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Meromorphic functions of operators 

TAVAN T. TRENT 

Let T be a bounded operator on a separable Hilbert space. Combining 
previous results of HALMOS [ 4 ] and FILLMORE [ 3 ] concerning operator identities of 
the forms 0 =f(T*) and T—f(T*) with / entire, M O O R E [ 6 ] proved the following 
general theorem: 

Theorem A. [6] Suppose that p is a polynomial, f is an entire function, and 
p(T)= f(T*). Then there is a polynomial q (of the same degree as p when T is 
not algebraic) such that p(T) = q(T*). 

The proof of this theorem required a key replacement of the operator identity 
by a complex variable identity, followed by a version of the Jacobi polynomial 
expansion theorem, resultant arguments, and a theorem of Picard. In this paper 
we begin with the complex variable identity and generalize Theorem A utilizing 
a more geometric argument, motivated by FILLMORE [ 3 ] and based on the monodromy 
theorem and the Weierstrass preparation theorem. A good reference for the classical 
complex variable theorems is HILLE [5 ] . We prove: 

Theo rem 1. Let r be a rational function, M a meromorphic function in the 
complex plane, and assume that r(T)=M(T*). (Thus the poles of r and M lie 
outside of a (T) and a(T*), respectively.) Then there is a rational function q such 
that r(T)=q(T*). Moreover, when T is not algebraic, M itself must be rational 
and of the same order as r. 

Before beginning the proof we state the replacement theorem of M O O R E [ 6 ] 

for convenience. 

Theorem B. [6] Let f and g be analytic in neighborhoods of o(T) and <r(T*), 
respectively, and suppose that g(T)=f(T*). Then for z£a(T), g(z)=f(z). 

Proof of Theorem 1. If a(T) is finite then o(r(T)) is finite and r(T) 
is normal, hence algebraic. Thus T and T* are algebraic, and M may be replaced 
by a rational function. 

Received February 3, 1982, and in revised form July 6, 1982. 



174 Tavan T. Trent 

Otherwise A(T) is infinite and contains a limit point a. First note that if r has 
order less than one, F(T*)—0 for some entire function F, so T* and thus T is 
algebraic and the theorem holds. Hence we may assume that N, the order of r, 
satisfies iVS 1. 

By Theorem B we know that r(z)=M(z) for z in A(T). Clearly we 
may take a = 0 and r(0)=0, modifying T,M, and r, if necessary. Then 
z"r1 (z)—zMM1(z) for z in c t ( T ) , where ^(0)^0, M1(0)^Q and n and m are 
positive integers. Taking the modulus and letting z€<x(r)—0, we see that n=m. 
Thus we may write r(z)=/i(z)m and M(z)—k(z)m, where h and k are analytic 
and invertible in a neighborhood W of 0. Since (h(z))m=(k(z))m for z's in A(T) 
(which is an infinite set), we may assume that h and k are chosen so that h(z„)= 
=k(z„) for some sequence {zn}aa(T) with z„—0. 

Computing, z„=h~1ok(zn), so zn=h~1ok(zn)=R~1oJc(zn), where R(z) is 
defined to be h(z). 

Let S = {z£W: z = R~1olc(z)}. Then o(T)czS. Using a consequence of the 
Weierstrass preparation theorem [7], we conclude that S is the intersection of 
(real analytic) arcs with only a finite number in any compact set. Using the fact that 
S contains a limit point we conclude that S contains a real analytic arc y. Choose 
a point z0 in y so that r'(z0) is not zero or infinity. 

Thus Z = /J - 1 O/C(Z ) for z in y, so h(z)=koR~1olc(z) for z in y. Because 
all functions are analytic in W we conclude that h(z)=koR~1olc(z) for all z in W. 

By choice of z0, r is invertible in a connected neighborhood of z0 contained 
in W, Q. Again, let ii(w) = r(w+z0)—r(z0), ^(h>)=M(m>+z0)—M(z0), Q0=Q—z0, 
and y0=y—z„. Hence R(z)=Jt(z) for z£y0 and R is invertible in £20. Then 
arguing as before z=R~loJiiz) so R(z)=MoR~^oJi(z) for all z in £20. . 

Denote the complex plane by C. Define Z ( / , a )={z€C: / (z )=a} . Let Zx = 
= {z(EC: J?(z)£Z(R', 0)UZ(R', «>)}. Each of the sets Z(R', a) contains at most 
2N elements since R has order N. But Jl is meromorphic in the complex plane, 
so the set of points with Ji(z)=c for any fixed c has no finite limit points. Thus 
we may join each of the points of Z j by a simple curve yx accumulating only at 
chosen so that if i21=C—y1$ then (2X is connected and simply connected. R _ 1 

is one branch of the inverse of R in Q0. By construction branches of the inverse 
of R exist at every point o f ' C — f t . By the monodromy theorem (see [1, p. 134]) 
we see that R~l can be continued into £21, defining a single-valued analytic func-
tion (again denoted by R- 1 ) in 

Recall that R{z)—JioR~loJi(z) for z£Q0. Thus by permanence of func-
tional relations R{z) = JtoR~1oJ{(z) for z£i2x. 

Suppose that for some c€i2x, \Z{Jt, c)|>iV. Let d—JioR-\c). Then 

N ri |Z(R, d)| ^ \Z(Jfo@-iojF,d)\ s \Z{Jt, c)| > N. 
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This contradiction shows that Jt is at most iV-valent in Since i3x is open 
and dense in C, the open mapping principle shows that Jt is at most TV-valent 
in C. Applying the Casorati—Weierstrass theorem and the open mapping principle 
(or using the great Picard theorem), we see that °° is not an essential singularity 
of Jt. Thus M is a rational function of order less than or equal to N. A sym-
metric argument shows that the order of M equals the order of r. 

Note that in the case when both r and M are entire, the conclusion that M 
has order N means that M is a polynomial of degree N. 

Remarks , (a) Letting T be a unitary operator shows that taking r to be 
a polynomial with M meromorphic does not allow us to conclude that M is 
itself a polynomial. 

(b) Theorem 1 covers the case that g(T*)p(T)=f(T*)q(T), where / and 
g are entire, p and q are polynomials, and q(T) and g(T*) are invertible. We 
do not know how to handle more general identities with T and T* appearing 
on both sides. 

(c) There should be some "Riemann surface" version of Theorem 1 valid for 
r an algebraic function with appropriate hypotheses concerning M. 

We briefly wish to consider what compact sets K can be the spectrum of an 
operator T satisfying 
(1) f(T) = F(T)*, 
where / and F are analytic in a neighborhood of K. Notice that if 

(2) f ( z ) = F(zj 
for z in K, then (1) can be solved for a normal operator T and in many cases 
nonnormal operator solutions can be constructed as well. 

Denote the real and imaginary parts of / and F by u, v and U, V, respectively. 
We see that (2) is equivalent to 
(3) u-U= 0 and v + V=0 for z in K. 
On the otherhand, let P and Q be any real-valued harmonic functions in a neigh-
borhood of K with single-valued conjugates (denoted by P and Q, respectively) 
in a neighborhood of K. Then if 
(4) P = 0 and Q = 0 for z in K 
we may write P = u-U and Q = v+V where u = (P-Q)/2, U=(-Q-P)/2, v = G, 
and V = 0. Thus letting f=u+iv and F = U+iV we have established 

Theorem 2. There exist analytic functions f and F in a neighborhood of 
K with f{z) — F{z) for z in K if and only if there exist real harmonic functions 
P,Q in a neighborhood of K with single-valued conjugates in a neighborhood of 
K and with P(z) = 0 and Q(z)=0 for z in K. 
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Corol la ry . Suppose that Q is a real harmonic function with single-valued 
conjugate in a neighborhood of K and Q(z)=0 for z in K. Then —Q+iQ = 
--Q+iQ for z in K. 

Proof . Take P = 0 in Theorem 2. 

Theorem 2 and the corollary are useful for constructing various examples. 
By the corollary, to understand K we must look at the zero set of a harmonic 

function. We mention a few well-known facts. Simply because a harmonic function 
h is locally a real analytic function in x and y, the Weierstrass preparation theorem 
[6] shows that locally Z(h, 0) is a finite union of analytic arcs. Moreover, if the 
gradient of h vanishes at some point s, then the derivative of h + ih vanishes at s. 
Thus locally the number of arcs and the types of singularities of Z(h, 0) are restricted. 
In the case when / and F are analytic in a simply connected set, the maximum 
principle says that Z{h, 0) contains no closed curves. 

It may be of interest to see how the paks revious remmarnd geoetric considera-
tions lead to a proof of a special case of Theorem A. Let K be an infinite compact set. 
Suppose that p{z)=q{z) for z in K, where p and q are polynomials with 
max(deg/>, degq)=m. Let u1=Rep~Ke q and w2=Im/?+Im q. Then 
and u2—0 for z in K, where ux and uz are real harmonic polynomials of degree 
m. Since and m2 vanish at so many common points (see [2, Chapter 1]), it 
follows that and w2 have a common polynomial factor, h, of degree greater 
than 0. Let f=u1+iu1. Then / is a polynomial in z of degree m. So, at 
Z(M15 0) has 2m branches. However the degree of ujh is less than m, so Z(h, 0) 
must contain some branch which extends to But then p{z)=q(z) holds for some 
sequence of z's approaching Since p and q are polynomials, the degrees of 
p and q are equal. 

I do not know whether Theorem 1 or even Theorem A can be proved analogously 
to the above special case with a more thorough understanding of the zero sets 
involved. 
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