On variation spaces of harmonic maps into spheres

A LEE and G. TÓTH

1. Introduction

Given a harmonic map $f: M \rightarrow S^{n}$ [3] of a compact oriented Riemannian manifold M into the Euclidean n-sphere $S^{n}, n \geqq 2$, a vector field v along f, i.e. a section of the pull-back bundle $\mathscr{F}=f^{*}\left(T\left(S^{n}\right)\right.$), gives rise to a (one-parameter, geodesic) variation $f_{t}=\operatorname{expo}(t v): M \rightarrow S^{n}, t \in \mathbf{R}$, where $\exp : T\left(S^{n}\right) \rightarrow S^{n}$ is the exponential map. The element $v \in C^{\infty}(\mathscr{F})$ is said to be a harmonic variation if f_{t} is harmonic for all $t \in \mathbf{R}$ and the set of all harmonic variations v (or the variation space) of f is denoted by $V(f) \subset C^{\infty}(\mathscr{F})$. Then [11] $v \in V(f)$ if and only if $\|v\|=$ const. and
(i) $\nabla^{2} v=\operatorname{trace} R\left(f_{*}, v\right) f_{*}$ (i.e. v is a Jacobi field along f [3]),
(ii) trace $\left\langle f_{*}, \nabla v\right\rangle=0$,
where \langle,$\rangle and \nabla$ are the induced metric and connection of the Riemannianconnected bundle $\mathscr{F} \otimes \Lambda^{*}\left(T^{*}(M)\right), \nabla^{2}=$ trace $\nabla \circ \nabla$ [9], R is the curvature tensor of S^{n} and the differential f_{*} of f is considered as a section of $\mathscr{F} \otimes T^{*}(M)$. Denote by $K(f)$ the linear space of all vector fields v along f satisfying (i) and (ii). The equation (i) being (strongly) elliptic [9] $\operatorname{dim} K(f)<\infty$ and $V(f)=\{v \in K(f) \mid$ $\mid\|v\|=$ const. $\} \subset K(f)$ is a subset with the obvious property $\mathbf{R} V_{0}(f)=V(f)$, where $V_{0}(f)=\{v \in K(f) \mid\|v\|=1\}$.

The purpose of this paper is to give a geometric description of the variation space $V(i) \subset K(i)\left(\cong \mathbf{R}^{N}\right)$ of the canonical inclusion $i: S^{m} \rightarrow S^{n}$, where $N=$ $=m(m+1) / 2+(n-m)(m+1)$. In Section 2 we collect the necessary tools from matrix theory used in the sequel, especially we describe the singular value decomposition of rectangular matrices (see e.g. [7]). In Section 3 the problem of determining $V_{0}(i)$ is reduced to the geometric characterization of an (algebraic) set of matrices. Then the singular value decomposition of these matrices are exploited to get a description of $V_{0}(i) \subset K(i)$ as a set of orbits (under a linear Lie group action) which contains a (twisted) simplex as a global section (Theorem 1). In particular, we prove that
$V\left(\mathrm{id}_{S^{* r-1}}\right), r \in \mathrm{~N}$, is the double cone over the irreducible Hermitian symmetric space $S O(2 r) / U(r)\left(=V_{0}\left(\mathrm{id}_{S^{2 r-1}}\right)\right)$. (Note that $V\left(\mathrm{id}_{S^{2 r}}\right)=0$ because $\chi\left(S^{2 r}\right)=2$ [11].) In Section 4 we first give an alternative description of the linear space $K(f)$. In particular, we obtain that there is a one-to-one correspondence between the elements of $V_{0}(f)$ and the orthogonal pairs $f, f^{1}: M \rightarrow S^{n}$ of harmonic maps with the same energy density $e(f)=e\left(f^{1}\right)$ [3]. Second, as an example, we determine $K(f)$ for the Veronese surface $f: S^{2} \rightarrow S^{4}$ and prove that $K(f) \cong K\left(\mathrm{id}_{S^{4}}\right)$ and $V(f)=V\left(\mathrm{id}_{S^{4}}\right)=0$ hold.

Throughout this paper all manifolds, maps, bundles, etc. will be smooth, i.e. of class C^{∞}. The report [3] is our general reference for harmonic maps though we adopt the sign conventions of [6].

We thank Professor Eells for his valuable suggestions and encouragement during the preparation of this work.

2. Preliminaries from matrix theory

First we fix some notations used in the sequel. Denote by $M(p, q)$ the linear space of $(p \times q)$ matrices and, as usual, let I_{p} and 0_{p} the unit and zero elements of $M(p, p)$. A matrix $A \in M(p, q)$ with entries $a_{i j}, i=1, \ldots, p, j=1, \ldots, q$, is said to be (rectangular) diagonal if

$$
a_{i j}= \begin{cases}0, & \text { if } i \neq j, i=1, \ldots, p, j=1, \ldots, q \\ \sigma_{i}, & \text { if } \quad i=j, i=1, \ldots, \min (p, q)\end{cases}
$$

holds. We write $A=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{d}\right)_{q}^{p}$ with $d=\min (p, q)$ and, in case $p=q$, we omit the indices p and q.

The singular value decomposition of rectangular matrices is given in the following theorem. (For the proof, see [7].)

Theorem A. For any matrix $B \in M(p, q)$ there exist orthogonal matrices $V \in O(p)$ and $U \in O(q)$ such that

$$
V^{\mathrm{T}} B U=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{d}\right)_{q}^{p}
$$

with $\sigma_{i} \geqq 0, i=1, \ldots, d=\min (p, q)$. The matrices V, U and the values σ_{i} are determined by the relations:

$$
\begin{aligned}
& \left(\mathrm{A}_{1}\right) V^{\mathrm{T}} B B^{\mathrm{T}} V=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{d}^{2}, \ldots, \sigma_{p}^{2}\right) \\
& \left(\mathrm{A}_{2}\right) U^{\mathrm{T}} B^{\mathrm{T}} B U=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{d}^{2}, \ldots, \sigma_{q}^{2}\right) \\
& \left(\mathrm{A}_{3}\right) B U=V \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{d}\right)_{d}^{p}
\end{aligned}
$$

where $\sigma_{i}=0$ for $d<i \leqq \max (p, q)$.

Remark. The numbers $\sigma_{i} \geqq 0, i=1, \ldots, d$, are called the singular values of B. Clearly, V and U can always be chosen such that $\sigma_{1} \geqq \sigma_{2} \geqq \ldots \geqq \sigma_{d}$ holds.

Denote by $\Lambda_{r} \in s o(2 r)$ the skew-symmetric matrix

$$
\Lambda_{r}=\operatorname{diag}\left(\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right], \ldots,\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\right)
$$

and put $\Lambda_{1}=\Lambda$. In the next theorem we collect some properties of skew-symmetric matrices (cf. [8] pp. 151, 231).

Theorem B. For any matrix $\mathscr{J} \in \operatorname{so}(p)$ we have
(B_{1}) rank $\mathscr{J}=2 r \leqq p$;
$\left(\mathrm{B}_{2}\right)$ The $2 r$ nonzero eigenvalues of \mathscr{J} appear in pairs $\lambda_{2 i-1}=\lambda_{2 i}= \pm \sqrt{-1} \sigma_{i}$ with $\sigma_{i}>0, i=1, \ldots, r$, while zero is an eigenvalue with multiplicity $p-2 r$;
$\left(\mathrm{B}_{3}\right)$ There exists $U \in O(p)$ such that

$$
\begin{equation*}
U^{\mathrm{T}} \mathscr{J} U=\operatorname{diag}\left(0_{p-2 r}, \sigma_{1} \Lambda, \ldots, \sigma_{r} \Lambda\right) \tag{1}
\end{equation*}
$$

or equivalently

$$
U^{\mathrm{T}} \mathscr{J} U=\left\{\begin{array}{l}
\operatorname{diag}\left(\hat{\sigma}_{1} \Lambda, \ldots, \hat{\sigma}_{p / 2} \Lambda\right), \text { if } p \text { is even, } \\
\operatorname{diag}\left(0, \hat{\sigma}_{1} \Lambda, \ldots, \hat{\sigma}_{[p / 2]} \Lambda\right), \text { if } p \text { is odd, }
\end{array}\right.
$$

where $\hat{\sigma}_{1}=\ldots=\hat{\sigma}_{[(p-2 r) / 2]}=0$ and $\hat{\sigma}_{[(p-2 r) / 2]+i}=\sigma_{i}, i=1, \ldots, r$;
$\left(\mathrm{B}_{4}\right)$ With the same matrix $U \in O(p)$ we have

$$
U^{\mathrm{T}}\left(-\mathscr{J}^{2}\right) U=\left\{\begin{array}{l}
\operatorname{diag}\left(\hat{\sigma}_{1}^{2} I_{2}, \ldots, \hat{\sigma}_{p / 2}^{2} I_{2}\right) \text { if } p \text { is even, } \tag{2}\\
\operatorname{diag}\left(0, \hat{\sigma}_{1}^{2} I_{2}, \ldots, \hat{\sigma}_{[p / 2]}^{2} I_{2}\right), \text { if } p \text { is odd, }
\end{array}\right.
$$

in particular, the nonzero singular values of \mathscr{J} have even multiplicities.

3. Variation space of the canonical inclusion $i: S^{m} \rightarrow S^{n}$

Let $i: S^{m} \rightarrow S^{n}$ be the canonical inclusion and let $W^{1}, \ldots, W^{k}, k=n-m$, denote the system of orthonormal parallel sections of the normal bundle of i defined by the standard base vectors $e_{m+2}, \ldots, e_{n+1} \in \mathbf{R}^{n+1}$.

According to a result of [11] $v \in K(i)$ if and only if the tangential part \mathscr{J} of v is a Killing vector field on S^{m} and there exist vectors $b_{1}, \ldots, b_{k} \in \mathbf{R}^{m+1}$ such that the orthogonal decomposition

$$
v_{x}=\mathscr{J}_{x}+\sum_{j=1}^{\cdot k}\left\langle b_{j}, x\right\rangle W_{x}^{j}, \quad x \in S^{m}
$$

is valid. Hence the linear map $\Psi: K(i) \rightarrow s o(m+1) \times M(k, m+1)$ defined by $\Psi(v)=$ $=(\mathscr{J}, B), v \in K(i)$, where \mathscr{J} is the tangential part of v and $B \in M(k, m+1)$
consists of the row vectors $b_{1}, \ldots, b_{k} \in \mathbf{R}^{m+1}$ occurring in the decomposition of v above, is a linear isomorphism. In what follows, we identify $K(i)$ and so $(m+1) \times M(k, m+1)$ via Ψ. Further, $V(i)=\mathbf{R} V_{0}(i) \subset K(i)$, where $V_{0}(i)=$ $=\{v \in K(i)\| \| v \|=1\}$. Thus, for $v=(\mathscr{\mathscr { J }}, B) \in V_{0}(i)$, we have

$$
1=\left\|v_{x}\right\|^{2}=\left\|\mathscr{J}_{x}\right\|^{2}+\sum_{j=1}^{k}\left\langle b_{j}, x\right\rangle^{2}=\left\langle-\mathscr{J}^{2} x, x\right\rangle+\left\langle B^{1} B x, x\right\rangle, \quad x \in S^{m},
$$

i.e.

$$
V_{0}(i)=\left\{(\mathscr{f}, B) \in s o(m+1) \times M(k, m+1) \mid-\mathscr{J}^{2}+B^{\mathrm{T}} B=I_{m+1}\right\} .
$$

The objective of this section is to give a geometric description of the set $V_{0}(i) \subset$ $\subset K(i)$. Before stating our main theorem we introduce some notations. For the given positive integers m and $n, m \leqq n$, set

$$
t= \begin{cases}\min ((m+1) / 2,[k / 2]), & \text { if } m+1 \text { is even, } \\ \min (m / 2,[(k-1) / 2]), & \text { if } m+1 \text { is odd }\end{cases}
$$

where $k=n-m$, and define

$$
\Delta_{t}=\left\{\left(\sigma_{1}, \ldots, \sigma_{t}\right) \in \mathbf{R}^{t} \mid 1 \geqq \sigma_{1} \geqq \ldots \geqq \sigma_{t} \geqq 0\right\} .
$$

So $\Delta_{t} \subset \mathbf{R}^{t}$ is a (linear) simplex which reduces to a point if $t=0$. (Note that $t \geqq-1$ and equality holds if and only if $m=n$ is even, in which case $V_{0}(i)=\emptyset[11]$ and we put $\Delta_{-1}=\emptyset$.)

A linear representation of the Lie group $O(m+1) \times O(k)$ on the vector space $K(i)=s o(m+1) \times M(k, m+1)$ is given by

$$
(U, V) \cdot(\mathscr{I}, B)=\left(U \mathscr{J} U^{\mathrm{T}}, V \dot{B} U^{\mathrm{T}}\right),
$$

$(U, V) \in O(m+1) \times O(k),(\mathscr{F}, B) \in s o(m+1) \times M(k, m+1)$. Clearly, the subset $V_{0}(i) \subset$ $\subset K(i)$ is invariant, i.e. $V_{0}(i)$ is the union of orbits crossing $V_{0}(i)$. Finally we introduce certain subgroups of $O(m+1) \times O(k)$ which will be the isotropy subgroups at points of $V_{0}(i)$. For given nonnegative integers $a_{0}, b_{0}, c_{1}, c_{2}, \ldots, c_{s+1}$ with $m+1=a_{0}+2 c_{1}+\ldots+2 c_{s+1}$ and $k=a_{0}+2 c_{1}+\ldots+2 c_{s}+b_{0}$ define the subgroups

$$
\begin{gathered}
\mathscr{G}\left(c_{1}, \ldots, c_{s+1}\right)=\left\{\left(A_{0}, C_{1}, \ldots, C_{s+1} ; A_{0}, C_{1}, \ldots, C_{s}, B_{0}\right) \in O(m+1) \times O(k) \mid\right. \\
\left.A_{0} \in O\left(a_{0}\right), \quad B_{0} \in O\left(b_{0}\right), C_{i} \in U\left(c_{i}\right), \quad i=1, \ldots, s+1\right\},
\end{gathered}
$$

where $U\left(c_{i}\right)$ is considered as a subgroup of $S O\left(2 c_{i}\right)$ via the canonical embedding $U\left(c_{i}\right) \rightarrow S O\left(2 c_{i}\right), i=1, \ldots, s+1$. The isotropy type i.e. the set of all conjugacy classes of a subgroup $\mathscr{G} \subset O(m+1) \times O(k)$ is denoted by (\mathscr{G}). The main result of this section is the following:

Theorem 1. There exists an embedding $\Phi: \Delta_{t} \rightarrow K(i)$ such that $\Phi\left(\Delta_{i}\right)$ is a global section of the invariant subset $V_{0}(i) \cdot\left(i . e . ~ \Phi\left(\Delta_{t}\right) \subset V_{0}(i)\right.$ and any orbit on
$V_{0}(i)$ cuts $\Phi\left(\Delta_{t}\right)$ at exactly one point $)$. Moreover, for $\sigma=\left(\sigma_{0}, \ldots, \sigma_{0}, \sigma_{1}, \ldots, \sigma_{1}, \ldots\right.$, $\left.\sigma_{s+1}, \ldots, \sigma_{s+1}\right) \in \Delta_{t}$, where $1=\sigma_{0}>\sigma_{1}>\ldots>\sigma_{s}>\sigma_{s+1}=0$ and σ_{i} occurs c_{i} times in $\sigma, i=0, \ldots, s+1$, the isotropy type of the orbit through $\Phi(\sigma)$ is $\left(\mathscr{G}\left(c_{1}, \ldots, c_{s}, c_{s+1}+\right.\right.$ $\left.+([(m+1) / 2]-t)^{+}\right)\left({ }^{+}=\right.$positive part $)$or equivalently this orbit has the form

$$
\left.\left.(O(m+1) \times O(k)) / \mathscr{G}\left(c_{1}, \ldots, c_{s}, c_{s+1}+([m+1) / 2]\right]-t\right)^{+}\right) .
$$

In particular, for each open face Δ of the simplex Δ_{t} the orbits through $\Phi(\Delta)$ have the same type.

Remarks 1. Each orbit consists of 1,2 or 4 components. More precisely, the subgroups $\mathscr{G}\left(c_{1}, \ldots, c_{s+1}\right) \subset S O(m+1) \times S O(k)$ being connected, the orbit $(O(m+1) \times O(k)) / \mathscr{G}\left(c_{1}, \ldots, c_{s}, c_{s+1}+([(m+1) / 2]-t)^{+}\right)$has N components, where

$$
N= \begin{cases}1, & \text { if } k>0 \text { and } a_{0} b_{0}>0, \\ 2, & \text { if } k>0, \quad a_{0} b_{0}=0 \text { and } a_{0}+b_{0}>0 \text { or if } k=0, \\ 4, & \text { if } k>0 \text { and } a_{0}=b_{0}=0 .\end{cases}
$$

2. By a result of [13] for any locally rigid harmonic embedding $f: M \rightarrow S^{n}$ we have $V(f)=V(i)$, where $i: S^{m} \rightarrow S^{n}$ is the inclusion and m is the dimension of the least totally geodesic submanifold of S^{n} containing the image of f. Thus Theorem 1 gives a description of the variation space of all locally rigid harmonic embeddings.

The proof of Theorem 1 is broken up into a few lemmas. Let $(\mathscr{J}, B) \in V_{0}(i)$ be fixed. Then, by Theorem B, there exists $U \in O(m+1)$ such that $U^{\mathbf{T}} \mathscr{J} U$ and $U^{\mathrm{T}}\left(-\mathscr{J}^{2}\right) U$ have the form (1') and (2), resp., with

$$
0 \leqq \hat{\sigma}_{1} \leqq \ldots \leqq \hat{\sigma}_{[(m+1) / 2]}
$$

Thus, by $B^{\mathrm{T}} B=I_{m+1}+\mathscr{J}^{2}$, we obtain

$$
U^{\mathrm{T}} B^{\mathrm{T}} B U= \begin{cases}\operatorname{diag}\left(\sigma_{1}^{2} I_{2}, \ldots, \sigma_{[(m+1) / 2]}^{2} I_{2}\right), & \text { if } m+1 \text { is even } \\ \operatorname{diag}\left(1, \sigma_{1}^{2} I_{2}, \ldots, \sigma_{[(m+1) / 2]}^{2} I_{2}\right), & \text { if } m+1 \text { is odd }\end{cases}
$$

where $\sigma_{i}^{2}=1-\hat{\sigma}_{i}^{2}, i=1, \ldots,[(m+1) / 2]$. Clearly, $1 \geqq \sigma_{1}^{2} \geqq \ldots \geqq \sigma_{[(m+1) / 22]}^{2} \geqq 0$ is satisfied. Then the values $\sigma_{i}^{2}, i=1, \ldots,[(m+1) / 2]$, occurring twice in $B^{\mathrm{T}} B$, are the eigenvalues of the positive semidefinite matrix $B^{\mathbf{T}} B$. The nonzero eigenvalues of $B^{\mathrm{T}} B$ and $B B^{\mathrm{T}}$ being the same, the system of eigenvalues of $B B^{\mathrm{T}} \in M(k, k)$ can be obtained from that of $B^{\mathrm{T}} B \in M(m+1, m+1)$ by supplementing or omitting $|k-(m+1)|$ zeros according as $k \geqq m+1$ or $k<m+1$. In the latter case, for some index $t_{0} \leqq[k / 2], \sigma_{i}=0, i>t_{0}$, must be valid. The determination of the minimal value of t_{0} can be done by making distinction according to the parity of k. Hence
we have

$$
\begin{gathered}
U^{\top} B^{T} \cdot B U= \\
=\left\{\begin{array}{l}
\operatorname{diag}\left(\sigma_{1}^{2} I_{2}, \ldots, \sigma_{(m+1) / 2}^{2} I_{2}\right) \text { for } k \geqq m+1, m+1 \text { even, } \\
\operatorname{diag}\left(\sigma_{1}^{2} I_{2}, \ldots, \sigma_{k / 2}^{2} I_{2}, 0_{m+1-k}\right) \text { for } k \text { even, } k<m+1, m+1 \text { even, } \\
\operatorname{diag}\left(\sigma_{1}^{2} I_{2}, \ldots, \sigma_{[k / 2]}^{2} I_{2}, 0_{m+1-2[k / 2]}\right) \text { for } k \text { odd, } k<m+1, m+1 \text { even, } \\
\operatorname{diag}\left(1, \sigma_{1}^{2} I_{2}, \ldots, \sigma_{[(m+1) / 2]}^{2} I_{2}\right) \text { for } k \geqq m+1, m+1 \text { odd, } \\
\operatorname{diag}\left(1, \sigma_{1}^{2} I_{2}, \ldots, \sigma_{(k-1) / 2}^{2} I_{2}, 0_{m+1-k}\right) \text { for } k \text { odd, } k<m+1, m+1 \text { odd, } \\
\operatorname{diag}\left(1, \sigma_{1}^{2} I_{2}, \ldots, \sigma_{[(k-1) / 2]}^{2} I_{2}, 0_{m-2[(k-1) / 2]}\right) \text { for } k \text { even, } k<m+1, m+1 \text { odd. } .
\end{array}\right.
\end{gathered}
$$

A case-by-case verification shows that the minimal value of t_{0} is the number t defined before Theorem 1. Thus we obtain

$$
U^{\mathrm{T}} B^{\mathrm{T}} B U= \begin{cases}\operatorname{diag}\left(\sigma_{1}^{2} I_{2}, \ldots, \sigma_{t}^{2} I_{2}, 0_{m+1-2 t}\right), & \text { if } m+1 \text { is even } \\ \operatorname{diag}\left(1, \sigma_{1}^{2} I_{2}, \ldots, \sigma_{t}^{2} I_{2}, 0_{m-2 t}\right), & \text { if } m+1 \text { is odd }\end{cases}
$$

and consequently (1^{\prime}) has the form

$$
U^{\mathrm{T}} \mathscr{J} U= \begin{cases}\operatorname{diag}\left(\hat{\sigma}_{1} \Lambda, \ldots, \hat{\sigma}_{t} \Lambda, \Lambda_{(m+1-2 t) / 2}\right), & \text { if } m+1 \text { is even, } \\ \operatorname{diag}\left(0, \hat{\sigma}_{1} \Lambda, \ldots, \hat{\sigma}_{t} \Lambda, \Lambda_{(m-2 t) / 2}\right), & \text { if } m+1 \text { is odd. }\end{cases}
$$

Lemma 1. Let $(\mathscr{F}, B) \in K(i)$. Then $(\mathscr{J}, B) \in V_{0}(i)$ if and only if there exists $(U, V) \in O(m+1) \times O(k)$ such that $(\mathscr{J}, B)=\left(U \mathscr{J}(\hat{\sigma}) U^{\mathrm{T}}, V B(\sigma) U^{\mathrm{T}}\right.$, where

$$
\begin{gathered}
\mathscr{J}(\hat{\sigma})= \begin{cases}\operatorname{diag}\left(\hat{\sigma}_{1} \Lambda, \ldots, \hat{\sigma}_{t} \Lambda, \Lambda_{(m+1-2 t) / 2}\right) & \text { if } m+1, \text { is even } \\
\operatorname{diag}\left(0, \hat{\sigma}_{1} \Lambda, \ldots, \hat{\sigma}_{t} \Lambda, \Lambda_{(m-2 t) / 2}\right), & \text { if } m+1, \text { is odd },\end{cases} \\
B(\sigma)=\left\{\begin{array}{l}
\operatorname{diag}\left(\sigma_{1} I_{2}, \ldots, \sigma_{t} I_{2}, 0_{d-2 t}\right)_{k}^{m+1}, \\
\operatorname{if} m+1, \text { is even }, \\
\operatorname{diag}\left(1, \sigma_{1} I_{2}, \ldots, \sigma_{t} I_{2}, 0_{d-1-2 t}\right)_{k}^{m+1}, \\
\text { if } m+1, \text { is odd },
\end{array}\right.
\end{gathered}
$$

with $\sigma \in \Delta_{i}, \hat{\sigma}_{i}=\sqrt{1+\sigma_{i}^{2}}, i=1, \ldots, t$, and $d=\min (m+1, k)$.
Proof. If $(\mathscr{J}, B) \in V_{0}(i)$ then there exists $U \in O(m+1)$ such that $U^{\mathrm{T}} B^{\mathrm{T}} B U=$ $=B(\sigma)^{\mathrm{T}} B(\sigma)$ and $U^{\mathrm{T}} \mathscr{J} U=\mathscr{J}(\hat{\sigma})$ with $0 \leqq \hat{\sigma}_{1} \leqq \ldots \leqq \hat{\sigma}_{[(m+1) / 2]}$. The diagonal entries of $U^{\mathrm{T}} B^{\mathrm{T}} B U$ are the eigenvalues of $B^{\mathrm{T}} B$ and hence, by Theorem A, there exists $V \in O(k)$ such that the pair (U, V) perform the singular value decomposition of B, i.e. we have $V^{\mathrm{T}} B U=B(\sigma)$. Thus, $\left(U^{\mathrm{T}} \mathscr{\mathscr { L }} U, V^{\mathrm{T}} B U\right)=(\mathscr{f}(\hat{\sigma}), B(\sigma)), \sigma \in \Delta_{\mathrm{t}}$. The converse being obvious the proof is finished.

By the lemma above the map $\Phi: \Delta_{t} \rightarrow K(i), \Phi(\sigma)=(\mathscr{F}(\hat{\sigma}), B(\sigma)), \sigma \in \Delta_{t}$, is an embedding with $(O(m+1) \times O(k)) \cdot \Phi\left(\Delta_{t}\right)=V_{0}(i)$. Moreover, the eigenvalues of \mathscr{J} and the singular values of B are invariants characterizing the orbit through (\mathscr{f}, B) uniquely. Thus $\Phi\left(\Delta_{t}\right)$ is a global section on $V_{0}(i)$ which accomplishes the proof of the first statement of Theorem 1.

Let $\sigma=\left(\sigma_{0}, \ldots, \sigma_{0}, \sigma_{1}, \ldots, \sigma_{1}, \ldots, \sigma_{s+1}, \ldots, \sigma_{s+1}\right) \in \Delta_{t}$ be fixed with $1=\sigma_{0}>$ $>\sigma_{1}>\ldots>\sigma_{s}>\sigma_{s+1}=0$ and σ_{i} occurs c_{i} times in $\sigma, i=0, \ldots, s+1$. It remains to compute the isotropy type of the orbit through $\Phi(\sigma)$. The isotropy subgroup at $\Phi(\sigma)$ consists of pairs (U, V) such that $U \mathscr{J}(\hat{\sigma})=\mathscr{F}(\hat{\sigma}) U$ and $V B(\sigma)=B(\sigma) U$. First we study the second relation. Consider $B(\sigma) \in M(k, m+1)$ as a matrix

$$
B(\sigma)=\left[\begin{array}{ll}
\Sigma & 0 \\
0 & 0
\end{array}\right],
$$

where $\quad \Sigma=\operatorname{diag}\left(\sigma_{0} I_{a_{0}} \sigma_{1} I_{2 c_{1}}, \cdots, \sigma_{s} I_{2 c_{s}}\right) \in M(r, r), r=a_{0}+2 \sum_{i=1}^{s} c_{i}$,

$$
a_{0}=\left\{\begin{array}{l}
2 c_{0}, \text { if } m+1 \text { is even, } \\
2 c_{0}+1, \text { if } m+1 \text { is odd, }
\end{array}\right.
$$

and 0 on the right lower corner is of size $(k-r) \times(m+1-r)$.
Lemma 2. Let $(U, V) \in O(m+1) \times O(k)$ such that $V B(\sigma)=B(\sigma) U$ holds. Then we have $V=\operatorname{diag}\left(A_{0}, C_{1}, \ldots, C_{s}, B_{0}\right)$ and $U=\operatorname{diag}\left(A_{0}, C_{1}, \ldots, C_{s}, C_{s+1}\right)$, where $A_{0} \in O\left(a_{0}\right), B_{0} \in O(k-r), C_{i} \in O\left(2 c_{i}\right), i=1, \ldots, s, C_{s+1} \in O(m+1-r)$.

Proof. Let $V \in O(k)$ and $U \in O(m+1)$ have the partitioned forms (conformal to that of $B(\sigma)$ above):

$$
V=\left[\begin{array}{ll}
V_{0} & R \\
S & B_{0}
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{ll}
U_{0} & P \\
Q & C_{s+1}
\end{array}\right],
$$

where $V_{0}, U_{0} \in M(r, r), B_{0} \in M(k-r, k-r), C_{s+1} \in M(m+1-r, m+1-r)$. (The size of C_{s+1} can be expressed as $\left.m+1-r=2 c_{s+1}+2([(m+1) / 2]-t)^{+}\right)$. Substituting these into the equations $V B(\sigma)=B(\sigma) U, V V^{\mathrm{T}}=I_{k}, U U^{\mathrm{T}}=I_{m+1}$ we obtain $R=0$, $S=0, V_{0} \in O(r), B_{0} \in O(k-r)$ and $P=0, Q=0, U_{0} \in O(r), C_{s+1} \in O(m+1-r)$. Thus the first equation reduces to $V_{0} \Sigma=\Sigma U_{0}$, i.e. by det $\Sigma=\sigma_{1}^{2 c_{1}} \ldots \sigma_{s}^{2 c_{s}}>0, V_{0}=\Sigma U_{0} \Sigma^{-1}$. Substituting this into the orthogonality relation $V_{0}^{\tau} V_{0}=I_{r}$ we get $U_{0} \Sigma^{2}=\Sigma^{2} U_{0}$ which gives for $U_{0}=\left(C_{i j}\right), C_{00} \in M\left(a_{0}, a_{0}\right), C_{i 0} \in M\left(2 c_{i}, a_{0}\right), C_{0 j} \in M\left(a_{0}, 2 c_{j}\right), C_{i j} \in$ $\in M\left(2 c_{i}, 2 c_{j}\right), i, j=1, \ldots, s$, the relations $C_{i j}=0$, if $i \neq j$. Hence, using the notations $C_{00}=A_{0}$ and $C_{i i}=C_{i}, i=1, \ldots, s$, we obtain $U_{0}=\operatorname{diag}\left(A_{0}, C_{1}, \ldots, C_{s}\right)$ with $A_{0} \in O\left(a_{0}\right), C_{i} \in O\left(2 c_{i}\right), i=1, \ldots, s$. As U_{0} and Σ commute we have $V_{0}=U_{0}$ which accomplishes the proof.

Consider now the second equation $U \mathscr{J}(\hat{\sigma})=\mathscr{J}(\hat{\sigma}) U$, where U has the form given in Lemma 2. Clearly, this equation is satisfied if and only if $C_{i} \in Z\left(\Lambda_{c_{1}}\right)$, $i=1, \ldots, s, C_{s+1} \in Z\left(\Lambda_{(m+1-r) / 2}\right)$, where $Z\left(\Lambda_{p}\right)$ denotes the centralizer of Λ_{p} in $O(2 p)$.

Lemma 3. The centralizer $Z\left(\Lambda_{p}\right) \subset O(2 p)$ is connected and there exists $U_{0} \in O(2 p)$ such that $\operatorname{Ad}\left(U_{0}\right) Z\left(\Lambda_{p}\right)=U(p) \subset S O(2 p)$, where Ad denotes the adjoint representation of $O(2 p)$.

Proof. It is well-known that $Z\left(\Lambda_{p}\right) \subset S O(2 p)$ (cf. [8], Ch. IV. § 29, p. 248). First we prove that $Z\left(\Lambda_{p}\right) \subset S O(2 p)$ is connected. Clearly, $\exp \left((\pi / 2) \Lambda_{p}\right)=\Lambda_{p}$, where $\exp : s o(2 p) \rightarrow S O(2 p)$ is the exponential map. Hence $T=\overline{\exp \left(\mathbf{R} \Lambda_{p}\right)} \subset S O(2 p)$ is a toroidal subgroup which contains Λ_{p}, i.e. its centralizer $Z(T)$ is contained in $Z\left(\Lambda_{p}\right)$. On the other hand, if $U \in Z\left(\Lambda_{p}\right)$ then the geodesics $s \mapsto \exp \left((\pi / 2) s \Lambda_{p}\right) \cdot U$, $s \mapsto U \cdot \exp \left((\pi / 2) s \Lambda_{p}\right), s \in \mathbf{R}$, (with respect to a biinvariant metric on $S O(2 p)$) have common tangent vector at $s=0$, i.e. $\exp \left((\pi / 2) s \Lambda_{p}\right) U=U \exp \left((\pi / 2) s \Lambda_{p}\right)$ which implies that $U \in Z(T)$. Thus $Z\left(\Lambda_{p}\right)=Z(T)$ and hence connected (cf. [4], Cor. 2.8. p. 287). Finally, let

$$
\mathscr{J}_{p}=\left[\begin{array}{rr}
0_{p} & I_{p} \\
-I_{p} & 0_{p}
\end{array}\right]
$$

and choose $U_{0} \in O(2 p)$ with $\operatorname{Ad}\left(U_{0}\right) \Lambda_{p}=\mathscr{F}_{p}$. Then $\operatorname{Ad}\left(U_{0}\right) Z\left(\Lambda_{p}\right)=Z\left(\operatorname{Ad}\left(U_{0}\right) \Lambda_{p}\right)=$ $=Z\left(\mathscr{F}_{p}\right)$ and the fixed point set of the automorphism $\operatorname{Ad}\left(\mathscr{J}_{p}\right)$ of $S O(2 p)$ is $Z\left(\mathscr{J}_{p}\right)$. It is known that $Z\left(\mathscr{F}_{p}\right)=U(p) \subset S O(2 p)([4], \mathrm{p} .453-454)$ which accomplishes the proof.

By Lemmas $1-3,(U, V)$ belongs to the isotropy subgroup at $\Phi(\sigma)$ if and only if $(U, V) \in O(m+1) \times O(k)$ is conjugate to an element of $\mathscr{G}\left(c_{1}, \ldots, c_{s}, c_{s+1}+\right.$ $\left.+([(m+1) / 2]-t)^{+}\right)$(under a conjugation which does not depend on (U, V)) which completes the proof of Theorem 1.

Example (Variation space of the identity of odd spheres). Consider the special case when $m=n=2 r-1$ odd. Then $t=0$ and $V_{0}\left(\mathrm{id}_{s^{2 r-1}}\right)$ reduces to a single orbit through $\Lambda_{r} \in s o(2 r)$ under the adjoint representation of $O(2 r)$ on $s o(2 r)$. We claim that this orbit is a disjoint union

$$
\operatorname{Ad}(S O(2 r)) \Lambda_{r} \cup \operatorname{Ad}(S O(2 r)) \Lambda_{r}^{-}
$$

where $\Lambda_{r}^{-}=\operatorname{diag}(\Lambda, \ldots, \Lambda,-\Lambda) \in \operatorname{so}(2 r)$. Indeed, denoting $R=\operatorname{diag}(1, \ldots, 1,-1) \in$ $\in O(2 r)$, we have $R \Lambda_{r} R=\Lambda_{r}^{-}$and hence if $U \in O(2 r)$ such that $\operatorname{Ad}(U) \Lambda_{r}=\Lambda_{r}^{-}$ then $\operatorname{Ad}(R U) \Lambda_{r}=\Lambda_{r}$ which implies $R U \in S O(2 r)$, i.e. det $U=-1$.

The Killing form of $s o(2 r)$ is a negative definite Ad-invariant scalar product on $s o(2 r)$ and so it follows easily that any ray in $s o(2 r)$ starting at the origin cuts the orbit $\operatorname{Ad}(S O(2 r)) \Lambda_{r}$ (or $\left.\operatorname{Ad}(S O(2 r)) \Lambda_{r}^{-}\right)$at most once.

Case I: r is even. Then $\operatorname{Ad}\left(U_{0}\right) \Lambda_{r}=-\Lambda_{r}$ with $U_{0}=\operatorname{diag}(1,-1,1,-1, \ldots$, $\ldots, 1,-1) \in S O(2 r)$, i.e. the orbit $\operatorname{Ad}(S O(2 r)) \Lambda_{r}$ (and $\operatorname{Ad}(S O(2 r)) \Lambda_{r}^{-}$) is central symmetric to the origin. Thus $V\left(\mathrm{id}_{s^{\varepsilon r-1}}\right)=\mathbf{R} \cdot V_{0}\left(\mathrm{id}_{s^{2 r-1}}\right)$ is a double cone over $\operatorname{Ad}(S O(2 r)) \Lambda_{r}=S O(2 r) / U(r)$.

Case II: r is odd. It follows easily that any line through the origin cuts $V_{0}\left(\mathrm{id}_{S^{2 r-1}}\right)$ twice and that the components $\operatorname{Ad}(S O(2 r)) \Lambda_{r}$ and $\operatorname{Ad}(S O(2 r)) \Lambda_{r}^{-}$ are central symmetric to each other, i.e. $V\left(\mathrm{id}_{S^{2 r-1}}\right)$ is again a double cone over $S O(2 r) / U(r)$.

Remark. In the special case $r=2$ the space $V_{0}\left(\mathrm{id}_{s^{3}}\right)$ is the disjoint union of two samples of $S^{2}(=S O(4) / U(2))$ which was already noticed in [13].

4. The Veronese surface

Let M be a compact oriented Riemannian manifold and consider a harmonic map $f: M \rightarrow S^{n}$. By the inclusion $j: S^{n} \rightarrow \mathbf{R}^{n+1}$ the map f becomes a vectorvalued function $f: M \rightarrow \mathbf{R}^{n+1}$. Moreover, translating vectors tangent to $S^{n} \subset \mathbf{R}^{n+1}$ to the origin, a vector field v along $f: M \rightarrow S^{n}$ gives rise to a map $\hat{0}: M \rightarrow \mathbf{R}^{n+1}$ with the property $\langle f, \hat{v}\rangle=0$. The following lemma characterizes the elements of $K(f)$ in terms of the induced functions \hat{v}.

Lemma 4. Let v be a vector field along $f: M \rightarrow S^{n}$. Then $v \in K(f)$ if and only if $\Delta^{M} \hat{v}=2 e(f) \hat{v}$ holds, where $e(f)=\left\|f_{*}\right\|^{2} / 2$ denotes the energy density of f.

Proof. The covariant differentiation on S^{n} can be obtained from that of \mathbf{R}^{n+1} by performing the orthogonal projection to the corresponding tangent space of S^{n} and thus, for $X \in \mathfrak{X}(M)$, we have

$$
\left(\nabla_{X} v\right)^{\wedge}=X(\hat{v})-\langle X(\hat{v}), f\rangle f
$$

where X acts on \hat{v} componentwise. An easy computation shows that

$$
\left(\nabla_{Y} \nabla_{X} v\right)^{\wedge}=Y X(\hat{v})-\langle Y X(\hat{v}), f\rangle f-\langle X(\hat{v}), f\rangle Y(f), \quad X, Y \in \mathfrak{X}(M)
$$

i.e.

$$
\left(\nabla^{2} v\right)^{\wedge}=-\Delta^{M} \hat{v}+\left\langle\Delta^{M} \hat{v}, f\right\rangle f-\operatorname{trace}\langle d \hat{v}, f\rangle d f
$$

holds. On the other hand, we have

$$
\begin{aligned}
\left(\operatorname{trace} R\left(f_{*}, v\right) f_{*}\right)^{\wedge} & =\left(\operatorname{trace}\left\langle f_{*}, v\right\rangle f_{*}\right)^{\wedge}-2 e(f) \hat{v}= \\
& =\operatorname{trace}\langle d f, \hat{v}\rangle d f-2 e(f) \hat{\imath}=-\operatorname{trace}\langle f, d \hat{v}\rangle d f-2 e(f) \hat{v} .
\end{aligned}
$$

The identities yield that v is a Jacobi vector field along f if and only if

$$
\begin{equation*}
\Delta^{M} \hat{v}-\left\langle\Delta^{M} \hat{v}, f\right\rangle f=2 e(f) \hat{v} \tag{1}
\end{equation*}
$$

is satisfied. Moreover, we have

$$
\operatorname{trace}\left\langle f_{*}, \nabla v\right\rangle=\operatorname{trace}\langle d f, d \hat{v}\rangle-\operatorname{trace}\langle d \hat{v}, f\rangle\langle d f, f\rangle
$$

By $\|f\|^{2}=1$ the second term vanishes and so equation (ii) of Section 1 is equivalent to the following

$$
\begin{equation*}
\operatorname{trace}\langle d f, d \hat{v}\rangle=0 \tag{2}
\end{equation*}
$$

Further, harmonicity of f means that $\Delta^{M} f=2 e(f) f$ is valid and hence we get

$$
\begin{aligned}
\left\langle\Delta^{M} \hat{v}, f\right\rangle=-\left\langle\nabla^{2} \hat{v}, f\right\rangle & =-\operatorname{trace} \nabla\langle d \hat{v}, f\rangle+\operatorname{trace}\langle d \hat{v}, d f\rangle= \\
=\operatorname{trace} \nabla\langle\hat{v}, d f\rangle+\operatorname{trace}\langle d \hat{v}, d f\rangle & =2 \operatorname{trace}\langle d \hat{v}, d f\rangle+\left\langle\hat{v}, \Delta^{M} f\right\rangle=2 \text { trace }\langle d \hat{v}, d f\rangle .
\end{aligned}
$$

Assuming $v \in K(i)$ we obtain that $\left\langle\Delta^{M} \hat{v}, f\right\rangle=0$ and hence (1) reduces to the equation given in the lemma. Conversely, multiplying this equation with f we get $\left\langle\Delta^{M} \hat{v}, f\right\rangle=0$ and hence (1) and (2) are satisfied which accomplishes the proof.

Corollary. Let $f, f^{\prime}: M \rightarrow S^{n}$ be orthogonal harmonic maps with $e(f)=e\left(f^{\prime}\right)$. Then the (unique) vector field v along f with $\|v\|=1$ and $\operatorname{expo}((\pi / 2) v)=f^{\prime}$ is a harmonic variation.

Proof. By hypothesis $\hat{v}=f_{\pi / 2}=f^{\prime}$ and harmonicity of f^{\prime} yields $\Delta^{M} \hat{v}=$ $=2 e\left(f^{\prime}\right) \hat{v}=2 e(f) \hat{\imath}$. Applying the lemma above we obtain that $v \in K(f)$ which accomplishes the proof.

Remark. According to a result of [11] a vector field v along f is a harmonic variation if and only if v is a Jacobi field along f and $e\left(f_{t}\right)=e(f)$ holds for all $t \in \mathbf{R}$. Hence there is a one-to-one correspondence between the harmonic variations of $V_{0}(f)$ and the orthogonal pairs of harmonic maps $f, f^{\prime}: M \rightarrow S^{n}$ with $e(f)=e\left(f^{\prime}\right)$.

Now we turn to the variation space of the Veronese surface. Consider the eigenspace \mathscr{H}_{2} of the Laplacian $\Delta=\Delta^{\boldsymbol{s}^{2}}$ of the Euclidean sphere S^{2} corresponding to the (second) eigenvalue $\lambda_{2}=6[1]$. An element of \mathscr{H}_{2} is the restriction (to S^{2}) of a homogeneous polynomial $p: \mathbf{R}^{3} \rightarrow \mathbf{R}$ of degree 2 which has the form

$$
p=\sum_{k=1}^{3} a_{k} \varphi_{k}+2 \sum_{i<j} b_{i j} \varphi_{i j}
$$

where $a_{k}, b_{i j} \in \mathbf{R}$ with $\sum_{k=1}^{3} a_{k}=0$ and $\varphi_{k}, \varphi_{i j}, k=1,2,3,1 \leqq i<j \leqq 3$, are scalars on S^{2} defined by $\varphi_{k}(x)=x_{k}^{2}, \varphi_{i j}(x)=x_{i} x_{j}, x=\left(x_{1}, x_{2}, x_{3}\right) \in S^{2}$. (cf. [1] p. 176), in particular $\operatorname{dim} \mathscr{H}_{2}=5$.

Integration over S^{2} defines a Euclidean scalar product on \mathscr{H}_{2}. Denoting $I=\left\|\varphi_{k}\right\|^{2}$ and $J=\left\|\varphi_{i j}\right\|^{2}$, the Veronese surface $f: S^{2} \rightarrow S^{4}$ is defined by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\frac{N}{I-J} \sum_{k=1}^{8}\left(x_{k}^{2}-\frac{1}{3}\right) \varphi_{k}+\frac{2 N}{J} \sum_{i<j} x_{i} x_{j} \varphi_{l j}, \quad\left(x_{1}, x_{2}, x_{3}\right) \in S^{2}
$$

where $N>0$ is a normalizing factor given by the condition $\|f\|=1$. Then f is full and homothetic [1]. It is well-known [1] that f factors through the canonical projection $\pi: S^{2} \rightarrow \mathbf{R} P^{2}$. yielding an embedding of $\mathbf{R} P^{2}$ into S^{4}.

Lemma 5. For the Veronese surface $f: S^{2} \rightarrow S^{4}$, if $v \in K(f)$ then $\hat{v}: S^{\mathbf{2}} \rightarrow \mathscr{H}_{\mathbf{2}}$ has the decomposition

$$
\hat{v}=\sum_{k=1}^{3} a_{k} \varphi_{k}+2 \sum_{i<j} b_{i j} \varphi_{i j}
$$

where $a_{k}, b_{i j}, k=1,3,1 \leqq i<j \leqq 3$, are scalars on S^{2} determined by the formulas

$$
\begin{aligned}
& a_{1}(x)=-\varepsilon x_{2}^{2}+\varepsilon x_{3}^{2}+2 \alpha_{1} x_{1} x_{2}+2 \beta_{1} x_{1} x_{3}-2\left(\alpha_{2}+\beta_{3}\right) x_{2} x_{3}, \\
& a_{2}(x)=\varepsilon x_{1}^{2}-\varepsilon x_{3}^{2}+2 \beta_{2} x_{1} x_{2}-2\left(\beta_{1}+\alpha_{3}\right) x_{1} x_{3}+2 \alpha_{2} x_{2} x_{3}, \\
& a_{3}(x)=-\varepsilon x_{1}^{3}+\varepsilon x_{2}^{2}-2\left(\alpha_{1}+\beta_{2}\right) x_{1} x_{2}+2 \alpha_{3} x_{1} x_{3}+2 \beta_{3} x_{2} x_{3}, \\
& b_{12}(x)=-\frac{\alpha_{1}}{2} x_{1}^{2}-\frac{\beta_{2}}{2} x_{2}^{2}+\frac{\alpha_{1}+\beta_{2}}{2} x_{3}^{2}-2 \gamma_{1} x_{1} x_{3}+2 \gamma_{2} x_{2} x_{3}, \\
& b_{23}(x)=\frac{\alpha_{2}+\beta_{3}}{2} x_{1}^{2}-\frac{\alpha_{2}}{2} x_{2}^{2}-\frac{\beta_{3}}{2} x_{3}^{2}-2 \gamma_{2} x_{1} x_{2}+2 \gamma_{3} x_{1} x_{3}, \\
& b_{13}(x)=-\frac{\beta_{1}}{2} x_{1}^{2}+\frac{\alpha_{3}+\beta_{1}}{2} x_{2}^{2}-\frac{\alpha_{3}}{2} x_{3}^{2}+2 \gamma_{1} x_{1} x_{2}-2 \gamma_{3} x_{2} x_{3},
\end{aligned}
$$

$x=\left(x_{1}, x_{2}, x_{3}\right) \in S^{2}, \varepsilon, \alpha_{k}, \beta_{k}, \gamma_{k} \in \mathbf{R}, k=1,2,3$. In particular, $\operatorname{dim} K(f)=10$.
Proof. As $\hat{\boldsymbol{v}}$ maps into \mathscr{H}_{2} we have the decomposition of \hat{v} as above with $\sum_{k=1}^{3} a_{k}=0$. On the other hand, Lemma 4 implies that

$$
0=\Delta \hat{v}-6 \hat{v}=\sum_{k=1}^{3}\left(\Delta a_{k}-6 a_{k}\right) \varphi_{k}+2 \sum_{i<j}\left(\Delta b_{i j}-6 b_{i j}\right) \varphi_{i j}
$$

and hence orthogonality of the polynomials $\varphi_{i j}, i<j$, and the relations $\left\langle\varphi_{k}, \varphi_{i j}\right\rangle=0$, $\left\langle\varphi_{k}, \varphi_{r}\right\rangle=J+\delta_{k r}(I-J), k, r=1,2,3, i<j$, yield that the scalars $a_{k}, b_{i j}, k=1,2,3$, $i<j$, belong to \mathscr{H}_{2}. Thus

$$
a_{r}=\sum_{k=1}^{3} a_{k}^{r} \varphi_{k}+2 \sum_{i<j} b_{i j}^{r} \varphi_{i j}, \quad r=1,2,3,
$$

and

$$
b_{p q}=\sum_{k=1}^{3} a_{k}^{p q} \varphi_{k}+2 \sum_{i<j} b_{i j}^{p q} \varphi_{i j}, \quad 1 \leqq p<q \leqq 3,
$$

where $a_{k}^{r}, b_{i j}^{r}, a_{k}^{p q}, b_{i j}^{p q} \in \mathbf{R}$ such that
$\left(\mathrm{C}_{1}\right) \sum_{k=1}^{3} a_{k}^{r}=0 \quad$ and $\quad \sum_{k=1}^{3} a_{k}^{p q}=0, \quad r=1,2,3,1 \leqq p<q \leqq 3$,
hold. Moreover, from the equation $\sum_{k=1}^{3} a_{k}=0$ we obtain
(C_{2}) $\sum_{r=1}^{3} a_{k}^{r}=0$ and $\sum_{r=1}^{3} b_{i j}^{r}=0$.

Finally, the orthogonality relations for φ_{k} and $\varphi_{i j}$ above imply that the condition $\langle f, 0\rangle=0$ is equivalent to the equation

$$
\sum_{k=1}^{3} a_{k} x_{k}^{2}+4 \sum_{i<j} b_{i j} x_{i} x_{j}=0, \quad\left(x_{1}, x_{2}, x_{3}\right) \in S^{2}
$$

Substituting the explicit expressions of a_{k} and $b_{i j}$ we get

$$
\sum_{k=1}^{3} \sum_{r=1}^{3} a_{k}^{r} \varphi_{k} \varphi_{r}+2 \sum_{i<j} \sum_{r=1}^{3}\left(b_{i j}^{r}+2 a_{r}^{i j}\right) \varphi_{r} \varphi_{i j}+8 \sum_{i<j} \sum_{p<q} b_{i j}^{p q} \varphi_{i j} \varphi_{p q}=0
$$

A straightforward computation, determining the coefficients of the fourth order homogeneous polynomial on the left hand side, shows that this equation is satisfied if and only if the following relations hold:
$\left(\mathrm{C}_{3}\right) a_{k}^{k}=0$ for $k=1,2,3$,
(C $\left.\mathrm{C}_{4}\right) b_{12}^{1}+2 a_{1}^{12}=b_{12}^{2}+2 a_{2}^{12}=b_{13}^{1}+2 a_{1}^{13}=b_{13}^{3}+2 a_{3}^{13}=b_{23}^{2}+2 a_{2}^{23}=b_{23}^{3}+2 a_{3}^{23}=0$,
(C5) $a_{i}^{j}+a_{j}^{i}+8 b_{i j}^{i j}=0$ for $1 \leqq i<j \leqq 3$,
(C6) $\quad b_{23}^{1}+2 a_{1}^{23}+4 b_{12}^{13}+4 b_{13}^{12}=b_{13}^{2}+2 a_{2}^{13}+4 b_{12}^{23}+4 b_{23}^{12}=b_{12}^{3}+2 a_{3}^{12}+4 b_{13}^{23}+4 b_{23}^{13}=0$.
Putting $\varepsilon=a_{1}^{2}$, the relations $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{2}\right)-\left(\mathrm{C}_{3}\right)$ imply that the matrix $A=\left(a_{k}^{r}\right) \in M(3,3)$ has the form

$$
A=\left[\begin{array}{rrr}
0 & \varepsilon & -\varepsilon \\
-\varepsilon & 0 & \varepsilon \\
\varepsilon & -\varepsilon & 0
\end{array}\right]
$$

and consequently, by $\left(\mathrm{C}_{5}\right), b_{i j}^{i j}=0$ for $i<j$. Introducing the new (independent) variables

$$
\begin{aligned}
& \alpha_{1}=b_{12}^{1} ; \alpha_{2}=b_{23}^{2}, \alpha_{3}=b_{13}^{3}, \\
& \beta_{1}=b_{13}^{1}, \beta_{2}=b_{12}^{2}, \beta_{3}=b_{23}^{3}, \\
& \gamma_{1}=b_{12}^{13}, \gamma_{2}=b_{23}^{12}, \gamma_{3}=b_{13}^{23},
\end{aligned}
$$

we see that all the remaining coefficients are expressible in terms of the variables $\left\{\varepsilon, \alpha_{k}, \beta_{k}, \gamma_{k} \mid k=1,2,3\right\}$ and a straightforward computation leads to the coefficients given in Lemma 5.

Our last result asserts that the Veronese surface is rigid. More precisely, we have the following

Theorem 2. For the Veronese surface $f: S^{2} \rightarrow S^{4}$ the variation space $V(f)$ is zero.

Proof. Using the notations of Lemma 5 we parametrize $K(f)$ with the variables $\left\{\varepsilon, \alpha_{k}, \beta_{k}, \gamma_{k} \mid k=1,2,3\right\}$. Putting $v \in K(f)$ we have

$$
\hat{v}=\sum_{k=1}^{3} a_{k} \varphi_{k}+2 \sum_{i<j} b_{i j} \varphi_{i j}
$$

where the coefficients $a_{k}, b_{i j}, k=1,2,3,1 \leqq i<j \leqq 3$, are given in Lemma 5.

Note that the parametrization of $K(f)$ is chosen in such a way as the cyclic permutation $\pi=(123)$ of the indices on the right hand sides will permute the scalars a_{1}, a_{2}, a_{3} and b_{12}, b_{23}, b_{13} cyclically. Now suppose, on the contrary, that $V(f) \neq\{0\}$, i.e. we may choose $v \in V(f)$ with $\|v\|^{2}=4 \mathscr{J}$. Then we have

$$
4 J=\|v\|^{2}=\sum_{k=1}^{3} \sum_{r=1}^{3} a_{k} a_{r}\left\langle\varphi_{k}, \varphi_{r}\right\rangle+4 J \sum_{i<j} b_{i j}^{2}=(I-J) \sum_{k=1}^{3} a_{k}^{2}+4 J \sum_{i<j} b_{i j}^{2},
$$

or equivalently

$$
\begin{equation*}
1=\frac{1}{2} \sum_{k=1}^{3} a_{k}^{2}+\sum_{i<j} b_{i j}^{2} \tag{3}
\end{equation*}
$$

on S^{2}, where we used the equality $\frac{I-J}{4 J}=\frac{1}{2}$ which can be obtained by integrating the polynomials φ_{3}^{2} and φ_{23}^{2} on S^{2}. Thus

$$
\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{2}=\frac{1}{2} \sum_{k=1}^{3} a_{k}\left(x_{1}, x_{2}, x_{3}\right)^{2}+\sum_{i<j} b_{i j}\left(x_{1}, x_{2}, x_{3}\right)^{2}
$$

is satisfied for all $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3}$. By computing the coefficients of the fourth order homogeneous polynomial on the right hand side we obtain a system of 15 quadratic equations in which the first 5 are given as follows
(i) $4 \varepsilon^{2}+\alpha_{1}^{2}+\beta_{1}^{2}+\left(\alpha_{2}+\beta_{3}\right)^{2}=4$,
(ii) $\varepsilon\left(\alpha_{1}+2 \beta_{2}\right)-\beta_{1} \gamma_{1}-\left(\alpha_{2}+\beta_{3}\right) \gamma_{2}=0$,
(iii) $-\varepsilon\left(\beta_{1}+2 \alpha_{3}\right)+\alpha_{1} \gamma_{1}+\left(\alpha_{2}+\beta_{3}\right) \gamma_{3}=0$,
(iv) $\varepsilon\left(\alpha_{2}-\beta_{3}\right)+2\left(\alpha_{1} \beta_{1}-\beta_{2}\left(\beta_{1}+\alpha_{3}\right)-\alpha_{3}\left(\alpha_{1}+\beta_{2}\right)\right)-\alpha_{1} \gamma_{2}+\beta_{1} \gamma_{3}-4 \gamma_{2} \gamma_{3}=0$,
(v) $-2 \varepsilon^{2}+4\left(\alpha_{1}^{2}+\beta_{2}^{2}+\left(\alpha_{1}+\beta_{2}\right)^{2}\right)+\alpha_{1} \beta_{2}-\beta_{1}\left(\beta_{1}+\alpha_{3}\right)-\alpha_{2}\left(\alpha_{2}+\beta_{3}\right)+8\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right)=4$,
and, the equation (3) being invariant under the cyclic permutation $\pi=(123)$ of the indices, the last 10 equations are obtained from (i)-(v) by performing the index permutations π and π^{2}. Denote the equations of the permuted systems by $(i)_{\pi}-(v)_{\pi}$ and $(\mathrm{i})_{\pi^{2}}-(\mathrm{v})_{\pi^{2}}$, respectively. Our purpose is to show that these equations have no solution. To do this, first denote by s the symmetric polynomial given by $s(x, y)=$ $=x^{2}+x y+y^{2}, x, y \in \mathbf{R}$. Then (v) can be written as

$$
-2 \varepsilon^{2}+8 s\left(\alpha_{1}, \beta_{2}\right)+\left(\alpha_{1} \beta_{2}-\beta_{1}^{2}-\beta_{1} \alpha_{3}-\alpha_{2}^{2}-\alpha_{2} \beta_{3}\right)+8\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right)=4
$$

Performing the index permutations π and π^{2} and adding these three equations we get

$$
-6 \varepsilon^{2}+7\left(s\left(\alpha_{1}, \beta_{2}\right)+s\left(\alpha_{2}, \beta_{3}\right)+s\left(\alpha_{3}, \beta_{1}\right)\right)+16\left(\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}\right)=12
$$

In a similar way, from (i)-(i) $\boldsymbol{\pi}_{\boldsymbol{\pi}}$-(i) $)_{\pi^{2}}$ it follows that

$$
12 \varepsilon^{2}+2\left(s\left(\alpha_{1}, \beta_{2}\right)+s\left(\alpha_{2}, \beta_{3}\right)+s\left(\alpha_{3}, \beta_{1}\right)\right)=12
$$

i.e. eliminating the terms containing the polynomial s we have

$$
\begin{equation*}
24\left(1-\varepsilon^{2}\right)+8\left(\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}\right)=9 \tag{4}
\end{equation*}
$$

On the other hand, fixing $\gamma_{i}, i=1,2,3$, the equations (ii)-(ii) π_{π} (ii) $\pi_{\pi^{2}}$ and (iii)(iii) $)_{\pi^{-}}$(iii) $\pi_{\pi^{2}}$ form a linear system for the variables $\alpha_{i}, \beta_{i}, i=1,2,3$. Denoting by $M\left(\gamma_{1}, \dot{\gamma}_{2}, \gamma_{3}\right) \in \dot{M}(6,6)$ its matrix, we compute $\operatorname{det} M\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$. For $\xi, \eta, \zeta \in \mathbf{R}$ define

$$
S(\xi, \eta, \zeta)=\left[\begin{array}{cccccc}
\varepsilon & 2 \varepsilon & 0 & -\xi & -\eta & -\eta \\
-2 \varepsilon & -\varepsilon & \xi & \xi & \eta & 0 \\
-\xi & -\xi & \varepsilon & 2 \varepsilon & 0 & -\zeta \\
\xi & 0 & -2 \varepsilon & -\varepsilon & \zeta & \zeta \\
0 & -\eta & -\zeta & -\zeta & \varepsilon & 2 \varepsilon \\
\eta & \eta & \zeta & 0 & -2 \varepsilon & -\varepsilon
\end{array}\right] .
$$

Permuting the rows and the coloumns of $M\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ by the permutation (25) we obtain $S\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ and consequently $\operatorname{det} M\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\operatorname{det} S\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$. Similarly, by performing (135462) and (132465) on the rows and coloumns of $M\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ we get $S\left(\gamma_{2}, \gamma_{3}, \gamma_{1}\right)$ and $S\left(\gamma_{3}, \gamma_{1}, \gamma_{2}\right)$ i.e. $\operatorname{det} S\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=$ $=\operatorname{det} S\left(\gamma_{2}, \gamma_{3}, \gamma_{1}\right)=\operatorname{det} S\left(\gamma_{3}, \gamma_{1}, \gamma_{2}\right)$. Thus, it is enough to compute $\operatorname{det} S(\xi, \eta, \zeta)$. To do this, let $S(\xi, \eta, \xi)$ have the decomposition

$$
S(\xi, \eta, \zeta)=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

where $A \in M(4,4)$. The matrix A is centroskew and so by using a result of [2] a direct computation shows that $\operatorname{det} A=\left(3 \varepsilon^{2}-\xi^{2}\right)^{2}$. Assuming $3 \varepsilon^{2} \neq \xi^{2}$ we have [2]

$$
\operatorname{det} S(\xi, \eta, \zeta)=\operatorname{det} A \operatorname{det}\left(D-C A^{-1} B\right)=3 \varepsilon^{2}\left(3 \varepsilon^{2}-\left(\xi^{2}+\eta^{2}+\zeta^{2}\right)\right)^{2}
$$

Suppose now that $\gamma_{1}^{2}=\gamma_{2}^{2}=\gamma_{3}^{2}=3 \varepsilon^{2}$. Then equation (4) implies that $15+8 \varepsilon^{2}=0$ which is impossible. Hence there exists $i \in\{1,2,3\}$ such that $\gamma_{i} \neq 3 \varepsilon^{2}$. Then, by the above, $\operatorname{det} M\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=3 \varepsilon^{2}\left(3 \varepsilon^{2}-\left(\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}\right)\right)^{2}$. Further, $\operatorname{det} M\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \neq 0$ since otherwise $\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}=3 \varepsilon^{2}$ which contradicts to (4). Thus the linear system in question has only trivial solution $\alpha_{1}=\alpha_{2}=\alpha_{3}=\beta_{1}=\beta_{2}=\beta_{3}=0$. Then equations (iv)-(iv) $)_{\pi}$-(iv) $)_{\pi^{2}}$ imply that two of the numbers $\gamma_{1}, \gamma_{2}, \gamma_{3}$ vanish. By equations (v)-(v) $)_{\pi}(\mathrm{v})_{\pi^{2}}$ we obtain $\dot{\varepsilon}=0$ which again contradicts to (4).

References

[1] M. Berger, P. Gauduchon, E. Mazet, Le spectre d'une variété Riemannienne, Lecture Notes in Math. 194, Springer-Verlag (Berlin, 1971).
[2] A. R. Collar, On centrosymmetric and centroskew matrices, Quart. J. Mech. Appl. Math., 15 (1962), 265-282.
[3] J. Eells, L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., 10 (1978), 1-68.
[4] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press (New York, Toronto, London, 1978).
[5] S. Kobayashi, Transformation groups in differential geometry, Ergebnisse der Math., Band 70, Springer-Verlag (Berlin, 1972).
[6] S. Kobayashi, K. Nomizu, Foundations of differential geometry, Vol. I, Interscience (New York, 1963).
[7] C. Lanczos, Linear systems in self-adjoint form, Amer. Math. Monthly, 65 (1958), 665-679.
[8] H. Schwerdtfeger, Introduction to linear algebra and the theory of matrices, Noordhoff(Groningen, 1950).
[9] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math., 88 (1968), 62-105.
[10] G. Tóth, On variations of harmonic maps into spaces of constant curvature, Annali di Mat. (IV), 128 (1980), 389-399.
[11] G. Tóth, On harmonic maps into locally symmetric Riemannian manifolds, Symposia Math. Acad. Press (to appear).
[12] G. Tóth, Construction des applications harmoniques non rigides d'un tore dans la sphère, Annals of Global Analysis and Geometry, to appear.
[13] G. Tóth, On rigidity of harmonic maps into spheres, J. London Math. Soc., to appear.

[^0]
[^0]: MATHEMATICAL INSTITUTE OF THE
 HUNGARIAN ACADEMY OF SCIENCES
 REALTANODA U. 13-15
 1053 BUDAPEST, HUNGARY

