$ is a regularly closed set. Since Y is *H*-closed then $Y - \overline{W}$ is *H*-closed. Hence by (iv), $F^{-1}(Y - \overline{W})$ is closed in X and $x \notin F^{-1}(Y - \overline{W})$. Thus there exists an open set U containing x such that $U \cap F^{-1}(Y - \overline{W}) = \emptyset$. This implies that $F(U) \subset \overline{W}$, that is, F is almost upper semicontinuous.

Our next result is a generalization of Theorem 11 in [3], which was proved for a single valued mapping.

Theorem 2.4. If $F: X \rightarrow Y$ is an open and closed multifunction from a regular space X into a c-compact space Y, and if $F^{-1}(y)$ is closed for each $y \in Y$, then F is upper semicontinuous.

Proof. According to Theorem 3.4, Corollary 3.5 [5] F has closed graph. For an open multifunction the condition closed graph and strongly closed graph are identical. Hence $F: X \rightarrow Y$ has a strongly closed graph and Y is *c*-compact, so by Theorem 2.1, F is upper semicontinuous. Theorem 2.5. If $F: X \rightarrow Y$ is an upper semicontinuous point compact multifunction, then F is compact preserving.

Proof. Let K be a compact subset of X and suppose $\{W_{\alpha} \mid \alpha \in \Delta\}$ is an open cover of F(K). Take any $x \in K$, then F(x) is a compact subset of Y and $F(x) \subset \subset F(K)$. Thus $\{W_{\alpha} \mid \alpha \in \Delta\}$ is an open cover of F(x). Hence there is a finite subcover, say $\{W_{\alpha_1}(x), \ldots, W_{\alpha_n}(x)\}$. Now put $V(x) = \bigcup_{i=1}^{n} W_{\alpha_i}(x)$. V(x) is an open set containing F(x). Since F is upper semicontinuous, there exists an open set $U(x) \subset X$ containing x such that $F(U(x)) \subset V(x)$. Now $\{U(x) \mid x \in K\}$ is an open cover of K and K is a compact subset of X. Take $x_1, x_2, \ldots, x_m \in K$ such that $\{U(x_i) \mid i=1, \ldots, m\}$ is a subcover. Let $V(x_1), V(x_2), \ldots, V(x_m)$ be the open sets corresponding to $U(x_1), U(x_2), \ldots, U(x_m)$, respectively. Thus

$$F(K) \subset F\left(\bigcup_{i=1}^{m} U(x_i)\right) = \bigcup_{i=1}^{m} F(U(x_i)) \subset \bigcup_{i=1}^{m} V(x_i) =$$
$$= \bigcup \left\{ W_{\alpha_1}(x_1), \dots, W_{\alpha_n}(x_1), \dots, W_{\beta_1}(x_m), \dots, W_{\beta_n}(x_m) \right\}$$

That is, we have a finite subcover of $\{W_{\alpha} \mid \alpha \in A\}$. Hence F(K) is compact in Y.

Corollary. Let $F: X \rightarrow Y$ be an onto closed multifunction. If F has compact point inverses, then for each compact subset K of Y $F^{-1}(K)$ is compact in X.

Proof. Since $(F^{-1})^{-1} = F$, then $F^{-1}: Y \to X$ is an upper semicontinuous point compact multifunction, hence F^{-1} is compact preserving.

Theorem 2.6. Let $F: X \rightarrow Y$ be a weakly upper semicontinuous point compact multifunction. Then F maps a compact subset K of X onto subset F(K) quasi H-closed relative to Y.

Proof. The proof is the same as in Theorem 2.5.

Let $F: X \to Y$ be a multifunction. We can define a new multifunction $\overline{F}: X \to Y$ by setting $\overline{F}(x) = \overline{F(x)}$ for all $x \in X$. If Y is normal and $F: X \to Y$ is upper semicontinuous then $\overline{F}: X \to Y$ is upper semicontinuous [2]. We have the following new result.

Theorem 2.7. If $F: X \rightarrow Y$ is weakly upper semicontinuous, then $\overline{F}: X \rightarrow Y$ is weakly upper semicontinuous.

Proof. Let $x \in X$ and W an open set in Y containing $\overline{F}(x)$. Since $F(x) \subset \overline{F(x)} = \overline{F(x)} \subset W$ and F is weakly upper semicontinuous there is an open set U in X containing x such that $F(U) \subset \overline{W}$. This implies that $\overline{F(U)} \subset \overline{W}$. On the

other hand

$$\overline{F}(U) = \bigcup_{x \in U} \overline{F}(x) = \bigcup_{x \in U} \overline{F(x)} \subset \overline{F(U)}.$$

Hence $\overline{F}(U) \subset \overline{W}$, that is, \overline{F} is weakly upper semicontinuous.

Theorem 2.8. If $F: X \rightarrow Y$ is weakly upper semicontinuous and Y is regular, then the graph of \overline{F} is closed in $X \times Y$.

Proof. $\overline{F}: X \to Y$ is weakly upper semicontinuous, by Theorem 2.7. Now suppose $(x, y) \notin G(\overline{F})$. $y \notin \overline{F}(x) = \overline{F(x)}$. Since Y is regular, there are open sets V and W containing y and $\overline{F}(x)$, respectively, such that $V \cap W = \emptyset$. Hence $V \cap \overline{W} = \emptyset$. From the weakly upper semicontinuity of \overline{F} , we have an open set U in X containing x such that $\overline{F}(U) \subset \overline{W}$. Hence $\overline{F}(U) \cap V = \emptyset$. That is, $G(\overline{F})$ is closed in $X \times Y$.

Corollary. [5, Theorem 3.3] If $F: X \rightarrow Y$ is a point closed upper semicontinuous multifunction into a regular space, then F has a closed graph.

Acknowledgement. The author wishes to thank the referee whose comments improved the exposition of the paper.

References

- [1] J. DUGUNDJI, Topology, Allyn and Bacon (Boston, Mass., 1966).
- [2] S. P. FRANKLIN and R. H. SORGENFREY, Closed and image-closed relations, Pacific J. Math., 19 (1966), 433-439.
- [3] L. HERRINGTON and P. LONG, Characterizations of c-compact spaces, Proc. Amer. Math. Soc., 52 (1975), 417-426.
- [4] J. E. JOSEPH, Multifunctions and graphs, Pacific J. Math., 79 (1978), 509-529.
- [5] R. E. SMITHSON, Subcontinuity for multifunctions, Pacific J. Math., 61 (1975), 283-288.

HACETTEPE UNIVERSITY DEPARTMENT OF MATHEMATICS BEYTEPE, ANKARA, TURKEY