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On partial asymptotic stability and instability. II 
(The method of limiting equation) 

L. HATVANI 

1. Introduction 

In [1] we established criteria on the partial asymptotic stability and instability 
based on Ljapunov functions with semidefinite derivatives not requiring boundedness 
of solutions. We proved an alternative for every solution of an autonomous system 
saying that either all the controlled coordinates tend to zero or the vector of the 
uncontrolled coordinates tends to infinity as i—°° (see [1], Theorem 3.1). Combining 
this result with additional hypotheses on the Ljapunov function we found sufficient 
conditions for the partial asymptotic stability and instability of the zero solution. 
By the aid of these theorems we could study stability properties of equilibrium 
positions of certain mechanical systems in the presence of dissipative forces. How-
ever, as it was mentioned in [1], to apply the alternative to certain mechanical systems 
one needs additional conditions of other types. For example, consider a material 
point moving on a surface in a constant field of gravity in the inertial frame of 
reference 0 x y z (0z directed vertically upward) and subject to viscous friction [1]. 
Let the point be constrained to move on the surface of the equation z=(l/2)j>2X 
X[1 + 1/(1 +x2)]. Theorems in [1] cannot be applied to prove asymptotic ^-stability 
for the equilibrium position x=y=0. Nevertheless, it is reasonable to conjecture 
that the equilibrium position possesses this property. For, if a motion (x(i), X 0 ) 
is bounded, then 0 as °° (see [1], Theorem A). On the other hand, 
if |x(i)| —00 as i-» then the motion (x(t), y(t)) is "asymptotically near" to 
a motion of the point on the surface of the equation .z=(l/2)}>2, for which the 
equilibrium position x—y=0 is asymptotically ^-stable. 

The purpose of this paper is to establish partial asymptotic stability and in-
stability of the zero solution of such system whose right-hand side allows a limiting 
process as the vector of the uncontrolled coordinates tends to infinity in norm. 

The paper is organized as follows. In Section 3 we treat such autonomous 
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system whose right-hand side has a uniform limit as the vector of uncontrolled 
coordinates tends to infinity in norm. In Section 4 results of the previous section 
will be applied to study partial stability properties of the equilibrium position with 
respect to all generalized velocities and some of generalized coordinates in the sclero-
nomic holonomic mechanical systems being under the action of viscous friction. 
The method to be presented works also for the nonautonomous differential systems. 
Section 5 is devoted to this generalization. Whilst Section 3 is based upon the 
standard sphere of concepts of stability theory and is selfcontained, Section 5 is 
strongly connected with a recent topic of the theory of limiting equations developed 
byZ. ARTSTEIN [ 2 ] — [ 4 ] , some of whose results are necessary préliminaires for applying 
our main theorem. 

2. A nonautonomous invariance principle 

All the necessary notations and definitions have been introduced in [1] (see 
Section 2) excepting the following one. Consider the system of differential equation 

(2.1) x = X(x,t) (t£R+,x£Rk), 

where the function X is continuous in x, is measurable in t, and satisfies the 
Carathéodory condition locally on the set r y . Let us given a Ljapunov function 
V : r'y-"R (for r'yczryczRmXRnXR+ see [1], Sec. 2). For c£R denote by 
V~*[c, °o]0 the set of the points y£Rm for which there exists a sequence {(y,, z„ /¡)} 
such that yt-y, V(y„ z{, t,) - c and V(yh zh tt) - 0 as 
Obviously, V~Llc, Ho is closed relative to r'y. 

We shall need the following nonautonomous invariance principle even in Sec-
tion 3 where the basic differential system is assumed to be autonomous. 

Theorem A. [5]—[7] Assume that for every compact set KcRk there is a 
such that if u: [a, P\—K is continuous then 

(2.2) \f X(u(t),i)dt\^pK(f}-a). 
a 

If V : r'x-+R is a Ljapunov function bounded below, and <p\ [?0, is 
a solution of (2.1) for which \(p(t)\^H"<H' holds for all t^t0, then Qx(<p) is 
contained in a component of °°]0 for some constant c. 

In order to make Section 3 selfcontained we sketch the proof. Since V is 
locally Lipschitzian, the function v(t)=V(ç>(t), t) is locally absolutely continuous 
and 

(2.3) -£-v(t)=V(<p(t),t)^0 
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for almost all t^t0. Thus v(t) is nonincreasing and v(t)—c as t—°° for some 
constant c. Suppose that the statement is false. Then there exist p£Qx(<p) and 
E>0 such that Bk(p, 2e)P\Vk

1[c, °°]o=0> where Bk(p, 2e) denotes the closed 
ball in Rk with center p and radius 2E. Obviously, 

(2.4) l i m s u p { V ( c p ( t ) , t): t £ T, <p№Bk(p, 2e)} < 0, 

thus, however large the time T* may be, the point <p(t) cannot be contained in the 
set Bk(p,2s) for all t^T* since v is bounded below. Therefore, cp(t) enters 
Bk(p, e) and leaves Bk(p, 2e) infinite number of times. In view of (2.2)—(2.4) 
this means that v is not of bounded variation, which is a contradiction. 

3. Autonomous equations 

Consider the differential system 

(3.1) x = X(x) (x£Rk; X(0) = 0), 

where X :Gy—Rk is continuous. By the partition x = ( y , z) (ytRm, z£R"\ 1 ^m^k, 
n=k—m) the system (3.1) can be written in the form 

(3.2) y = Y(y, z), z = Z(y, z). 

Throughout this section we assume that Y(y, z)—Y*(y) uniformly in y£Bm(H') 
as |z| — oo. 

T h e o r e m 3.1. Suppose that there is a Ljapunov function V : G'y-»R of (3.2) 
satisfying the following conditions: 

(i) V is positive y-definite; 
(ii) for every c > 0 the set (K(3.2))-1(0)n F - 1 ( c ) contains no complete trajectory 

of (3.2), and 
(iii) the set V~x[c, °°]0 contains no complete trajectory of the system 

(3.3) j> = r . o o 

except the origin of Rm. 
Then the zero solution of (3.2) is asymptotically y-stable. 

Proof . Since V is positive y-definite and V(s 2)(y, z)S0 on G'y, the zero 
solution of (3.2) is y-stable (see [8], p. 15), i.e. for every £ > 0 there exists a <5(E)>0 
such that |X0|<(5(£) implies \y(t\ x0) |<£ for all /SO. Let 0 < E 0 < / / ' and define 
a=5(fi0)>0. We shall prove that for every x0$Bk(a) we have |j>(i; x0)[—0 as 

oo. 

10 
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Let x=<p(t)=(\p(t), X(0) be a solution of (3.2) such that tp(0)€Bk(al The 
function v(t)=F(<p(t)) is nonincreasing and nonnegative, hence v(t)—v0^0 as 
t—co. If y0=0 then №(01-0 as since V is positive y-definite. Assume 
that r0>0. By Theorem 3.1 in [1], this assumption together with (ii) imply 

(3.4) limlxCOl oo 

Consider the system 

(3.5) y = Y(y,X(t)) (yiBmm, t(LR+) 

and the function U: Bm(H')XR+-*R defined by U(y, t) = V(y, x(0)- Obviously, 

(3.6) UC3.5)(y>0 = V(B.2)(y,x(0)^0, 

therefore U is a Ljapunov function of (3.5) and u(t)=U(\J/(t), /)—f0 as 
The function y=>p(t) is a solution of equation (3.5), whose right-hand side is bounded 
for (y, t)£Bm(H')XR+, and for all /==0. By Theorem A in 
Section 2 we have the inclusion i2J,(i/^)cC/~1[t?0, °°]0. Furthermore, in view of 
(3.4) and (3.6), £/~1ft>0, H o C F ^ ' K , oo]0. Taking into account the obvious fact 
that the positive y-limit set Qy((p) of the solution x=<p(t) of (3.2) coincides with 
the positive limit set Qy(i//) of ip, being a solution of (3.5), we obtain 

(3.7) Qy((p) = Qy(>P)<zV-1[va,^]0. 

On the other hand, property (3.4) implies that Y(y, x(t))-"Y*(y) uniformly 
in y€Bm{H') as i—oo. Thus (3.3) is the limit equation of (3.5) and is semi-
invariant with respect to (3.3) (see [8], p. 304). Now we can conclude the proof by 
showing that Qy(q>)= {0}, i.e. 1^(01—0 as i—oo. Indeed, if the nonempty set 
Qy((p) contains any point besides the origin of Rm, then it contains also a complete 
trajectory of (3.3) different from the origin because it is semiinvariant with respect 
to (3.3). But, in consequence of (3.7), this contradicts condition (iii) of the theorem. 
The proof is complete. 

In certain applications condition (ii) in Theorem 3.1 proves to be rather re-
strictive. For example, it may happen that ths potential energy P(q, q) of a mecha-
nical system is ^-definite, in every neighbourhood of the origin q—q=0 there 
exists an equilibrium position belonging to the set P(q, q)>0, nevertheless the 
origin is asymptotically ^-stable (see [1], Examples). Now we relax this condition 
of the theorem (compare with Theorem 3.3 in [1]). 

Theorem 3.2. Suppose that the function Z in (3.2) is bounded on the set G'y, 
and there is a Ljapunov function V : Gy—R of (3.2) satisfying conditions (i), (iii) 
in Theorem 3.1. Assume, in addition, that 
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(ii') for every c>0, if the set (F(3 2 ) ) ( 0 ) H F ( c ) contains a complete 
trajectory of (3.2) then this trajectory is contained in the set {(y, z): ^=0}. 

Then the zero solution of (3.2) is asymptotically y-stable. 

Proof . We have to modify the proof of Theorem 3.1 only from that point 
where we assumed r0>0. It is enough to prove that in this case £2y(^) = {0}. 

Let 0?iq£Qy{(p). Then, by Lemmas 3.1—3.2 in [1], either there exists an rdR" 
such that {q, r)eQx(<p)czM{v0)=(K^.a))"1 ( 0 ) H F - 1 (y0) or whenever 
tt—°° and ip(ti)-*q as z — In the first case, by the semiinvariance property 
of Qx(<p) with respect to (3.2), the set M(v0) contains a trajectory of (3.2) not 
contained in the set {(y,z):y=0}, which contradicts (ii'). Therefore, if /¡—°o 
and i//(ti) converges to a point different from the origin of Rm, then —00 

as z —oo. 
We shall prove that in the case Qy((p)?i {0} the inclusion Qy((p)czN(v0)= 

= V~1[v0, °°]o holds. But Qy(cp) is compact and connected, and N(v0) is closed, 
so it is enough to show that £2j,(<p)\{0}c:7V(i;0). Suppose the contrary. Then there 
exist q£Qy(cp){q?i0) and £>0 such that Bm{q, 2e)Pi[Ar(i;0)U {O}]=0. We state that 

Indeed, otherwise there is a sequence {/¡} for which V{(p(t$)—0, iPOt)— 
—qXEm(q,2e) and, consequently, |;c(i,)! —°° as i — i . e . q'tN(v0), which 
contradicts the definition of £. Since V is bounded below, (3.8) implies that 
£Bm(q, 2s) cannot be satisfied on any whole interval [T, From this fact it 
follows that there exist sequences {/•}, {?"} with the properties 

t'i -= t'{ < t'i+!, t\ - (if) - q I = 6, l̂ r (if) - q\ = 28, 

£ =S h K 0 - ? | = 2 e W = 1 = 1 = 2> •••)• 

Since Y(\j/(t), x(t)) is bounded, /•£/?>() for all i with some constant fi and 

which is a contradiction. 
It remains to prove that for every qdQy(<p) (q^O) the system (3.3) has a 

complete trajectory through q lying in Î2y(q>). Consider the sequence of the func-
tions {iA'(i)=<K'i+0} whose z-th member is a solution of the initial value problem 

Since Z is bounded, IxOi+OI-*"00 uniformly with respect to t on each compact 
interval [a, fa] as i - « , . Thus, Y(y, x(ti+t))-Y*(y) uniformly in (y, t)£Bm(H')Y. 
X[a, b], and t//(/,)—<7. Consequently, there exists a subsequence of {ip'(t)} which 

(3.8) a = lim sup {VtyOl x('))- t S T, <p(tKBm(q, 2s)} < 0. 

y = Y(y,x(ti+t)), y(0) = Htd 0 = 1,2,. . .) . 

10* 
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converges uniformly on [a, b] to a solution y of the initial value problem y=Y,(y), 
y(0)=q (see [8], p. 297). For each /SO the point y(/) is the limit of a subsequence 
of i¡/(t + ti). But also /;+/—oo, so y(t)dQy((p), which means that Qy((p) contains 
a complete trajectory of (3.3) different from the origin. 

We have proved that if there exists a q£Qy((p) (q^0) then there exists also 
a complete trajectory of (3.3) different from the origin that is contained by Qy((p) 
and, because of Qy(<p)<zN(v0), by N(v0) as well, in contradiction to assumption 
(iii). The proof is complete. 

Our method can be used for deriving instability theorems, too. 

Theorem 3.3. Suppose that there is a Ljapunov function V : Gy-*R of (3.2) 
satisfying the following conditions: 

(i) V is bounded below; 
(ii) for every <5>0 there exists an x0£Bk(5) such that F(x0)<0; 
(iii) for every c < 0 the set (F(3.2))_1(0)n F - 1 ( c ) contains no complete trajectory 

of (3.2), and 
(iv) the set V~ *[<:, °°]0 contains no complete trajectory of (3.3). 

Then the zero solution of (3.2) is y-unstable. 

Proof . We have to prove that there is an e 0>0 such that from every neigh-
bourhood of the origin in Rk there starts a solution of (3.2) which leaves the set 
Bm(e0)XRn. 

Let 0 F o r an arbitrary S (0<<5<e0) take an x0£Bk(S) such that 
F(x0)cO, and consider a solution x=(p(t)=(<p{t), / ( /)) of (3.2) with <p(0)=x0. 
We shall prove that i//(T)>£0 for some T>0. Suppose the contrary, i.e. \\p(t) 
for all /SO. Then u(/)—u0<F(x0)<0 as By Lemma 3.1 in [1] and 
invariance property of Qx{(p), assumption (iii) implies (3.4). As it was shown in 
the proof of Theorem 3.1, from these facts it follows that the nonempty set Qy(q>) 
is a subset of V~x[vQ, »]0 (see (3.7)) and it is semiinvariant with respect to (3.3). 
Consequently, the set V~\vQ, «>]0 contains at least one complete trajectory of 
(3.3) in contradiction to assumption (iv) of the theorem. The proof is complete. 

Remark 3.1. Let y=(y i ,y 2 ) be a partition of y iR m (y1eRm', y ^ R m \ 
1 ̂ m ^ m , m1 + m2=m) and suppose that for some e 0 >0 the inequalities ly^^ep, 
V(yx, j 2 , z)<0 imply |y2| =H'. Analysing the proof of Theorem 3.3 one can 
easily see that, in fact, in this case the zero solution of (3.2) is ^-unstable. 

As we shall see in the applications, we often have an estimate of the type 
Vy3 2)(y, z)^U(y), which allows us to simplify the last condition in Theorems 
3.1—3.3. In the following simple proposition even a slightly more general case is 
considered. 
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Propos i t i on 3.1. Suppose that for a Ljapunov function V : G'y—R of (3.2) 
there exists a continuous function W : G'y-+R such that 

(i) V(3,2)(y,z)^fV(y,z)^0 ((y, z)6G;); 
(ii) fV(y, z)-»U(y) uniformly in y£Bm(H') as |z| — 

Then for every c£R, 
E(c) = U-i^rW-'ic, H 3 V-i[c, Ho-

4. An application 

Consider again the holonomic mechanical system of r degrees of freedom 
described by the Lagrangian equation 

/ . .. d dT dT _ BP , „.s 
<4A) 17 3 4 - ^ ' ( q ' q ' R ) > 
where the following notations are used (see [1]): P(q) is the potential energy (P(0)=0), 
T(q, q) = (l/2)qTA(q)q is the kinetic energy, and Q(q, q) is the resultant of non-
energic and dissipative forces with complete dissipation. 

Let q=col (qx, q2) be a partition of the vector of generalized coordinates 
(q^R^, q2£Rr t, l ^ r ^ r , r1+r2—r). Applying our results we give sufficient con-
ditions for asymptotic stability and instability of the equilibrium q—q=0 (possibly 
non-isolated) with respect to the velocities q and coordinates qx in the case when the 
system is "asymptotically ^-independent". It is worth emphasizing that the coordi-
nates of q2 are not supposed to be bounded along the motions. 

The system (4.1) is defined to be asymptotically q2-independent if for some 
constant 0 and for every compact set KczRr 

(a) there are 1 > 0 and such that 

AlípSyg^í?!, q2)q, QT(ql5 q2, q)q^-c{\q\) 

for all q^B r i(H') , q 2 ü R \ qiRT\ 
(b) A(qt, P(q1¿ q2)-P*(qx) as in addition, Q(qu q2, q)-

uniformly in qx^Br(Ji'), q£K as |q2\ — °°, as well as dA/dq, BPjBq 
converge uniformly in q ^ B ^ H ' ) as 

We are going to apply Theorems 3.2 and 3.3 while z~q2 and V is the total 
mechanical energy. For this purpose we introduce the Hamiltonian variables 
q,p=A(q)q, by the aid of which the system (4.1) can be rewritten in the form 

1 T(BA-\g)\ dP n( ,_lf . v 

(4.2) 
q = A 1(g)p, 
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In view of asymptotic ^-independence, the equilibrium q = q=0 of (4.1) and the 
zero solution p—q=0 of (4.2) have the same stability properties. 

Consider the total mechanical energy H defined by H=H(p, ql, q2)=T+P. 
As is known (see [8], p. 358), 

(4.3) tf(4.2)(p, qlt qj = QT(q, A~1(q)p)A~1(q)p S -d(\p\) 

for all (p, qi)£Bri+r(H'), q2£Rr' with a suitable d£tf. Consequently, H is 
a Ljapunov function of (4.2), and 

(4.4) ( / W _ 1 ( 0 ) n H ~ * ( c ) = {col (p, q): P{q) = c, p = 0} (c£R), 

so the trajectories of (4.2) contained in this set are the equilibria p=0, q=q0 for 
which P(q0)—c. 

Now let us determine the set 

E(c) = H'Uc, Hf l r f -H0) = {col(p, q,): p = 0, <7i = P^[c, H}, 

figuring in Proposition 3.1. Since dPjdqx is continuous and converges uniformly 
as |?2| — °°, the function P(-, q2): Br (H')-~R is continuous uniformly in q2£Rr*. 
From this fact it follows that 

(4.5) E(c) = {col (p, gi):p = 0, PJqJ = c}. 

The system (4.2) is asymptotically ^¡¡-independent, hence its limit system as 
\q21 —00 reads as follows: 

P ^ - j p i A ^ A ^ p - ^ Q i ^ A ^ p ) 

(4.6) PJ = Q U c h , A ; \ P) 

<?' = 2 M i 1 M L / 
* = I 

for / = 1, 2, ..., j=r1 + l, ..., r. In view of (4.5), if E(c) contains a trajectory 
of (4.6) then it is of the form p=0, qx=(qL) — const., furthermore 

dP 
(4-7) P,{(q,\) = c, = 0. 

4l=(9l)„ 

Theorem 4.1. Suppose that the mechanical system (4.1) is asymptotically 
q2-independent. 

I. If (i) the potential energy P is positive q^definite, (ii) system (4.1) has no 
equilibrium position in the region {(<?i, q2): P(qi, <72)=-0, q^O), and (iii) the equality 
dP,(q1)ldq1=0 implies either qt=0 or P*(q1) = 0, then the equilibrium q=q=0 
o/(4.1) is asymptotically (qx, q)-stable. 
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II. If (i) the potential energy P has no local minimum at q = 0, (ii) the system 
(4.1) has no equilibrium position in the region {q: P(q)<0}, and (iii) the equality 
dP,(q1)/dq1=0 implies P*(q1)^0, then the equilibrium q = q = 0 of (4.1) is 
qx-unstable. 

Proof . I. We show that (4.2) and the total mechanical energy H asaLjapunov 
function satisfy the conditions of Theorem 3.2. Condition (a) in the definition of 
the asymptotic ^¡¡-independence and (i) assure H to be positive />)-definite. 
In consequence of (4.4), for the system (4.2) condition (ii) precludes the possibility 
of having such a complete trajectory in the set (Hf4 2))_1(0)H// _ 1 (c) (c>0) that 
is not in {(qx, q2,p)'- <7i=0, />=0}. Finally, using (4.7), condition (ii), and Propo-
sition 3.1 we obtain that the limit system (4.6) cannot have any trajectory in the set 
H-\r[c, Ho (c>0) except the origin. 

II. One can similarly check the conditions of Theorem 3.3, from which (qlt p)-
instability follows. According to Remark 3.1, for the purpose of proving ^-instability 
it is enough to show that Ss0 , H(q1, p, ?2)<0 imply \p\^M for some constants 

0, M. Observe, that P is bounded below on the set Br (e0) X Rr* because of 
^-independence. Therefore, T is bounded above, which together with (a) imply 
that p belongs to a bounded set. The proof is complete. 

Concluding this section we note that in possession of Theorem 4.1 one can 
easily prove the conjecture made in the Introduction in connection with the motion 
of a material point on the surface z=(l/2)y2[l +1/(1 +x2)]. 

5. A generalization to nonautonomous systems 

The LaSalle principle and the invariance property of limit sets with respect to the 
limiting equation, which served as the two main tools in the proofs of Section 3 
have been extended to quite general nonautonomous systems. These extensions 
enabel us to generalize our results to the equation 

(5.1) x = X(x,t) (X(0,t) = 0). 

Namely, we give a theorem on the partial asymptotic stability of the zero solution of 
(5.1) without any assumptions on the boundedness of solutions. To formulate and 
prove it we need some concepts and results from topological dynamics given in 
[2]—[4]. The theorem will be followed by a corollary, containing only analytical 
conditions and, consequently, more suitable for applications. 

t 
As is known, (5.1)is equivalent to the integral equation x(r)=x(a)+ J X(s,x(s))ds, 

a 
i.e. to the functional equation x=x(a)+Iax, where the operator Ia is defined by 



152 L. Hatvani 

Iax(t)=JX(s, x(sj)ds. In the method of limiting equation there occur such functional 
a 

equations in which the operator la is more general than the integral with a kernel. 
An ordinary integral-like operator I is a mapping which associates with each con-
tinuous function cp: [a,)?)—Rk and a,/?) a continuous function Ia<p so that 
(1) if (p^. [a, /?)— Rk are continuous and (pt(t)-*(p(t) uniformly, then /a<p,(f ) — 
—Ia<p(t) uniformly in t£[a, b], as i —«> for all [a, 6]c[a, /?); (2) Ia<p(t)= 
=la(p{s)-\-Is<p(t) for all a, s, t£[tx, fi). We shall denote by u=Iu the functional 
equation u=u(a)+Iau associated with the ordinary integral-like operator I. 

For t£R+ we define the translate X' of X by X'(x, s)=X(x, t+s) (s£R+). 
We denote by tran (Z) the collection of all translates X' of X (t£R+). An or-
dinary integral-like operator equation u=Iu is a limiting equation of (5.1) if there 
exists a sequence {/,} converging to infinity so that X'1 integrally converges to 
I as ¡'-oo, i.e. whenever <pt\ [a, b]—Rk converges uniformly to <p then 

b 
J. X{cpi{s), ti+s) ds - Ia<p{b) (i - <*>)• 
a 

The set tran (X) is said to be precompact if every sequence in it has an integrally 
converging subsequence. 

T h e o r e m B . [4] Suppose that tran (X) is precompact and cp\ [/0, ^—R" 
is a solution of (5.1). Then £2x(<p) is semiinvariant with respect to the family of the 
limiting equations of (5.1), i.e. for each pdQx(cp) there is a limiting equation u=Iu 
of (5.1) and a solution y of the equation u—p+J0u so that y(t)£Qx((p) for all 
t in the domain of y. 

By our standard partition x=(y, z) the system (5.1) can be written in the form 

(5.2) y = Y(y,z,t), z=Z(y,z,t) ((y,z,tXry). 

Let 0 

Theorem 5.1. Suppose that the right-hand sides of (5.2) satisfy the following 
conditions: 

(i) for each compact set K<zR" and continuous function X- R+ with 
lz(0l~*°° as t—<x>, there are functions p,q£Jf so that for arbitrary continuous 

functions v: [a, b]-»Bm(H'), w: [a, b]—K 

\/Y(v(t), X(t), t)dt\ p(b-a), \fx(v(t), w(t), t)dt\ q(b-a); 
a a 

(ii) tran {X(x, t)) is precompact; 
(iii) tran (y(_y, x(t), i)) ,s precompact for every continuous function X- R+—R 

with |x(0| — °° as t—°°-
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Suppose, in addition, that there is a positive y-definite Ljapunov function V: Ty—R 
of (5.2) having the following properties: 

(iv) for each c > 0 neither limiting equation of (5.2) has a positive semitrajectory 
in the set Vk\c, Ho! 

(v) for each c > 0 and continuous function /: R+ -+R" such that IxiOl-*00 

as t — neither limiting equation of y~ Y(y, x(t), t) has a positive semitrajectory 
in the set F~1[c, °°]o different from 0. 

Then the zero solution of (5.2) is asymptotically y-stable. 

P r o o f . The zero solution of (5.2) is y-stable (see [8], p. 15); therefore, it is 
sufficient to prove that if x=(p(t)=(ip(t), / ( /)) is a solution of (5.2) and №(01 = 

for all t ^ t 0 , then ^ ( 0 - 0 as 
Let us introduce the notations v(t)=V(q>(t), t) and u 0 =l im»(0- We dis-

tinguish two cases: 
a) Assume that |x(0l-^°° a s We show that in this case t>0=0, which 

implies ij/(t)—0 because V is positive y-definite. 
The limit set Qx(q>) is not empty and, by Theorem A, Q^^CZV^IVQ , °°]o-

On the other hand, S2x(<p) is semiinvariant with respect to the family of the limiting 
equations of (5.2) (see Theorem B). Consequently, one of them has at least one 
positive semitrajectory in °°]o- Thus, in view of (iv), v0=0. 

b) Let | x ( 0 l - ° ° as t—»=. We show that either u0=O or Qy(<p)= {0}. 
Consider the equation 

(5-3) y = Y(y, X(f), i) t£R+) 
and its Ljapunov function U(y, t)—V(y, x(t), t). Using again Theorem A we 
obtain 
(5.4) Qy(cp) = QyM c U~lK, Ho c= V'^vo, Ho-
On the other hand, Qy(<p) as the limit set of the solution y=^(t) of (5.3) is semi-
invariant with respect to the family of the limiting equations of (5.3). If there is 
a qdQy(<p), q?i 0, this means that one of the limiting equations of (5.3) has a positive 
semitrajectory different from {0} which is a subset of Qy(<p). Then, according to 
(5.4) and hypothesis (v), v0=0. The proof is complete. 

C o r o l l a r y 5.1. Suppose that 
(i) for each compact set KczR" there are locally integrablefunctions pj, v,-: R+ — 

t 
-*R+,j = 1,2 so that the functions J fij(s)ds are uniformly continuous on R+, 

0 
t + 1 

the functions J Vj(s)ds are bounded on R+, and 

|Y(y, z, 0| ^ 0, IZ(w, 01 ̂  №s(0> 
|Y(y, z, t)-Y(y', z, 0 | 3= v ^ O l y - / ! , | X ( w , t)-X(w', t)\ s v 2 ( 0 | w - w ' | 
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for all y,y'£Bm(H'),z£Rn,w,w'eBm(H)XK,t£R+. Suppose, furthermore, that 
there is a positive y-definite Ljapunov function V: r'y—R of (5.2) having the following 
properties: 

(ii) if for a function X*:Ty—R there is a sequence {/,} so that /¡ —°° and 
t t 

f X(x,s + tt)ds- f X^(x, s) ds (i 
0 o 

for every fixed (x, t)£.r'y, moreover, if c>0, then the set Vk
x[c, Ho contains 

no positive semitrajectory of the equation x=X*(x, t); 
(iii) if for a function Y*\ Bm(H')XR+—Rm there exist a sequence {/J and 

a continuous function y \ R+ —R" so that (/-<»), IxiOl-*00 ('-00) and 

t t 
f Y{y, y_(s + t-l),s + U) ds- f r* (y, s) ds (i - - ) 
O 0 

for every fixed (y, t)£Bm(H')XR+, moreover, if c>0, then the set °°]0 

contains no positive semitrajectory of the equation y — Y*{y,t) except the origin 
y=0. 

Then the zero solution of (5.2) is asymptotically y-stable. 

Proof . As it follows from [2] (Theorem 4.1), under assumption (i) both 
tran (X(x, t)) and tran ( r ( j , x(0> 0 ) a r e precompact, and all the limiting equa-
tions are ordinary differential equations whose right-hand sides are the almost-
everywhere derivatives of 

1 t 
lim f X(x, s + ti) ds, lim f Y(y, x(s+tt), s+t^ds, 

respectively. This means that all asrunptions of Theorem 5.1 are satisfied. 
Theorem 5.1 can be used for the case when X(x, t) is periodic in t. For 

example, if 
we assume that Y(y,z, t) — Y*(y, t) uniformly in (y, t)£Bm(ff/)XR+ 

as |z| — then both tran (X(x, /)) and tran x(0> 0) a r e precompact, 
and the limiting equations read 

x = X(x, t+t0), y = Y*(y, t+t0), 
respectively. 

Remark 5.1. Suppose assumptions (i), (ii), (iv) in Theorem 5.1 to be satisfied. 
Suppose, in addition, that 

(v') for every continuous function x : R+ for which IxiOl-*00 ^ 
there is a limiting equation u=Ju of Y(y, x(t), t) so that for every o O the set 
V^lc, Ho contains no positive trajectory of u—u(0)+J0u. 
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Then the zero solution of (5.2) is equiasymptotically y-stable, i.e. it is y-stable 
and for every t0£R+ there is a <r(i0)>0 such that |y(/; x0> /0)|-^0 uniformly 
in x0£Bk(o(t0)) as / -co . 

To show this we have to modify only part b) of the proof of Theorem 5.1. 
Namely, we prove that also in this case i?0=0. After proving (5.4) consider the 
limiting equation 

(5.5) u = u(0) + J0u. 

For a sequence {/¡} the sequence of translates Y'<(y, x(t), 0 tends to J integrally 
as i — From assumption (i) it follows that the functions {<Pi(t) = ^(l + ti)} being 
solutions of the equations y=Y'<(y, x(t), /) are uniformly bounded and equi-
continuous on every fixed interval [0, T\. By Arzela—Ascoli theorem, we can 
assume that i¡/* uniformly on [0, T], thus ip* is a solution of (5.5). Obviously, 
\l/*(t)£Qy(<p) for all / £ 0 . According to (5.4) and assumption (v'), r0 = 0. 

So we have proved that V(x(t; x0, /0))—0 as t — <*> for every fixed t0£R+ 

and for all x0 with sufficiently small |x0|. By the classic covering theorem of 
Heine—Borel—Lebesgue, this convergence is uniform with respect to x0 [9], which 
implies equiasymptotic ^-stability since V is positive y-definite. 

R e m a r k 5.2. The statement in Remark 5.1 remains valid if assumption (v') 
is weakened so that V~x[c, °°]o contains no positive semitrajectory of the limiting 
equation u — u(0)+J0u except the origin y = 0, but it is supposed, in addition, 
that V(y, z, /)—0 uniformly in (z, t)tR"XR+ as y - 0 . 

To see this one has to observe only that the additional condition on V obviously 
precludes the possibility of ^»(/)=0 for the function ip*{t) occurring in the argu-
ment in Remark 5.1. 

These two remarks make it easier to see that our result generalizes and improves 
the main theorem of [10]. 
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