A note on multifunctions

ORHAN ÖZER

1. Introduction

A function $F: X \rightarrow p(Y)-\{\emptyset\}$ is called a multifunction from X to Y and is usually denoted by $F: X \rightarrow Y$, where $p(Y)$ is the power set of Y. The graph of F is the subset $\{(x, y) \mid x \in X$ and $y \in F(x)\}$ of $X \times Y$. We will denote the graph of F by $G(F)$. If X and Y are topological spaces and $F: X \rightarrow Y$ is a multifunction we will say that F has a closed graph if $G(F)$ is a closed subset of $X \times Y$. The graph $G(F)$ is closed iff for each point $(x, y) \not \ddagger G(F)$, there exist open sets $U \subset X$ and $V \subset Y$ containing x and y, respectively, such that $F(U) \cap V=\emptyset$. The graph $G(F)$ is said to be strongly closed [4] if for each point ($x, y) \notin G(F)$, there exist open. sets $U \subset X$ and $V \subset X$ containing x and y respectively, such that $F(U) \cap \bar{V}=\emptyset$, where \bar{V} denotes the closure of V. A multifunction $F: X \rightarrow Y$ is called upper semicontinuous (weakly upper semicontinuous) if for each $x \in X$ and each open set $V \subset Y$ containing $F(x)$, there exists an open set $U \subset X$ containing x such that $F(U) \subset V(F(U) \subset \bar{V})$. It is not difficult to see that F is upper semicontinuous iff $F^{-1}(K)=\{x \in X \mid F(x) \cap K \neq \emptyset\}$ is closed in X whenever K is closed in Y. We will say that a multifunction $F: X \rightarrow Y$ is point closed (point compact) if $F(x)$ is closed (compact) in Y for each $x \in X$. The definition of an open or closed multifunction is analogous to the definition of an open or closed single valued mapping.

A multifunction $F: X \rightarrow Y$ is said to be almost upper semicontinuous if for each point $x \in X$ and each open set $V \subset Y$ containing $F(x)$, there exists an open set $U \subset X$ containing x such that $F(U) \subset \stackrel{\circ}{V}$, where $\stackrel{\circ}{V}$ denotes the interior of the closure of V.

A subset K of a topological space X is called quasi H-closed relative to X if for each open cover $\left\{G_{\alpha} \mid \alpha \in \Delta\right\}$ of K, there exists a finite subfamily $\left\{G_{a_{i}} \mid\right.$ $i=1,2, \ldots, n\}$ such that $K \subset \bigcup_{i=1}^{n} \bar{G}_{\alpha_{i}}$. If X is quasi H-closed relative to X, then it is
called quasi H-closed. When X is Hausdorff, the word "quasi" is omitted in these two definitions.

A Hausdorff space X is said to be locally H-closed [4] if every point of X has a neighbourhood which is H-closed. A space X is called c-compact [3] if every closed set of X is quasi H-closed relative to X.

Let X be a topological space and $A \subset X$. If D is a directed set and $\Phi: D \rightarrow A$ is a net, then we say it r-accumulates [3] to $x \in A$ if for each open set $V \subset X$ containing x and every $b \in D, \Phi\left(T_{b}\right) \cap \bar{V} \neq \emptyset$, where $T_{b}=\{c \in D \mid c \geqq b\}$. A space X is c-compact iff for each closed set $A \subset X$ and each net $\left\{x_{\alpha}\right\}$ in A, there exists a point $x \in A$ such that $\left\{x_{\alpha}\right\} r$-accumulates to $x[3$, Th. 3].

2. c-compact, H-closed spaces and multifunctions with strongly closed graph

Theorem 2.1. Let $F: X \rightarrow Y$ be a multifunction and Y be a c-compact space. If F has strongly closed graph, then F is upper semicontinuous.

Proof. Suppose there exists a closed subset K in Y such that $F^{-1}(K)$ is not closed in X. Take $x_{0} \in \overline{F^{-1}(K)}-F^{-1}(K)$. Hence there exists a net $\left\{x_{\alpha}\right\}_{\alpha \in A}$ in $F^{-1}(K)$ such that $x_{\alpha} \rightarrow x_{0}$. Now let $\left\{y_{\alpha}\right\}_{\alpha \in A}$ be a net in K such that $y_{\alpha} \in F\left(x_{\alpha}\right) \cap K$ for each α. Since K is closed and Y is c-compact, there exists a point $y_{0} \in K$ such that the net $\left\{y_{\alpha}\right\}_{\alpha \in A} r$-accumulates to y_{0}. Since $y_{0} \notin F\left(x_{0}\right)$, then $\left(x_{0}, y_{0}\right) \notin G(F)$ and since $G(F)$ is strongly closed, there are open sets $U \subset X$ and $V \subset Y$ containing x_{0} and y_{0}, respectively, such that $(U \times \bar{V}) \cap G(F)=\emptyset$. But $x_{\alpha} \rightarrow x_{0}$ implies there exists an $\alpha_{0} \in \Lambda$ such that for every $\alpha \in \Lambda$ and $\alpha \geqq \alpha_{0}, x_{\alpha} \in U$, and $\left\{y_{\alpha}\right\}_{\alpha \in \Lambda} r$-accumulates to y_{0} implies there exists some $\alpha_{1} \in \Lambda$ and $\alpha_{1} \geqq \alpha_{0}$ such that $y_{\alpha_{1}} \in \bar{V}$. From this it follows that $\left(x_{a_{1}}, y_{a_{1}}\right) \in(U \times \bar{V}) \cap G(F)$ which is a contradiction. Hence F is upper semicontinuous.

Theorem 2.2. Let $F: X \rightarrow Y$ be a point compact multifunction and Y a locally H-closed (H-closed) space. If for each subset K, H-closed in $Y, F^{-1}(K)$ is closed in X then F has strongly closed graph.

Proof. Suppose Y is locally H-closed. Take any point $(x, y) \nsubseteq G(F)$. Then $y \notin F(x)$. Since Y is Hausdorff, $F(x)$ is compact and $y \notin F(x)$, there are disjoint open sets V_{1} and W in Y such that $y \in V_{1}$ and $F(x) \subset W$ [1, p. 225]. $V_{1} \cap W=\emptyset$ implies $\bar{V}_{1} \cap W=\emptyset$. On the other hand, there exists a neighbourhood V_{2} of y which is H-closed. Put $V=V_{1} \cap \dot{V}_{2}$. Then V is an open set containing y and $W \cap \bar{V}=\emptyset$. Since Y is Hausdorff and V_{2} is H-closed in Y, then V_{2} is closed in Y. Thus $\bar{V} \subset V_{2} . \bar{V}$ is a regularly closed subset in the H-closed set V_{2}. Therefore \bar{V} is H-closed in V_{2}, so \bar{V} is H-closed in Y. According to our assumption, $F^{-1}(\dot{\bar{V}})$
is closed in X. Put $U=X-F^{-1}(\bar{V})$. Then U is an open set in X containing x and $F(U) \cap \bar{V}=\emptyset$. This shows that $G(F)$ is strongly closed.

Theorem 2.3. Let $F: X \rightarrow Y$ be an almost upper semicontinuous point compact multifunction and Y Hausdorff. Then F has a strongly closed graph.

Proof. Let $(x, y) \notin G(F)$. Since $F(x)$ is compact, $y \notin F(x)$ and Y is Hausdorff, there are disjoint open sets V and W containing y and $F(x)$, respectively. We can write $\bar{V} \cap \stackrel{\circ}{W}=\emptyset$. Since F is almost upper semicontinuous there is an open set U in X containing x such that $F(U) \subset \stackrel{\circ}{\bar{W}}$. Now we have $F(U) \cap \bar{V}=\emptyset$. That is, $G(F)$ is strongly closed.

Corollary. Let $F: X \rightarrow Y$ be a point compact multifunction and Y an H-closed space. The following are equivalent:
(i) F is almost upper semicontinuous,
(ii) F has strongly closed graph,
(iii) For each subset K, H-closed relative to $Y, F^{-1}(K)$ is closed in X,
(iv) For each H-closed subset K of $Y, F^{-1}(K)$ is closed in X.

Proof. According to Theorem 2.3, (i) implies (ii). (ii) implies (iii), by Theorem 4.15 [4]. Since an H-closed subset of Y is H-closed relative to Y (the converse need not be true), the implication (iii) \Rightarrow (iv) is obvious.

Let us prove that (iv) implies (i). For any $x \in X$, let W be an open set containing $F(x) . \stackrel{\circ}{W}$ is a regularly open set containing $F(x) . Y-\stackrel{\circ}{W}$ is a regularly closed set. Since Y is H-closed then $Y-\frac{\circ}{W}$ is H-closed. Hence by (iv), $F^{-1}(Y-\stackrel{\circ}{W})$ is closed in X and $x \notin F^{-1}\left(Y-\frac{\circ}{W}\right)$. Thus there exists an open set U containing x such that $U \cap F^{-1}(Y-\stackrel{\circ}{W})=\emptyset$. This implies that $F(U) \subset \stackrel{\circ}{\bar{W}}$, that is, F is almost upper semicontinuous.

Our next result is a generalization of Theorem 11 in [3], which was proved for a single valued mapping.

Theorem 2.4. If $F: X \rightarrow Y$ is an open and closed multifunction from a regular space X into a c-compact space Y, and if $F^{-1}(y)$ is closed for each $y \in Y$, then F is upper semicontinuous.

Proof. According to Theorem 3.4, Corollary 3.5 [5] F has closed graph. For an open multifunction the condition closed graph and strongly closed graph are identical. Hence $F: X \rightarrow Y$ has a strongly closed graph and Y is c-compact, so by Theorem 2.1, F is upper semicontinuous.

Theorem 2.5. If $F: X \rightarrow Y$ is an upper semicontinuous point compact multifunction, then F is compact preserving.

Proof. Let K be a compact subset of X and suppose $\left\{W_{\alpha} \mid \alpha \in \Delta\right\}$ is an open cover of $F(K)$. Take any $x \in K$, then $F(x)$ is a compact subset of Y and $F(x) \subset$ $\subset F(K)$. Thus $\left\{W_{\alpha} \mid \alpha \in \Delta\right\}$ is an open cover of $F(x)$. Hence there is a finite subcover, say $\left\{W_{\alpha_{1}}(x), \ldots, W_{\alpha_{n}}(x)\right\}$. Now put $V(x)=\bigcup_{i=1}^{n} W_{\alpha_{i}}(x)$. $V(x)$ is an open set containing $F(x)$. Since F is upper semicontinuous, there exists an open set $U(x) \subset X$ containing x such that $F(U(x)) \subset V(x)$. Now $\{U(x) \mid x \in K\}$ is an open cover of K and K is a compact subset of X. Take $x_{1}, x_{2}, \ldots, x_{m} \in K$ such that $\left\{U\left(x_{i}\right) \mid\right.$ $i=1, \ldots, m\}$ is a subcover. Let $V\left(x_{1}\right), V\left(x_{2}\right), \ldots, V\left(x_{m}\right)$ be the open sets corresponding to $U\left(x_{1}\right), U\left(x_{2}\right), \ldots, U\left(x_{m}\right)$, respectively. Thus

$$
\begin{aligned}
& F(K) \subset F\left(\bigcup_{i=1}^{m} U\left(x_{i}\right)\right)=\bigcup_{i=1}^{m} F\left(U\left(x_{i}\right)\right) \subset \bigcup_{i=1}^{m} V\left(x_{i}\right)= \\
& \ell=\cup\left\{W_{\alpha_{1}}\left(x_{1}\right), \ldots, W_{\alpha_{n}}\left(x_{1}\right), \ldots, W_{\beta_{1}}\left(x_{m}\right), \ldots, W_{\beta_{s}}\left(x_{m}\right)\right\}
\end{aligned}
$$

That is, we have a finite subcover of $\left\{W_{\alpha} \mid \alpha \in \Delta\right\}$. Hence $F(K)$ is compact in Y.
Corollary. Let $F: X \rightarrow Y$ be an onto closed multifunction. If F has compact point inverses, then for each compact subset K of $Y F^{-1}(K)$ is compact in X.

Proof. Since $\left(F^{-1}\right)^{-1}=F$, then $F^{-1}: Y \rightarrow X$ is an upper semicontinuous point compact multifunction, hence F^{-1} is compact preserving.

Theorem 2.6. Let $F: X \rightarrow Y$ be a weakly upper semicontinuous point compact multifunction. Then F maps a compact subset K of X onto subset $F(K)$ quasi H-closed relative to Y.

Proof. The proof is the same as in Theorem 2.5.
Let $F: X \rightarrow Y$ be a multifunction. We can define a new multifunction $\bar{F}: X \rightarrow Y$ by setting $\bar{F}(x)=\overline{F(x)}$ for all $x \in X$. If Y is normal and $F: X \rightarrow Y$ is upper semicontinuous then $\bar{F}: X \rightarrow Y$ is upper semicontinuous [2]. We have the following new result.

Theorem 2.7. If $F: X \rightarrow Y$ is weakly upper semicontinuous, then $\bar{F}: X \rightarrow Y$ is weakly upper semicontinuous.

Proof. Let $x \in X$ and W an open set in Y containing $\bar{F}(x)$. Since $F(x) \subset$ $\subset \overline{F((x}=\bar{F}(x) \subset W$ and F is weakly upper semicontinuous there is an open set U in X containing x such that $F(U) \subset \bar{W}$. This implies that $\overline{F(U)} \subset \bar{W}$. On the
other hand

$$
\bar{F}(U)=\bigcup_{x \in U} \bar{F}(x)=\bigcup_{x \in U} \overline{F(x)} \subset \overline{F(U)}
$$

Hence $\bar{F}(U) \subset \bar{W}$, that is, \bar{F} is weakly upper semicontinuous.
Theorem 2.8. If $F: X \rightarrow Y$ is weakly upper semicontinuous and Y is regular, then the graph of \bar{F} is closed in $X \times Y$.

Proof. $\bar{F}: X \rightarrow Y$ is weakly upper semicontinuous, by Theorem 2.7. Now suppose $(x, y) \notin G(\bar{F}) . \quad y \notin \bar{F}(x)=\overline{F(x)}$. Since Y is regular, there are open sets V and W containing y and $\bar{F}(x)$, respectively, such that $V \cap W=\emptyset$. Hence $V \cap \bar{W}=\emptyset$. From the weakly upper semicontinuity of \bar{F}, we have an open set U in X containing x such that $\bar{F}(U) \subset \bar{W}$. Hence $\bar{F}(U) \cap V=\emptyset$. That is, $G(\bar{F})$ is closed in $X \times Y$.

Corollary.[5, Theorem 3.3] If $F: X \rightarrow Y$ is a point closed upper semicontinuous multifunction into a regular space, then F has a closed graph.

Acknowledgement. The author wishes to thank the referee whose comments improved the exposition of the paper.

References

[1] J. Dugundi, Topology, Allyn and Bacon (Boston, Mass., 1966).
[2] S. P. Franklin and R. H. Sorgenfrey, Closed and image-closed relations, Pacific J. Math., 19 (1966), 433-439.
[3] L. Herrington and P. Long, Characterizations of c-compact spaces, Proc. Amer. Math. Soc., 52 (1975), 417-426.
[4] J. E. Joseph, Multifunctions and graphs, Pacific J. Math., 79 (1978), 509-529.
[5] R. E. Smithson, Subcontinuity for multifunctions, Pacific J. Math., 61 (1975), 283-288.

HACETTEPE UNIVERSITY

DEPARTMENT OF MATHEMATICS
BEYTEPE, ANKARA, TURKEY

