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On the stability and convergence of solutions of
differential equations by Liapunov’s direct method

J. TERJEKI

1. Introduction

By means of a modification of Liapunov’s direct method we give sufficient
conditions for the stability of solutions of ordinary differential equations and for
the existence of finite limits of certain functions (specially, of a part of coordinates)
~along solutions as ¢—~co. For the study of this problem, T. A. BurTON [2], J. R.
HappoOCk [5, 6] and L. HATVANI [8, 13] used modifications in which the derivative
of the Liapunov function was estimated by the norm of a linear combination of
components of the right-hand side of the system. T. A. BURTON [3] has extended
this method for the estimate in which a power of a linear combination of the
right-hand sides occurs. In this paper we investigate the case when the estimate
contains a monotone function of a linear combination of the right-hand sides. We
apply our results to studying the asymptotic behaviour of solutions of certain
second order non-linear differential equations and the stability properties of motions
of mechanical systems under the action of potential and dissipative forces depending
also on the time.

2. The main results

Consider the differential system
2.1) x() =X, x),
where 1€R,=[0, =), x belongs to the n-dimensional Euclidean space R", X¢
€EC(R XTI, R"; 'cR" is an open set.

Let us introduce some notations. Denote by (x, y) the scalar product of

vectors x, yER". |lx] =(x, x)!/* is the norm of the vector x€¢R". Let By denote
the set of elements x¢€R" such that [x|<H (H=0). The distance o(H,, H))
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158 J. Terjéki

between the sets H,, H,CR" is defined by
o(Hy, Hy) = inf {|x—y|: x€H,, y€H,}.

H denotes the closure of the set H. Let K denote the class of increasing functions
acC(R,, R,) for which a(0)=0 and a(s)=0 for all s=>0. Denote by L* the
class of Lebesgue measurable functions f: R, —~R,U{e}, by L} (0<p<e)
and L} the classes of the functions f€L+ with

[ 1r@ds<w, supess f(5) <<=,
0 SER,

respectively. Let u(t; ¢y, 4,) be the maximal noncontinuable solution of the
equation
2.2 i =r(t, u)

through (¢, 4,), where r€C(R,.XR,, R,).

Let us given a function w€C(R,XR,,R,) with w(¢, -)EK. In the sequel
we shall often have to solve an inequality of type w(r, f(¢))=g(¢) for the function f.
This motivates the following notations:

o, =) = lim o, 8) (=),
o™, v) = max {u: o(t, ¥) = v},
w“l(t, w(t, 00)) = oo,

The function ©~(¢, v) is defined for #€R,, 0=v=w(t, «), it is increasing in u,
continuous on the right and satisfies the inequality

o Yo, u)=u (1€R,, u€R,).

For every 8 (0<d=e<o) denote by D; the set of functions f€L* for which f(t)=
=w(t, 8) (1€ R,), and define the map Q;: D,~L* by

(@O =078, () (E€R,,fED,).

For a function VECL(R,.XI’,R¥) (I'cl') we define the derivative V¢
€C(R,XTI’, R of the function ¥ with respect to (2.1) as follows

_ V(%) V(1)

V(t,x) = o " X(t, x) (t€R,.,x€D).

Obviously, if x(r) is a solution of equation (2.1), then

4y (o, x(0) = V(6 x ()
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Let us given a function WeCY(R, XTI, R®). In the sequel we examine the
asymptotic behavior of W along solutions of (2.1), ie the asymptotic behavior

of the function W (¢, x()). In the following theorem we use the set ﬂ w([t, =), I'),

which consists of all we R* for which there exist sequences {t;}, {x} with x;€T,
t; oo, W(t, x)—>w as i—oo.

Theorem 2.1. Suppose that for each wy,wy€ () W((t, =), I') there exist
t=0 .

functions VECYR,XTI,R,), r,ry,w€EC(RyXR,, R,), open sets H,, H,CR*
and a constant T=0 satisfying the following conditions:

(A) wi€H,, wo€H,, o(H,y, Hy)=0;5 ] .

(B) r(t,u) is increasing in u and the solutions of equation (2.2) are bounded;

(C) r(t,u) is increasing in u and ri(-,u)€L; (WER,);

(D) w(t, -)eK (t€R,) and Q.. maps D.NL] into L},

(EB) V(t,x)=r(t, V(t, x)) (t€R,, x€T);

F) V({t,x)=—o(, IW(E )+t Vi, x)
for all (t,x) such that t=T, xeI', W(t,x)¢ H UH,.

Then for every solution x(t) of (2.1) deﬁned on [ty, =) either [|[W(t, x(t))]| -
or W(t, x(t))~const. as 1= oo.

Proof. First of all, observe that
2.3) ' r(e, u)€Ly  (up€R.).
Indeed, let ©,€R,. By virtue of the monotonicity of r(f,u) in u we have

w(t; to, ug) = r(t, u(t; to, u)) = r(t, u);

therefore, assertion (2 3) holds.
Now, consider a solution x: [fy, «)~R" of (2.1) and put w(t)=W(t, x(1)).
Suppose that the assertion of the theorem is not true, i.e., there exist two distinct

elements w,, w, of the set N m Consider some sets H,, H,, functions
t=ty
V,r, r, o and some constant T corresponding to w,,w, in the sense of the
assumptions of the theorem.
By the basic theorem on' differential inequalities, from assumptions (B) and
(E) we obtain the estimate

V(t, x(0) = u(t; ty, V(ty, xo)) = C = const  (t€[1y,.0)).
So,

%(V(t,x(t))} f r(s, C)ds) = (1, x(t))—r.(t, C)=0,

consequently, ' '
SO =r@ CO)—=V(t, x(O)ELF.
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Since wj, W2€,Q W(TOO)): there exist two sequences {t;}, {t;} such that
(2.3) a T=st<ti<t,y, (=12.), Eij{}o’i=°°?
wt)eH,, w(itHeH, (i=1,2,..),
w(¢ H,UH, [tE lj , t}")].
Introduce the notation 4 S
g () = max (0, min (@ (t, =), r, (2, C)=V (¢, x(1))).
Then by condition (F) we have
g0 =o( 1901 (i€ 0@, ).
So,
o1 =07 50) (1€ 0@, )
Therefore,
No(Hy, H) = 3w (@) -w(i =
i

= é”f W) di| = éfi =1, g(1) dt.

This means that w=*(-, g(-))¢ L,. Consequently, by condition (D), g¢ L;.
On the other hand, we have

g =nr( CO)-V(x®) =f(O)+nr@ C)
for all 7 such that r,(#, C)—V (¢, x(¢))=0. By virtue of f(#)=0, r,(t, C)=0 we have
g =fO+n C) (ER,),
which contradicts f, ry(-, C)€L;. The theorem is proved.

Theorem 2.2. Suppose that there exist functions VEC.,“(R+ XTI, R,), r, €
€C(R+ X Ry, R,) such that assumptions (B), (D) and

(F) V(t, x) =—o(, IWE x))+r(E V(E x) (€R,, x€T)

are fulfilled. Then W (t, x(t))—~const. as t--e for every solution x(t) of (2.1)
defined on [t;, ).

Proof. By Theorem 2.1, it is sufficient to show that w(r)=W (s, x(1)) is
bounded for every solution of (2.1) defined on [#,, =).
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Suppose the contrary. Then there exist two sequences {t;}, {t/} and a natural
number M=0 such that

Ts4<tf=t,, (=12, }imti=oo,

lw@l =i, lw@ll =i+1 (=M M+1,..),
i<lw@l <i+l, te(t, ) (=M M+1,..),
are fulfilled. So

N+M
Ns= izzﬂ" (w DN =lw @) =

M+N ¥ d MmN o
= —|w(@®)| dt = v(9)] dt.
i f rivolde= > f @I

Hence, by virtue of (F,) we have

N

N= 2 fco 11, g, (D) dt = f o™it g, () dt,

where
g1 () = min(w(t, =), (1, sup v, x())=V @, x@)).

This inequality contradicts g€ L;", which concludes the proof.

Theorem 2.3. Let 0¢I’ and X(t,0)=0 for all tcR,. Suppose there exist
Sfunctions a, b€K, VEC' (R, XBy, R,) (Bycl), o,réC(RyXR,,R,) such that

By r(t,0=0 for all t€R,, r(-,u)eL} for all u=0, r(t,u) is increasing
in u and the zero solution of equation (2.2) is unique;

(D)) o(t, -)EK (t€R,) and the map Q.:D.NLf~L} is continuous at
u(t)=0 in Ly-norm;

(F2) V({t, x)=—a(|W (i, x)e(s, W, x)[|)+r(t V(t, x)) for all t¢R,, x€By;

(G) V(t,0=0,W(,0=0 for all tcR, and b(|xD=V(, x)+[|W(t, x|
(t€R,, x€By).

Then the zero solution of equation (2.1) is stable, and for every solution x(t)
of (2.1) with sufficiently small |x(t,)| the function W (1, x(t)) has a finite limit as

{— oo,

Proof. We first prove that the zero solution of equation (2.2) is stable. Suppose
the contrary. Then there exist a number >0, sequences {u;}, {#;} of solutions
of (2.2) and positive numbers, respectively, such that

u;(0) >0 as | -roo,
u(t)==¢6, w()<g O=t<t,i=12..).

11
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Define
r(tu () 0=r=t,
0 L=t

ri(= {
By virtue of (B,) we have
O=r()=r(te) (=12.) r—=0 as i+ (t€R,).
Applying Lebesgue’s dominated convergence theorem we obtain
t; co
[ rtw@)di= [ r@ydi~0 as i—~e.
1} 0

By integration of (2.2) it follows that
1]
eo—(0) = [r(t, w(®)dr.
g

Hence, if i—~e, we get g,=0, which is a contradiction. Consequently, the zero
solution of (2.2) is stable.

Let us denote by &, (), 85(g) the numbers corresponding to & in the definition
of stability of the zero solution of (2.2) and in the definition of continuity of Q.
respectively. Let O<e<H, t,€ R, be fixed arbitrarily. Choose &, so that

@49 f=<b@, [ re)dite < 52[1»(8)2-81]“(})(8)2—81]

and define 5=5(e, o) such that 0<5<§ and x| <6 imply

(2.5) V(to, x0) < 61(e), W (8o, Xo)ll < (b (3)"31)/2-

Consider a solution x(¢) of (2.1) with' [[x(#)[ <d. Denote by [t,, 4) the maximal
interval to the right in which |x(¢)]|.<H is true. By assumption (F,) we have

I'/(t3 x®)=rt, V({t,x([®) (t€[ty, 4)),
hence and from (2.5) it follows
V(t, x(0) = u(t, V(te, x(t)) = &1 (t€[te, A)).

We show that the inequality x(t)|<e also is satisfied for tE(ty, A). Otherw1se
there exists a T€(fy, A) such that [|x(T)|=e. Consequently,

W (T, x(T))| = b(Ix(T) =V (T, x(T)) = b(e)—&;.
So, by (2.5) there are t,, 1,€(t,, A) such that the function w(r)=W(t, x(t)) satisfies
Iwll = (b(e)—e)2, Iwl = b(e)—e,
(bE—e)2 <llw) < be)—er (t€(t1, ).
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Using assumption (F,), we obtain

IIW(t)II s, u(®) (€, iz))

where

r(t, e)—V(t x (t))]
q((b (&)—enf2) )’

By integration over (f;, #,) this implies that

u(f) = min [w (2, ),

2.6) f " 011, u(®) dr = (b(e)—e,)/2.

On the other hand, from (2.4) it follows that

f2 u(f)dt = [fz r(t 8 di+V (6, ()~ V (f, X() a((b (8)1—81)/2) =

L1

= m( S e de+V(n, x(1)) < 8:((b()—2)/2),

which contradicts (2.6). This means that |[x(z)]<e is satisfied for all t€[1,, A).
Therefore, A=< and the zero solution is stable.
The other statements of the theorem follows from Theorem 2.1.

Remark 2.1. If we put W (¢, x)=(xy, ..., x;) (1=k=n), where x,, ..., x;, ..., X,
are the components of the vector x, then our theorems with

. 1/2
Wl =( 3 xee »)
i=
yield conditions on the convergence of the components x,, ..., x; along solutions.

Remark 2.2. If
Vi, x)+ W@, x)| - as, x>R\T or [x]| >

for every t¢R,, then under the assumptions of Theorem 2.2 every solution of
equation (2.1) can be continued to [z,, =2).
Remark 2.3. If there exists d¢K such that
W, )| =d(xl) t€R,, x€By)
then in Theorem 2.3 assumption (D,) may be replaced by the following:
(D) o(t, -)€K (t€R,) and the -map Q,: D,NL,~L; is continuous at
u(t)=0 in L,-norm for some 6=0.

In the following we give realization of assumptlons (D), (DY), (D) in some
important special cases. Let N(u4) be a continuous convex function which satisfies

11*
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the following conditions:

N(u)

vk, jim M)

=0, lim

fi=> 0

Put

M) = fsup{t: %N(t)§s}ds

0

If s(¢), r(t) are measurable on [0, T] and

_[TN(s(t))dt<oo, fM(r(t))d1<oo

then, by the generalized Holder inequality (see [10], p. 222—233) the functlon
s(t)-r(¢) is integrable and

T T
2.7 f s@ryde =(1+ [ Nis@)di)(1+ [ M(r@)dr).

Lemma 2.1. Let a continuous function A(t)=0 satisfy the inequality

ry 1
(L Yar <o
of AQ@®)
If o(t,u) is defined by o(t,u)=N(A(t)u) (1€R,, ucR,) then (D) is satisfied.
Proof. It is easy to see that A(¢)>0 almost everywhere, and

<, A() =0,
@ (t; <) ={o, A0 =0,

N71(u)
20

Let u€¢L] ND.. Applying inequality (2.7) we have

Fo _ N-(u(1) =
ofw (t,u(t))dt—msl;()Tdt
t<T

= (1+fN(N"1(u(t)))dt) [1+fM[w)J ]§

§(1+f u(t)dt)[1+fM(l(t)] ]

for all T>0. So, f ~(t, u(t)) dt< e which was to be proved.
0

o™t u) = (A() =0, ueRrR,)
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Remark 24. If w(t,w)=u(®)u® (t€R,,u€R,), where l<a=const., u¢
€C(R4, R,), 1/u€Ly,_,, then assumptions (D), (D,) are satisfied.

This assertion follows from the ordinary Hoélder inequality. T. A. BURTON [3]
considered this case studying the boundedness and the existence of the limit of
solutions.

Obviously, if w(f,u)=u(t)u where p€C(R,;[c,«)) and O<c=const.,
then (D), (D,) are satisfied. This case was studied in [2, 5, 6, 7, 13].

Lemma 22. Let g be a continuous strictly increasing function such that
limg(u) ==, gw)=cu’ 0=u=u),

where ¢=0, v=1 are some constants. Let us choose a continuous function A(t)
such that 1/A€Ly,_yNLY and put o(t,u)=A(t)g). Then (D) is satisfied.
Moreover, if

(2.8) 0< ﬁ,{‘_‘,ijlfg_s?'
then (D,) is also true.
Proof. The assumptions imply
A(t) = ¢, =const. > 0 (t€R.), a_>(t, =) = oo (tER,),
o1, v) = g7 (v/A()) (vER,,1ER,), g7 () = (/)M (0 = v = guy)).

Let u¢LfND,. Then, for v>1 by means of Hélder inequality we obtain-

1 u(H\W
o Yt u@®) dt = — (—) dt =
u(t)=c, g(ug) ct/ (8= glug) A(D)
1 r v . —_y vi(v—
= aw ([ w0 @ ([ Gopre-ra)’e
and
5 0o
o7t u())dt = g (g©)) dt = u(f) dt.
¢; g(ug) =u(t) ¢ g(uoils_'u(t) 51 g(“o) o'[
Consequently,

oo oo

f o Mt u@®)dt = e ([ u@di)"+c; [ u(o) dt

0 0

for some ¢,, cg=0. This inequality is obvious for v=1, therefore (D,) is satisfied,
indeed.
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By (2.8) there exist positive constants K and u, such that g~*(u)=Ku (u;=u).
If ucL;, then

oo

[ o™'(s u(t))dzgfﬁ [ uds,

uy=u(t) 0

I (R710)) dtég—%@fu(t)dt,

ug=u(t)=u,

s0, using the preceding argument, it is easy to verify assumption (D,).
Example 2.1. Let us define

A({f)exp[logdu], u=0
w(l, u) = { 0 w=0 (1, uER,),

where A(f) is continuous, A(t)=c=const. >0 and
;o ce
exp [log”3 ——] dt <o
(,f A
(e.g., A(t)=exp[t®] or exp[d log® (1+1)], where 6>1). Then (D) is satisfied.
Indeed, ' '
-1 _ s _Y_
@ (t’ u) exp [log ]. (t) ] (t€R+a uE R+)’
and if u€L}, then

jw‘l(t, u()dt = f exp []og1/3 )%] dt+ f €xp [loglls %] dt

u(t)=ce u(t)=ce

oo

= r 1/3_ci] i oo
_ofexp[log 0 dt+c fu(t)dt< .

0

3. Applications to second order differential equations and mechanical system

I. Consider the differential equation
(3.1) (p(*)+g(Ng(x) =0,

where p, g€C'(Ry, Ry), gEC(R, R), p(1)>0,4(1)>0 (1€R,), [ gw)du=0 (x€R).

0
Attractivity and asymptotic stability of the trivial solution x=%=0 have been
studied by many authors under the assumption that x=0 is an isolated solution
of the equation g(x)=0 [8,9, 12]. Now we are going to apply Theorem 2.2, 2.3
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to get sufficient conditions for the existence of ]im x(¢) in the case when x=0

is, possibly, a non-isolated solution of g(x)=0.
By introducing the variable y= p(t)%, equation (3.1) can be written in the form

G2 x=y/p@®, y=-g90gx).
For this equation let us choose the Liapunov function
V%) =G+ 090 [ 2@ du

where p€C(R,, R+\{0}) The derivative of ¥ with respect to (3.2) reads as
follows:

; e(®
7650 = (22 Lt (e0a ) f 8 du.
Let the functions W, r, ® be defined by
_ _ [leq®)]+ oy PO (e(®
Wi, x,y)=x, r(t,u)= Wu, o(t, u) = T(p(t)] u.

Then we have ) .
V= —CO(I, IW|)+F(1, V)a W= y/P(t)

We note that in this case the solutions of equation (2.2) are bounded provided that
the inequality

[(ea)1.
3.3 f TN
is fulfilled. By virtue of Remark 2.4
. ds .
(4 f FOROROY T (g(t)/p(t)) <0 (€R,)

imply assumption (D). Consequently, from Theorem 2.2 it follows the following:

Corollary 3.1. If there exists a function ¢€CYR,, R,) such that (3.3) and
(3.4) are true, then the limit of every solution x(t) of (3.1) defined on [t,, =) exists
as t(—eo,

Suppose that
3.5) e _

p() "~

Then V(t, x, y)+{W (¢, x, y)|=(»*2)c+|x|. Using Remark 2.2 and Theorem 2.3,
and taking into consideration the fact that the function ¥ (7, x, ) is non-increasing
along the solutions of (3.2), provided that tl_i.rg e(t)q(t) exists, we get

=c=const. >0 (t€R,).
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Corollary 3.2. Suppose, that (3.3)—(3.5) are fulfilled. Then the zero solution
of system (3.2) is stable. For every solution x(t) of equation (3.1), }LIE, x(t) exists.
Moreover, if }gn q(t)o(t) exists, then ;132 e(t)x(t) exists, too.

. . . . F ds .
It is worth noticing that these corollaries work in case f —(5< =, whose inter-
¢ P
est consists in the fact that it cannot be reduced to an equation of type

X+a(t) g(x)=0.
On the other hand, one can easily see that if

p(Nq(?) = c =const. >0, (p(N)q()) [s+ f p——d(fs—)] =40

. . = ds .
for ¢t sufficiently large with some ¢>0, and f _U< =, then the fuctinon
o P

~ ds
N =p( [ + —]
@ =r@|s+ [ 75
satisfies the conditions of Corollary 3.2,

11. Consider the differential equation
(3.6) X410 x, X)[x[*x+g(x) =0,

where fEC(R,XRXR, R,), 0=a=const., gtC(R, R). A great number of papers
have been devoted to the study of the conditions of the asymptotic stability and
attractivity of the zero solution x=x=0. In these papers it is assumed that f is
either bounded above or tends to infinity sufficiently slowly as t—< [1,7,8].
R. J. BaLLieu and K. PEFFER [1] analyzed whether this condition is necessary.
They proved for the case a=0 f(¢, x, X)=3(2), lirP*%up g(x)/x<o the following

. & odt .
assertions: a) If 9(¢) is increasing and f 9(_t)=°°’ then the zero solution of (3.3)
0

. . .. . &~ odt

is asymptotically stable. b) If 3(¢) is increasing and f 5m< oo, then the zero
(1]

solution of (3.3) is not attractive. Applying Theorem 2.3 we obtain that in the latter

case the zero solution of (3.3) is stable, and every solution has a finite limit as #—oo.

Corollary 3.3. Suppose that

fg(u) du=z=0 (jx]=c = const),

0

S x, %) =30 b(Ix) (€R,, Ix|, 1X = o),
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where béK and 1/..9.EL1,(1 +ap» 3(t) is continuous. Then the zero solution of (3.6)
is stable and for every solution x(t) of (3.6), x(t)—~const., X(t)—~0 as t—co provided
that x%(ty)-+x2(ty) is sufficiently small.

Proof. Equation (3.6) may be written in the form

(3.7) X=y, y=—ft,x, " r—gk).
Let the Liapunov function V be defined by

y
V(x,») = 2+ [ g du.
[1]
Since ]
Vt,x, ) =~f x, ) yI*? (x, yER, tER,),

we have the estimate

V{t, x,3) =—=3@Ob(xD|yl*? (t€R., |x], [yl = o).
Therefore, by w(t, u)=9(t) [u|**% W(t, x, y)=x we obtain
v, x, y) =—b(|x]) w(t’ W (@, x, J’)l) (t€R., |x], [y| = o).
Consequently, by Remark 2.4 the assumptions of Theorem 2.3 are fulfilled. So,
x=y=0 is stable and }Lrg x(t) exists if x2(t5)+y%(f) is small. On the other hand,

V(t, x, y) is nonincreasing along solutions. This implies the existence of the limit
}im y(t), which, obviously, cannot differ from zero.

III. Corollary 3 can be generalized to mechanical systems with friction if the
damping is increasing sufficiently fast in the time.

Consider a holonomic, rheonomic mechanical system being under the action of
conservative, gyroscopic and dissipative forces, which may depend also on the time.
The equation of motions in Lagrange’s form reads as follows:

d 0T(q,9) 0T(q,q9) oM, q) .
(3.8) FTAREF rEy et +0(1, g, 9),

where gcI'CR", g¢R" denote the vectors of the generalized coordinates and
velocities, respectively; T€C¥I'XR", R,) is the kinetic energy, II€ECY(R,. XTI, R)
is the potential energy of the system, Q€C(R.XI'XR", R") denotes the resultant
of the gyroscopic and dissipative forces. We assume that

T(q, 9) = 4" 4(9)d/2,

where A(g) is a symmetric positive definite matrix for each ¢g€I'. Suppose that
0¢rl, 911 (t, 0)/3g=0, Q(t, q,0)=0 (¢€R,, q€I'). Under these conditions the state
g=¢=0 is an equilibrium of (3.8).
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Corollary 3.4. Suppose
n(,g)=0, oI, q)dt=r(t,0(t q) (t€R,, gE€ByCT),
Q. 9.9, 9) =-9(®a(lgeWldl) (€R+, g,4EBy),

where a€K, reCY(R. X R,, R.), r(t, - )€K, f r(z, W) dt<eo (t,u€ R,); furthermore,

0
suppose there exists a natural number p such that g€k, g’(0)=...=g*-1(0)=0,
g¥0)=0, 1/9¢Ly;,, 9 is continuous.
Then the equilibrium q=4=0 is stable and q(t)—~const.€ R" as t- < provided
that q?(t)+q%(ty) is sufficiently small.

Proof. A(q) is positive definite, so, introducing the new variables x=gq, y=4
equation (3.8) can be written in the form

3.9 =y, y=FQtxy).
In the capacity of Liapunov function choose the total mechanical energy

Vit, x, y) =T(x, y)+ 1 (1, x).
As is known [4], .

5 1
v, x, ) =(Q x, ), y)+a%)2 (t€R,, x€T, X€R).

Consequently, if we define W, x, y)=x, o(t, u)=9(t)g(u) we obtain
V(t, x, y) = —a(lx) @ gy +r(t, I, x) =
= —a(|]x||)w(t, ”W(t’ X, y)||)+r(ts V(t’ X, y))

for every t€R,, x, y€ By. Therefore, the assertion follows from Theorem 23,
Lemma 2.2 and Remark 2.3.
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