Meromorphic functions of operators

TAVAN T. TRENT

Let T be a bounded operator on a separable Hilbert space. Combining previous results of Halmos [4] and Fillmore [3] concerning operator identities of the forms $0=f\left(T^{*}\right)$ and $T=f\left(T^{*}\right)$ with f entire, Moore [6] proved the following general theorem:

Theorem A. [6] Suppose that p is a polynomial, f is an entire function, and $p(T)=f\left(T^{*}\right)$. Then there is a polynomial q (of the same degree as p when T is not algebraic) such that $p(T)=q\left(T^{*}\right)$.

The proof of this theorem required a key replacement of the operator identity by a complex variable identity, followed by a version of the Jacobi polynomial expansion theorem, resultant arguments, and a theorem of Picard. In this paper we begin with the complex variable identity and generalize Theorem A utilizing a more geometric argument, motivated by Fillmore [3] and based on the monodromy theorem and the Weierstrass preparation theorem. A good reference for the classical complex variable theorems is Hille [5]. We prove:

Theorem 1. Let r be a rational function, M a meromorphic function in the complex plane, and assume that $r(T)=M\left(T^{*}\right)$. (Thus the poles of r and M lie outside of $\sigma(T)$ and $\sigma\left(T^{*}\right)$, respectively.) Then there is a rational function q such that $r(T)=q\left(T^{*}\right)$. Moreover, when T is not algebraic, M itself must be rational and of the same order as r.

Before beginning the proof we state the replacement theorem of Moore [6] for convenience.

Theorem B. [6] Let f and g be analytic in neighborhoods of $\sigma(T)$ and $\sigma\left(T^{*}\right)$, respectively, and suppose that $g(T)=f\left(T^{*}\right)$. Then for $z \in \sigma(T), g(z)=f(\bar{z})$.

Proof of Theorem 1. If $\sigma(T)$ is finite then $\sigma(r(T))$ is finite and $r(T)$ is normal, hence algebraic. Thus T and T^{*} are algebraic, and M may be replaced by a rational function.

Received February 3, 1982, and in revised form July 6, 1982.

Otherwise $\sigma(T)$ is infinite and contains a limit point α. First note that if r has order less than one, $F\left(T^{*}\right)=0$ for some entire function F, so T^{*} and thus T is algebraic and the theorem holds. Hence we may assume that N, the order of r, satisfies $N \geqq 1$.

By Theorem B we know that $r(z)=M(\bar{z})$ for z in $\sigma(T)$. Clearly we may take $\alpha=0$ and $r(0)=0$, modifying T, M, and r, if necessary. Then $z^{n} r_{1}(z)=\bar{z}^{m} M_{1}(\bar{z})$ for z in $\sigma(T)$, where $r_{1}(0) \neq 0, M_{1}(0) \neq 0$ and n and m are positive integers. Taking the modulus and letting $z \in \sigma(T) \rightarrow 0$, we see that $n=m$. Thus we may write $r(z)=h(z)^{m}$ and $M(\bar{z})=k(\bar{z})^{m}$, where h and k are analytic and invertible in a neighborhood W of 0 . Since $(h(z))^{m}=(k(\bar{z}))^{m}$ for z 's in $\sigma(T)$ (which is an infinite set), we may assume that h and k are chosen so that $h\left(z_{n}\right)=$ $=k\left(\bar{z}_{n}\right)$ for some sequence $\left\{z_{n}\right\} \subset \sigma(T)$ with $z_{n} \rightarrow 0$.

Computing, $z_{n}=h^{-1} \circ k\left(\bar{z}_{n}\right)$, so $\bar{z}_{n}=\overline{h^{-1}} \circ k\left(z_{n}\right)=h^{-1} \circ k\left(z_{n}\right)$, where $h(z)$ is defined to be $\overline{h(\bar{z})}$.

Let $S=\left\{z \in W: \bar{z}=\hbar^{-1} \circ \bar{k}(z)\right\}$. Then $\sigma(T) \subset S$. Using a consequence of the Weierstrass preparation theorem [7], we conclude that S is the intersection of (real analytic) arcs with only a finite number in any compact set. Using the fact that S contains a limit point we conclude that S contains a real analytic arc γ. Choose a point z_{0} in γ so that $r^{\prime}\left(z_{0}\right)$ is not zero or infinity.

Thus $\bar{z}=h^{-1} \circ \bar{k}(z)$ for z in γ, so $h(z)=k \circ h^{-1} \circ \bar{k}(z)$ for z in γ. Because all functions are analytic in W we conclude that $h(z)=k \circ h^{-1} \circ \bar{k}(z)$ for all z in W.

By choice of z_{0}, r is invertible in a connected neighborhood of z_{0} contained in W, Ω. Again, let $R(w)=r\left(w+z_{0}\right)-r\left(z_{0}\right), \mathscr{M}(\bar{w})=M\left(\bar{w}+\bar{z}_{0}\right)-M\left(\bar{z}_{0}\right), \Omega_{0}=\Omega-z_{0}$, and $\gamma_{0}=\gamma-z_{0}$. Hence $R(z)=\mathscr{M}(\bar{z})$ for $z \in \gamma_{0}$ and R is invertible in Ω_{0}. Then arguing as before $z=R^{-1} \circ \mathscr{M}(\bar{z})$ so $R(z)=M \circ \bar{R}^{-1} \circ \bar{M}(z)$ for all z in Ω_{0}.

Denote the complex plane by C. Define $Z(f, a)=\{z \in \mathbf{C}: f(z)=a\}$. Let $Z_{1}=$ $=\left\{z \in \mathbf{C}: \overline{\mathscr{M}}(z) \in Z\left(\bar{R}^{\prime}, 0\right) \cup Z\left(\bar{R}^{\prime}, \infty\right)\right\}$. Each of the sets $Z\left(R^{\prime}, a\right)$ contains at most $2 N$ elements since R has order N. But \bar{M} is meromorphic in the complex plane, so the set of points with $\overline{\mathscr{M}}(z)=c$ for any fixed c has no finite limit points. Thus we may join each of the points of Z_{1} by a simple curve γ_{1} accumulating only at ∞, chosen so that if $\Omega_{1}=\mathbf{C}-\gamma_{1}$, then Ω_{1} is connected and simply connected. \bar{R}^{-1} is one branch of the inverse of \bar{R} in $\bar{\Omega}_{0}$. By construction branches of the inverse of \bar{R} exist at every point of $\mathbf{C}-\gamma_{1}$. By the monodromy theorem (see [1, p. 134]) we see that \bar{R}^{-1} can be continued into Ω_{1}, defining a single-valued analytic function (again denoted by \bar{R}^{-1}) in Ω_{1}.

Recall that $R(z)=\mathscr{M} \circ \bar{R}^{-1} \circ \bar{M}(z)$ for $z \in \Omega_{0}$. Thus by permanence of functional relations $R(z)=\mathscr{M} \circ \bar{R}^{-1} \circ \bar{M}(z)$ for $z \in \Omega_{1}$.

Suppose that for some $c \in \Omega_{1},|Z(\overline{\mathcal{M}}, c)|>N$. Let $d=\mathscr{M} \circ R^{-1}(c)$. Then

$$
N \geqq|Z(R, d)| \geqq\left|Z\left(\mathscr{M} \circ \overline{\mathscr{R}}^{-1} \circ \overline{\mathscr{M}}, d\right)\right| \geqq|Z(\overline{\mathscr{M}}, c)|>N .
$$

This contradiction shows that $\overline{\mathscr{M}}$ is at most N-valent in Ω_{1}. Since Ω_{1} is open and dense in \mathbf{C}, the open mapping principle shows that \bar{M} is at most N-valent in C. Applying the Casorati-Weierstrass theorem and the open mapping principle (or using the great Picard theorem), we see that ∞ is not an essential singularity of $\overline{\mathcal{M}}$. Thus M is a rational function of order less than or equal to N. A symmetric argument shows that the order of M equals the order of r :

Note that in the case when both r and M are entire, the conclusion that M has order N means that M is a polynomial of degree N.

Remarks. (a) Letting T be a unitary operator shows that taking r to be a polynomial with M meromorphic does not allow us to conclude that M is itself a polynomial.
(b) Theorem 1 covers the case that $g\left(T^{*}\right) p(T)=f\left(T^{*}\right) q(T)$, where f and g are entire, p and q are polynomials, and $q(T)$ and $g\left(T^{*}\right)$ are invertible. We do not know how to handle more general identities with T and T^{*} appearing on both sides.
(c) There should be some "Riemann surface" version of Theorem 1 valid for r an algebraic function with appropriate hypotheses concerning M.

We briefly wish to consider what compact sets K can be the spectrum of an operator T satisfying

$$
\begin{equation*}
f(T)=F(T)^{*}, \tag{1}
\end{equation*}
$$

where f and F are analytic in a neighborhood of K. Notice that if

$$
\begin{equation*}
f(z)=\overline{F(z)} \tag{2}
\end{equation*}
$$

for z in K, then (1) can be solved for a normal operator T and in many cases nonnormal operator solutions can be constructed as well.

Denote the real and imaginary parts of f and F by u, v and U, V, respectively. We see that (2) is equivalent to

$$
\begin{equation*}
u-U=0 \text { and } v+V=0 \text { for } z \text { in } K . \tag{3}
\end{equation*}
$$

On the otherhand, let P and Q be any real-valued harmonic functions in a neighborhood of K with single-valued conjugates (denoted by \widetilde{P} and \widetilde{Q}, respectively) in a neighborhood of K. Then if

$$
\begin{equation*}
P=0 \text { and } Q=0 \text { for } z \text { in } K \tag{4}
\end{equation*}
$$

we may write $P=u-U$ and $Q=v+V$ where $u=(P-\tilde{Q}) / 2, U=(-\tilde{Q}-P) / 2, v=\tilde{u}$, and $V=\tilde{0}$. Thus letting $f=u+i v$ and $F=U+i V$ we have established

Theorem 2. There exist analytic functions f and F in a neighborhood of K with $f(z)=\overline{F(z)}$ for z in K if and only if there exist real harmonic functions P, Q in a neighborhood of K with single-valued conjugates in a neighborhood of K and with $P(z)=0$ and $Q(z)=0$ for z in K.

Corollary. Suppose that Q is a real harmonic function with single-valued conjugate in a neighborhood of K and $Q(z)=0$ for z in K. Then $-\widetilde{Q}+i Q=$ $=-\overline{\bar{Q}+i Q}$ for z in K.

Proof. Take $P \equiv 0$ in Theorem 2.
Theorem 2 and the corollary are useful for constructing various examples.
By the corollary, to understand K we must look at the zero set of a harmonic function. We mention a few well-known facts. Simply because a harmonic function h is locally a real analytic function in x and y, the Weierstrass preparation theorem [6] shows that locally $Z(h, 0)$ is a finite union of analytic arcs. Moreover, if the gradient of h vanishes at some point s, then the derivative of $h+i \tilde{h}$ vanishes at s. Thus locally the number of arcs and the types of singularities of $Z(h, 0)$ are restricted. In the case when f and F are analytic in a simply connected set, the maximum principle says that $Z(h, 0)$ contains no closed curves.

It may be of interest to see how the paks revious remmarnd geoetric considerations lead to a proof of a special case of Theorem A. Let K be an infinite compact set. Suppose that $p(z)=\overline{q(z)}$ for z in K, where p and q are polynomials with $\max (\operatorname{deg} p, \operatorname{deg} q)=m$. Let $u_{1}=\operatorname{Re} p-\operatorname{Re} q$ and $u_{2}=\operatorname{Im} p+\operatorname{Im} q$. Then $u_{1}=0$ and $u_{2}=0$ for z in K, where u_{1} and u_{2} are real harmonic polynomials of degree m. Since u_{1} and u_{2} vanish at so many common points (see [2, Chapter 1]), it follows that u_{1} and u_{2} have a common polynomial factor, h, of degree greater than 0 . Let $f=u_{1}+i \tilde{u}_{1}$. Then f is a polynomial in z of degree m. So, at ∞, $Z\left(u_{1}, 0\right)$ has $2 m$ branches. However the degree of u_{1} / h is less than m, so $Z(h, 0)$ must contain some branch which extends to ∞. But then $p(z)=\overline{q(z)}$ holds for some sequence of z 's approaching ∞. Since p and q are polynomials, the degrees of p and q are equal.

I do not know whether Theorem 1 or even Theorem A can be proved analogously to the above special case with a more thorough understanding of the zero sets involved.

References

[1] L. V. Ahlfors, Conformal Invariants, McGraw-Hill (New York, 1973).
[2] J. L. Coolidge, A Treatise on Algebraic Plane Curves, Dover Publ. Inc. (New York, 1959).
[3] P. A. Fillmore, A note on reductive operators, Canad. Math. Bull., 22 (1979), 101-102.
[4] P. R. Halmos, Capacity in Banach algebras, Indiana Univ. Math. J., 20 (1971), 855-863.
[5] E. Hille, Analytic Function Theory, Vol. I and II, Chelsea Publishing Co. (New York, 1973).
[6] R. L. Moore, Entire functions of operators, Indiana Univ. Math. J., to appear.
[7] O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Van Nostrand (Princeton, N. J., 1960).

