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On the stability and convergence of solutions of 
differential equations by Liapunov's direct method 

J. TERJfiKI 

1. Introduction 

By means of a modification of Liapunov's direct method we give sufficient 
conditions for the stability of solutions of ordinary differential equations and for 
the existence of finite limits of certain functions (specially, of a part of coordinates) 
along solutions as t—For the study of this problem, T. A. B U R T O N [2], J. R. 
H A D D O C K [5, 6] and L. H A T V A N I [8, 13] used modifications in which the derivative 
of the Liapunov function was estimated by the norm of a linear combination of 
components of the right-hand side of the system. T. A. B U R T O N [3] has extended 
this method for the estimate in which a power of a linear combination of the 
right-hand sides occurs. In this paper we investigate the case when the estimate 
contains a monotone function of a linear combination of the right-hand sides. We 
apply our results to studying the asymptotic behaviour of solutions of certain 
second order non-linear differential equations and the stability properties of motions 
of mechanical systems under the action of potential and dissipative forces depending 
also on the time. 

2. The main results 

Consider the differential system 

(2.1) x(t) = X(t,x), 

where t£R+ =[0, °°)> x belongs to the «-dimensional Euclidean space R", X£ 
eC(R+xr,Rn); r<^R" is an open set. 

Let us introduce some notations. Denote by (x, y) the scalar product of 
vectors x,y£R". ||x|| =(x, x)1/2 is the norm of the vector x£R". Let BH denote 
the set of elements x£Rn such that ¡¡xj|<// (H>0). The distance Q(H1, H2) 
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between the sets H-i, H2cR" is defined by 

< ? ( # ! , # a ) = 'nf{| |x-.y| |: x£Hlt yiH2). 

H denotes the closure of the set H. Let K denote the class of increasing functions 
a£C(R+,R+) for which a(0)=0 and a(s)>0 for all j > 0 . Denote by L+ the 
class of Lebesgue measurable functions / : R+ — R+ U {«>}, by (0</><°°) 
and L t the classes of the functions / € L + with 

f / p ( s ) ds sup ess/(s) <00, 

respectively. Let u(t;t0,u0) be the maximal noncontinuable solution of the 
equation 
(2.2) it = r(t, u) 

through (f0,w0), where r£C(R+XR+, R+). 
Let us given a function a>£C(R+ XR+, R+) with a>(t, • )£K. In the sequel 

we shall often have to solve an inequality of type w(t,f(t))^g(t) for the function / . 
This motivates the following notations: 

co(t, 00) = lim co{t, u) ( s °=)> 

00 

a)_1(i, v) = max {«: co(t, u) S v}, 
fi)-1(f, w( i , °=)) = c o -

The function a>_1(/, v) is defined for t£R+, 0 = v^co(t, it is increasing in u, 
continuous on the right and satisfies the inequality 

co-^t, (o{t, u)) S u (t£R+, u£R+). 

For every 8 denote by Dd the set of functions / 6 L + for which / ( i ) — 
Sco(t, <5) (t£R+), and define the map QS:DS—L+ by 

(0 , /XO = c o - ^ t j i t ) ) ( t t R + j e D } ) . 

For a function ViC1(R+ XT', Rk) ( f c f ) we define the derivative 
€C(R+ XT', Rk) of the function V with respect to (2.1) as follows 

Obviously, if x(t) is a solution of equation (2.1), then 

±V(t,x(t)) = V(t,x(t)). 
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Let us given a function W^.C1(R+ XT, Rk). In the sequel we examine the 
asymptotic behavior of W along solutions of (2.1), i.e. the asymptotic behavior 
of the function Wit, x(t)\ In the following theorem we use the set Pi W{\t, T), 

tSO 
which consists of all w£Rk for which there exist sequences {ij, {x,} with x,€.T, 

W(tt, xt)—w as 

T h e o r e m 2.1. Suppose that for each wx, w2£ f ) W([t, °°)> 0 t^iere exist 

t £ 0 
functions V£C\R+xr, R+), r, rlt co£C(R+ XR+, R+), open sets H1,H2cRk 

and a constant 0 satisfying the following conditions: 
(A) 0; 
(B) r{t, u) is increasing in u and the solutions of equation (2.2) are bounded; 
(C) rx(t,u) is increasing in u and rx(-, (u£R+); 
(D) co(t, -)£K (t£R+) and Q^ maps D „ n L + into £,+ ; 
(E) V(t, x)^r(t, V(t, x)) (t£R+, x € r ) ; 
(F) V(t, x) si -a>(t, | |W(t, ^ iD+z-^ / , V(t, x))_ 

for all (t, x) such that t^T, x<ZT, W(t, x)iH1UH2. 
Then for every solution x(t) of (2.1) defined on [?0, either \\W(t, x(r))ll — 00 

or W(t, x(t)) -•const, as t—<=. 

Proo f . First of all, observe that 

(2.3) r{.,u0)£Lt (u0iR+). 

Indeed, let u0£R+. By virtue of the monotonicity of r(t, u) in u we have 

u(t; t0, m„) = r(t, u(t; t0, u0)) S r{t, w0); 

therefore, assertion (2.3) holds. 
Now, consider a solution x: fi0, R" of (2.1) and put w(t) = W(t, x(t)). 

Suppose that the assertion of the theorem is not true, i.e., there exist two distinct 
elements w1, w2 of the set P| w([t, Consider some sets H1, H2, functions 

t sto 
V, r,r^,(o and some constant T corresponding to Wj, w2 in the sense of the 
assumptions of the theorem. 

By the basic theorem on differential inequalities, from assumptions (B) and 
(E) we obtain the estimate 

V(t, x(0) u(t; t0, V(t0, x0)) ^ C = const (i€[/0, 

So, 

f r(s, C)ds) = V(t, x{t))-r{t, C) 0, 

consequently, f(t) = r{t, C)-V(t, x(t))eL?. 
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Since w1; VV2£ H vv([/, «=)), there exist two sequences {/,}, {/?} such that 
( s » o 

(2.3) T ^ t ^ t t ^ t ^ (¿ = 1,2, . . . ) , l imi , = oo; 
»-•OO 

w W e H x , w ( i f ) 6 H , (i = 1, 2 , . . . ) , 

w i O i ^ U H , ( ' e L K ' i . t f ) ) . 
Introduce the notation 

g (/) = max (0, min (a> (i, n (t, C) - F (r, x (/)))). 

Then by condition (F) we have 

g ( o s <o(t, i iw(oii) 

So, 

II w 

Therefore, 

v(0ll == 03-% g ( o ) ( ' € ¿ t o , * ? ) ) . 

NQ(Hlt H2) == 2 l|w(ij)-w(if)|| = 
¡=i 

t* t* 

= i l l f Ht)dt\\ ^ z S 8(f)) dt. 

This means that a)_1( •, g( • )) $ Lx. Consequently, by condition (D), g $ 
On the other hand, we have 

g( i ) S r x ( i , C) — V(t, x(t)) = / ( 0 + r i i f , C) 

for all t such that r^t, C)-V(t, x ( 0 ) = 0 . By virtue of f(t)^0, rx(/, C ) s O we have 

g ( î ) ë / ( i ) + r 1 ( / 1 C ) (tiR+), 

which contradicts / , •, The theorem is proved. 

T h e o r e m 2.2. Suppose that there exist functions V£C\R+ XT, R+), r,co£ 
£C(R+ XR+, R+) such that assumptions (B), (D) and 

(F,) V(t, x) ^-co(/, | |W(t, x)||) + r(f, Vit, *)) (t£R+, x<LT) 

are fulfilled. Then W(t, x(tj)—const, as t—°° for every solution x(t) of (2.1) 
defined on [i0, 

P r o o f . By Theorem 2.1, it is sufficient to show that w(t)=W{t, x ( 0 ) is 
bounded for every solution of (2.1) defined on [/„, «•). 
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Suppose the contrary. Then there exist two sequences {/,}, {/?} and a natural 
number M > 0 such that 

(i = 1, 2, ...), jim tt = 

IIW (Oil = U II w (i*)ll = i + 1 (i = M,M+1, ...), 

i < ||w(i)|| < i + 1, i € ( i „ i f ) (i = M , M + l , . . . ) , 

are fulfilled. So 
N + M 

N ^ 2 ( l | w W ) l l - l | w ( O I I ) = 

M + N '* M + N '* 
= 2 / -J-IKOfldfS 2 / IIw(Oil dt. i=M r dt i=m r 'i 't 

Hence, by virtue of (Fx) we have 

M + N '* '«,+ Jr 
N ^ 2 f to-ifagiUfidts J <0-^(1, gl(t))dt, 

where 
gi(0 = min(co(t, r(t, sup F(i, * ( / ) ) ) x ( 0 ) ) . 

1 S T 

This inequality contradicts gi^Z^, which concludes the proof. 

T h e o r e m 2.3. Let 06T and 0)=0 /or all t£R+. Suppose there exist 
functions a,b£K, V£C\R+XBH,R+) (BHczr), a>, r£C(R+XR+, R+) such that 

(Bj) r(t, 0) = 0 for all t£R+, r( •, u)£L+ for all w>0, r{t, u) is increasing 
in u and the zero solution of equation (2.2) is unique; 

(Dx) a>(/, • )£K (t£R+) and the map B^OLf —Lf is continuous at 
u(t)=0 in L^norm; 

(F2) V(t, x) ^ —a(\\W(t, x)||)co(i, *)||) + r(/, V(t, x)) for all tiR+, x£BH; 
(G) V(t,0)=0,W(t,0)=0 for all t£R+ and ¿(||jt||)s=K(/, x) + \\W(t, jc)|| 

(t£R+, x£BH). 
Then the zero solution of equation (2.1) is stable, and for every solution x(t) 

of (2.1) with sufficiently small ||*(/0)ll the function W(t, x(t)) has a finite limit as 
i - o o . 

Proof . We first prove that the zero solution of equation (2.2) is stable. Suppose 
the contrary. Then there exist a number £o>0, sequences {w,}, {/,} of solutions 
of (2.2) and positive numbers, respectively, such that 

M, (0)-»0 as i -*«>, 

"/('/) = «o, « i ( 0 < £o (0 S ( < t„ i - 1, 2, . . . ) . 

it 
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Define 
f r(t,u,(/)) 0 r<('H 0 

By virtue of (Bj) we have 

0 — /*¡(0 — f{t, £Q) 0 = 1,2,. . .) , r , ( 0 - 0 as i - o o (t£R+). 

Applying Lebesgue's dominated convergence theorem we obtain 
tf CO 

f r(t,Ui(t))dt = fri(t)dt-+0 as i - «> . 
0 0 

By integration of (2.2) it follows that 

e 0 - « l ( 0 ) = f'r(t, u-Stydt. , 
o 

Hence, if we get e0=0, which is a contradiction. Consequently, the zero 
solution of (2.2) is stable. 

Let us denote by ^(e) , <52(e) the numbers corresponding to e in the definition 
of stability of the zero solution of (2.2) and in the definition of continuity of Q„, 
respectively. Let 0 < £ < / / , t0€R+ be fixed arbitrarily. Choose Sj so that 

(2.4) 8 l <&(«), f + 

£ 
and define <5=<5(£, i0) such that 0<<5<y and ||x0|| < 8 imply 

(2.5) K ( ' o . * « W i ( e i ) , l|W('o,*o)ll < ( b ( e ) - £ , ) / 2 . 

Consider a solution x(t) of (2.1) with ¡|x(i0)|| <<5. Denote by [/„, A) the maximal 
interval to the right in which ||x(/)||.-c/i is true. By assumption (F2) we have 

V(t, x(t)) f(t, V(t, x(t))) (K[t0,A)), 

hence and from (2.5) it follows 

V(t, *(/)) ^ u(t, V(t0, x(t0))) El (i€[t0, A)). 

We show that the inequality ||x(/)ll <£ also is satisfied for t£[t0,A). Otherwise 
there exists a T£(t0,A) such that | |x(r) | |=e. Consequently, 

\\W(T, *(D)|| S b(\\x(T)\\)-V(T, x(T)) £ b(8) Ei. 

So, by (2.5) there are t1, t2£(t0, A) such that the function w(t)—W(t, x(t)) satisfies 

IKOI I = (6(e)-e i)/2, ||w(/2)|| = b(E)-El, 
(b(E)-£l)/2 < ||w(OH < b(e)-e1 (i€(/i, k)). 
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Using assumption (F2), we obtain 

H*(0| | = « ( 0 ) ( '€ ( i i , O ) 
where 

• ( , x r(t, eJ-Vit, x(t))) 

By integration over (f l s t2) this implies that 

(2.6) «(0 )dt S (b(e)-e1)l2. 
'i 

On the other hand, from (2.4) it follows that 

/ « ( 0 d t ^ t f r f r e j d t + v ^ x i t j y v ^ x i t j ) ) a { i b { £ )
l _ e i ) / 2 ) S 

" a((b(e)-£l)/2) (,/ r(f' *('*») ^ ^((b(s)-£l)l2), 

which contradicts (2.6). This means that ||x(i)||-=:£ is satisfied for all tZ[t0, A). 
Therefore, A = °° and the zero solution is stable. 

The other statements of the theorem follows from Theorem 2.1. 

Remark 2.1. If we put W(t, x)=(x1; ..., xk)(1 ^k^n), where xlt ..., xk, ...,xn 

are the components of the vector x, then our theorems with 

( k V'2 

yield conditions on the convergence of the components ..., xk along solutions. 

Remark 2.2. If 

V{t, x) + W(.t, xW as, x - R n \ r or ]|x|| - » 

for every then under the assumptions of Theorem 2.2 every solution of 
equation (2.1) can be continued to [/0, »). 

Remark 2.3. If there exists d£K such that 

\\ft(t,x)\\tid(\\x\\) KR+,x£BH) 

then in Theorem 2.3 assumption (Dj) may be replaced by the following : 
(D2) oj(t, • )£K (t<zR+) and the map Î2é: DôPiL+ —L+ is continuous at 

u(t)=0 in Zx-norm for some ¿=-0. 
In the following we give realization of assumptions (D), (Dx), (D2) in some 

important special cases. Let N(u) be a continuous convex function which satisfies 

il* 
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the following conditions: 

N£K, lim — — = 0, hm —^— = 
U—~ U u~ CO U 

Put 
" i d 1 

M(u) = f sup : N(t) ^ s | ds. 

If s(t), r(t) are measurable on [0, T] and 
T T 

f N(s(t))dt f M(r(f))dt< co 
0 0 

then, by the generalized Holder inequality (see [10], p. 222—233) the function 
s(t)-r(t) is integrable and 

(2.7) / s ( i ) r ( 0 dt s ( l + / iV(s(i)) ¿ í ) ( l + / M ( r (i)) d*). 
0 0 0 

L e m m a 2.1. Let a continuous function A(i)—0 satisfy the inequality 

If oj(t, u) is defined by a>(t,u)=N(X(t)u) (t£R+,u£R+) then (D) is satisfied. 

P r o o f . It is easy to see that A(/)>0 almost everywhere, and 

f°=, A ( i ) > 0 , 
o)( • 

(o~h(/, «) = ( A ( 0 > 0, 

Let D-D«. Applying inequality (2.7) we have 

o A(r>o 
t«=r 

for all r > 0 . So, J co-1(f, «(/)) which was to be proved. 
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Remark 2.4. If co(t, u)=p.(t)ua (t£R+, u^R+), where l<a=const . , 
£C(R+, R+), then assumptions (D), (Dx) are satisfied. 

This assertion follows from the ordinary Holder inequality. T. A. BURTON [3] 
considered this case studying the boundedness and the existence of the limit of 
solutions. 

Obviously, if co(t,u)=fx(t)u where /i£C(R+; [c, °°)) and 0<c=const. , 
then (D), (Dj) are satisfied. This case was studied in [2, 5, 6, 7, 13]. 

Lemma 2.2. Let g be a continuous strictly increasing function such that 

lim g(u) = g(u) is cu" (0 = m = m0), 
U-*-oo 

where o O , v ^ l are some constants. Let us choose a continuous function k{t) 
such that l/l£LiKv_1)C\L+ and put a>(t, u) = X(t)g(u). Then (D2) is satisfied. 
Moreover, if 

(2.8) O d i m i n f - ^ -
u—~ U 

then (Dj) is also true. 

Proof . The assumptions imply 

kit) ^ Cj = const. > 0 (t£R+), co(t, oo) = oo (/£i?+), 

o>~\t, v) = g-^v/Ht)) (v£R+, t£R+), g~\v) s (f/c)1/v ( O s t s g(u0)). 

Let u£Lf DDg. Then, for v > l by means of Holder inequality we obtain 

and 
^ M f ' u ^ d t ) l l v i f m r ^ d t ) ^ - 1 ' 

f œ-%u(t))dt S / g - t ^ d t ^ - ^ — f u(t)dt. 

Consequently, 

/co'^t, u(t)) dt =s c2 ( / u ( t ) d t f v + c 3 f u(t) dt 
0 0 0 

for some c2, c3>0. This inequality is obvious for v = l , therefore (D2) is satisfied, 
indeed. 
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By (2.8) there exist positive constants K and u1 such that g~x(u)^Ku (w^u) . 
If then 

/ a>~i{t,u<J))dt s f - f u(t)dt, 
l^sVl) C1 0 

UeSuMSUt 0 0 

so, using the preceding argument, it is easy to verify assumption (D^. 

Example 2.1. Let us define 

f A ( f ) e x p [ l o g s w ] , « > 0 
« * . « ) - { 0 > M = 0 ( / . « € * • ) . 

where ).{t) is continuous, A(/)Sc=const. > 0 and 

/ e x p f l o g ^ ] ^ -

(e.g., A(/)=exp[/3] or exp [5 log3 (1 + i)], where ¿>1) . Then (D) is satisfied. 

(t, u) = e x p [ l o g 1 ' 3 — ] (/€*+, w€i?+), 

Indeed 

CO 

and if then 

/ co~\t, ii(/)) dtm f exp [log1/3 g J dt+ f exp [ l o g 1 ' 3 ^ ] dt 
0 «(OS« 1 u(,)ice L 

~ r c e 1 1 ~ 
s J exp|tog1/3 j^\dt+— J u(t)dt 

3. Applications to second order differential equations and mechanical system 

I. Consider the differential equation 

(3.1) (p(0*)"+?(0g(*) = 0, 
X 

where/7,9€C1(JR+,^+), g€C(R, R), />(0>0, q(t)>0 (*€*+), / (xgi?). 
o 

Attractivity and asymptotic stability of the trivial solution x = x = 0 have been 
studied by many authors under the assumption that x=0 is an isolated solution 
of the equation g(x)=0 [8, 9, 12]. Now we are going to apply Theorem 2.2, 2.3 
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to get sufficient conditions for the existence of lim x(t) in the case when x=Q 
X~*oo 

is, possibly, a non-isolated solution of g(x)=0. 

By introducing the variable y=p(t)x, equation (3.1) can be written in the form 

(3-2) x = y/p(t), y = — q(t)g{x). . 

For this equation let us choose the Liapunov function 

V(t, x, y) = e(t) <7(0 f g(u) du, 

where E^.C1(R+, R+\{0}). The derivative of V with respect to (3.2) reads as 
follows: 

V(t, x, y) = ^ + (Q(t)q(t)y f g(u)du. 

Let the functions W, r, co be defined by 

Then we have 
V^-co(t, \W\) + r{t, V), W= y/p(t). 

We note that in this case the solutions of equation (2.2) are bounded provided that 
the inequality 

0 . 3 ) 

0
J <?(0<7(0 

is fulfilled. By virtue of Remark 2.4 

imply assumption (D). Consequently, from Theorem 2.2 it follows the following: 

Coro l la ry 3.1. If there exists a function Q£C\R+, R+) such that (3.3) and 
(3.4) are true, then the limit of every solution x(t) of (3.1) defined on [i0, exists 
as t—°°. 

Suppose that 

(3.5) ^ g c = const. > 0 (t£R+). p(t) 

Then V(t,x, y) + \W{t, x, y)\s=(y2/2)c+\x\. Using Remark 2.2 and Theorem 2.3, 
and taking into consideration the fact that the function V(t, x, y) is non-increasing 
along the solutions of (3.2),' provided that lim g(t)q(t) exists, we get 
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Coro l l a ry 3.2. Suppose, that (3.3)—(3.5) are fulfilled. Then the zero solution 
of system (3.2) is stable. For every solution x(t) of equation (3.1), lim x(t) exists. 
Moreover, if lim q(t)g(t) exists, then lim g(t)x(t) exists, too. 

I — oo t — oo 

f ds . 
It is worth noticing that these corollaries work in case / < «>, whose mter-

o />(•*) 
est consists in the fact that it cannot be reduced to an equation of type 
* + a ( 0 s ( x ) = 0 . 

On the other hand, one can easily see that if 

ds 1 
E + / S 9 ( 0 

~ ds 
for / sufficiently large with some £>0, and / <=>, then the fuctinon 

o7 />(*) 

fl(0 = P(0 

satisfies the conditions of Corollary 3.2. 

II. Consider the differential equation 

(3.6) * + / ( / , x, *)|x|*x + g (x) = 0, 

where f£C(R+XRXR, R+), 0^a=const . , g£C(R,R). A great number of papers 
have been devoted to the study of the conditions of the asymptotic stability and 
attractivity of the zero solution x = x = 0 . In these papers it is assumed that / is 
either bounded above or tends to infinity sufficiently slowly as i—«> [1,7,8]. 
R. J. BALLIEU and K. PEIFFER [1] analyzed whether this condition is necessary. 
They proved for the case a = 0 f(t, x, x)=3(t), lim sup g(x)/x<co the following 

00 dt 
assertions: a) If 9(/) is increasing and f then the zero solution of (3.3) 

o 5 ( 0 
r dt is asymptotically stable, b) If 9(t) is increasing and J ^ ^ < then the zero 

solution of (3.3) is not attractive. Applying Theorem 2.3 we obtain that in the latter 
case the zero solution of (3.3) is stable, and every solution has a finite limit as (-«>. 

Coro l la ry 3.3. Suppose that 
X 

J g ( « ) i i a ê 0 (|x| = const.), 
o 

f(t, x, x) s 0 ( 0 6 ( 1 * 1 ) (t£.R+, |x | , \i\m c), 
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where b£K and l/9€i} / (1+0[), 9 ( 0 is continuous. Then the zero solution of (3.6) 
is stable and for every solution x(t) of (3.6), *(/)— const., x(0—0 as f — p r o v i d e d 
that x2(t0) + x2(t0) is sufficiently small. 

Proof . Equation (3.6) may be written in the form 

(3.7) x = y, y=-fit,x,y)\y\°y-g(x). 

Let the Liapunov function V be defined by 

V(x,y)=y*/2+ fg(u)du. 
o 

Since 
V(t, x, y) = - f ( t , x, y)\y\x+2 (x, y<iR, KR+), 

we have the estimate 

V(t,x,y)^-Ht)b(\x\)\yr* it£R+,\x\, \y\ ^ c). 

Therefore, by co(t, m)=9(0M"+2 , Wit, x, y)=x we obtain 

V(t, x, y) ^-b(\x\)o>(t, |Wit, x, J0|) (t£R+, |*|, \y\ ^ c). 

Consequently, by Remark 2.4 the assumptions of Theorem 2.3 are fulfilled. So, 
x—y=0 is stable and lim x(t) exists if x2(/0)+y2(/0) is small. On the other hand, 
V(t, x, j ) is nonincreasing along solutions. This implies the existence of the limit 
lim yit), which, obviously, cannot differ from zero. 

III. Corollary 3 can be generalized to mechanical systems with friction if the 
damping is increasing sufficiently fast in the time. 

Consider a holonomic, rheonomic mechanical system being under the action of 
conservative, gyroscopic and dissipative forces, which may depend also on the time. 
The equation of motions in Lagrange's form reads as follows: 

n ox d dTjq, q) dTjq, q) dnjt, q) , 
( 3 - 8 ) Tt—H dT~ = — d j - + Q 0 ' q ' q ) ' 

where q^TczR", q£Rn denote the vectors of the generalized coordinates and 
velocities, respectively; T^C^rxR", R+) is the kinetic energy, n^C^R+XT, R) 
is the potential energy of the system, Q^CiR+XTXR", Rn) denotes the resultant 
of the gyroscopic and dissipative forces. We assume that 

Tiq, q) = qTAiq)ql2, 

where Aiq) is a symmetric positive definite matrix for each Suppose that 
OCA dll(t, 0)/dq=0, Q(t, q, 0 )=0 (t£R+,q£r). Under these conditions the state 
q=q=0 is an equilibrium of (3.8). 
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Coro l l a ry 3.4. Suppose 

n(t, q) S 0, dn(t, q)ldt ^ r{t, E{t, q)) (t£R+ , qdB„cO, 

(Q(t,q,q),q)^-ma(\\q\\)g(\\q\\) (t£R+, q,q£BH), 

where a£K, r£C\R+XR+, R+), r(t, -)£K, f r(t, u)dK°° (t,u£R+)-, furthermore, 
o 

suppose there exists a natural number /i such that g£K, g'(0) =... = g ( " - 1 ) ( 0 ) = 0, 
£<">(0)^0, 1 / 9 6 9 is continuous. 

Then the equilibrium q = q—0 is stable and q(t)—const.£Rn as (->•<» provided 
that q2(to) + q2(to) is sufficiently small. 

Proof . A(q) is positive definite, so, introducing the new variables x=q,y=q 
equation (3.8) can be written in the form 

(3.9) x = y, y = F(t, x, y). 

In the capacity of Liapunov function choose the total mechanical energy 

V(t,x, y) = T{x, y) + n(t,x). 

As is known [4], 

V(t, x, y) = (Q(t, x, y), y)+dn{^x) (t£R+, xiT, x£R). 

Consequently, if we define W(t, x, y)=x, co(t, u) = 9(t)g(u) we obtain 
V(t, x, y) S-fl(| |*| |)S(0g(||^||) + r(i, II(t, x)) ^ 

si-a(||*||)a»(i, \\W(t, x, j O | | ) + r ( i , V(t, x, y)) 

for every t£R+, x, y£BH. Therefore, the assertion follows from Theorem 2.3., 
Lemma 2.2 and Remark 2.3. 

Acknowledgement. The author is very grateful to L. Pintér and L. Hatvani 
for many useful discussions. 
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