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Meromorphic functions of operators

TAVAN T. TRENT

Let T be a bounded operator on a separable Hilbert space. Combining
previous results of HaLmos [4] and FiLLMORE [3] concerning operator identities of
the forms 0=f(T*) and T=f(T*) with f entire, MOORE [6] proved the following
general theorem:

Theorem A. [6] Suppose that p is a polynomial, [ is an entire function, and
p(T)=f(T*). Then there is a polynomial q (of the same degree as p when T is
not algebraic) such that p(T)=q(T™).

The proof of this theorem required a key replacement of the operator identity
by a complex variable identity, followed by a version of the Jacobi polynomial
expansion theorem, resultant arguments, and a theorem of Picard. In this paper
we begin with the complex variable identity and generalize Theorem A utilizing
a more geometric argument, motivated by FILLMORE [3] and based on the monodromy
theorem and the Weierstrass preparation theorem. A good reference for the classical
complex variable theorems is HILLE [5]. We prove:

Theorem 1. Let r be a rational function, M a meromorphic function in the
complex plane, and assume that r(T)=M(T*). (Thus the poles of r and M lie
outside of o(T) and o(T?*), respectively.) Then there is a rational function q such
that r(T)=q(T*). Moreover, when T is not algebraic, M itself must be rational
and of the same order as r.

¢

Before beginning the proof we state the replacement theorem of MOORE [6]
for convenience.

Theorem B. [6] Let f and g be analytic in neighborhoods of o(T) and o(T*),
respectively, and suppose that g(T)=f(T*). Then for zco(T), g(2)=/(2).

Proof of Theorem 1. If ¢(T) is finite then o(r(T)) is finite and r(T)
is normal, hence algebraic. Thus T and T* are algebraic, and M may be replaced
by a rational function.
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Otherwise ¢ (T) is infinite and contains a limit point «. First note that if » has
order less than one, F(T*)=0 for some entire function F, so T* and thus T is
algebraic and the theorem holds. Hence we may assume that N, the order of r,
satisfies N=1.

By Theorem B we know that r(z)=M(Z) for z in o(T). Clearly we
may take o«=0 and r(0)=0, modifying T, M, and r, if necessary. Then
2'r(2)=2z"M,(Z) for z in o(T), where r(0)>=0, M;(0)0 and n and m are
positive integers. Taking the modulus and letting z€o(T)—~0, we see that n=m.
Thus we may write r(z)=h(z)" and M(z)=k(Z)", where h and k are analytic
and invertible in a neighborhood W of 0. Since (h(z))"=(k(2))" for z’s in o(T)
(which is an infinite set), we may assume that & and k are chosen so that h(z,)=
=k(Z,) for some sequence {z,}Co(T) with z,~0.

Computing, z,=h"'0k(Z,), so Z,=h ‘ok(z,)=h'ok(z,), where h(z) is
defined to be @

Let S={zcW:zZ=h"'ok(z)}. Then o(T)cS. Using a consequence of the
Weierstrass preparation theorem [7], we conclude that S is the intersection of
(real analytic) arcs with only a finite number in any compact set. Using the fact that
S contains a limit point we conclude that § contains a real analytic arc y. Choose
a point z, in y so that r'(z) is not zero or infinity. '

Thus Z=h"'ok(z) for z in y, so h(z)=koh~'ok(z) for z in y. Because
all functions are analyticin W we conclude that h(z)=koh~10k(z) for all z in W.

By choice of z,, r is invertible in a connected neighborhood of z, contained
in W, Q. Again, let Rw)=r(w+z¢)—r(zy), A(W)=M(W+Z)—~M(Z,), Qe=Q -2z,
and y,=y—z,. Hence R(z)=.#(Z) for z€y, and R is invertible in Q,. Then
arguing as before z=R o #(Z) so R(z)=MoR‘lo./_il—(z)_for all z in Q,. .

Denote the complex plane by C. Define Z(f, a)={z€C: f(z)=a}. Let Z,=
={z6C: #(2)€Z(R’, 0)UZ(R’, «)}. Each of the sets Z(R/,d) contains at most
2N elements since R has order N. But .# is meromorphic in the complex plane,
so the set of points with .#(z)=c for any fixed ¢ has no finite limit points. Thus
we may join each of the points of Z; by a simple curve 9; accumulating only at <,
chosen so that if Q,=C—y,, then @, is connected and simply connected. R~!
is one branch of the inverse of R in ©,. By construction branches of the inverse
of R exist at every point of C—y,. By the monodromy theorem (see [1, p. 134))
we see that R~ can be continued into ,, defining a single-valued analytic func-
tion (again denoted by R™Y) in Q. .

Recall that R(z)=.# oRlo(z) for z€Q,. Thus by permanence of func-
tional relations R(z)=.#oRYo.#(z) for z€Q,.

Suppose that for some c€Q,, |Z(A#, c)|>N. Let d=.MoR*c). Then

N=|Z(R, d)| = |Z(MoR oM, d)| = |Z(H, c)| > N.
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This contradiction shows that .# is at most N-valent in Q,. Since €, is open
and dense in C, the open mapping principle shows that .# is at most N-valent
in C. Applying the Casorati—Weierstrass theorem and the open mapping principle
(or using the great Picard theorem), we see that o is not an essential singularity
of #. Thus M is a rational function of order less than or equal to N. A sym-
metric argument shows that the order of M equals the order of r,

Note that in the case when both » and M are entire, the conclusion that M
has order N means that M is a polynomial of degree N.

Remarks. (a) Letting 7 be a unitary operator shows that takmg r to be
a polynomial with M meromorphic does not allow us to conclude that M is
itself a polynomial.

(b) Theorem 1 covers the case that g(T™*)p(T)=f(T*)q(T), where f and
g are entire, p and ¢ are polynomials, and ¢(T) and g(T*) are invertible. We
do not know how to handle more gerieral identities with T and T* appearing
on both sides.

(c) There should be some “Riemann surface” version of Theorem 1 valid for
r an algebraic function with appropriate hypotheses concerning M.

" We briefly wish to consider what compact sets K can be the spectrum of an

operator T satisfying

) ‘ AT) = FI),
where f and F are analytic in a neighborhood of K. Notice that if
@ f(2)=F(®

for z in K, then (1) can be solved for a normal operator 7T and in many cases
nonnormal operator solutions can be constructed as well.

Denote the real and imaginary parts of f and F by w, v and U, V, respectively.
We see that (2) is equivalent to

3) u—U=0 and v+¥V =0 for z in K.

On the otherhand, let P and @ be any real-valued harmonic functions in a neigh-

borhood of K with single-valued conjugates (denoted by P and (, respectively)

in a neighborhood of K. Then if

@ P=0 and Q=0 for zin K 4

we may writ¢ P=u—U and Q=v+V where u=(P—-0)/2, U=(—0—P)/2, v=4,

and ¥ =U. Thus letting f=u+iv and F=U+iV we have established
Theorem 2. There exist analytic functions f and F in a neighborhood of

K with f(z)=F(z) for z in K. if and only if there exist real harmonic functions

P, Q in a neighborhood of K with single-valued conjugates in a nezghborhood of
K and with P(z2)=0 and Q(z)=0 for z in K.
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Corollary. Suppose that Q is a real harmonic function with single-valued
conjugate in a neighborhood of K and Q(z)=0 for z in K. Then —Q+iQ=

=—0+iQ for z in K.
Proof Take P=0 in Theorem 2.

Theorem 2 and the corollary are useful for constructing various examples.

By the corollary, to understand K we must look at the zero set of a harmonic
function. We mention a few well-known facts. Simply because a harmonic function
h is locally a real analytic function in x and y, the Weierstrass preparation theorem
[6] shows that locally Z(h, 0) is a finite union of analytic arcs. Moreover, if the
gradient of h vanishes at some point s, then the derivative of h+i/ vanishes at s.
Thus locally the number of arcs and the types of singularities of Z(k, 0) are restricted.
In the case when f and F are analytic in a simply connected set, the maximum
principle says that Z(h, 0) contains no closed curves.

It may be of interest to see how the paks revious remmarnd geoetric considera-
tions lead to a proof of a special case of Theorem A. Let K be an infinite compact set.
Suppose that p(z)=q(z) for z in K, where p and g are polynomials with
max (deg p, degg)=m. Let y,=Rep—Reqg and wu,=Imp+Img. Then u,=0
and #,=0 for z in K, where u; and u, are real harmonic polynomials of degree
m. Since u; and wu, vanish at so many common points (see [2, Chapter 1}), it
follows that u; and u, have a common polynomial factor, h, of degree greater
than 0. Let f=u,+iif,. Then f is a polynomial in z of degree m. So, at oo,
Z(u,, 0) has 2m branches. However the degree of u,/h is less than m, so Z(h, 0)
must contain some branch which extends to <. But then p(z)=g(z) holds for some
sequence of z's approaching . Since p and ¢ are polynomials, the degrees of
p and ¢q are equal.

I do not know whether Theorem 1 or even Theorem A can be proved analogously
to the above special case with a more thorough understanding of the zero sets
involved.
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