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On the absolute Riesz summability of orthogonal series

L. LEINDLER

1. Let Za, be a given infinite series and .s,, denote its nth partial sum. If
{p.} is a sequence of positive numbers, and
n

P,= > p,—~o as n —eo,
k=0

then the nth Riesz mean R, of Za, is defined by

1 n

(1.1) R, = 7 2> DiSk-
n k=0

If the series

1.2) 2 |Ry— R, 4|

n=1

1l

converges, then the series Za, is said to be summable |R, P,, 1|. It is clear that
if p,=1 then (1.1) reduces to the classical (C, 1)-mean, and |R,n+1, 1| means
that the series Xa, is absolute (C, 1)-summable.

Let {¢,(x)} be an orthonormal system defined on the finite interval (a, b).
We consider the orthogonal series

(1.3) Soa® with > <o
k=0 ) k=0

Furthermore let P(x) be a strictly increasing function such that P(n)=P,
and linear between n and n+1. We denote the inverse function of P(x) by A(x)
and put v,,=[4(2™)], where [x] denotes the integral part of x.

K. TANDOR! [5] proved that the condition

oo gm+1 1/2
(14 - I
- m=0 \n==2M+1
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is necessary and sufficient that series (1.3) for every orthonormal system {p,(x)}
should be absolute (C, 1)-summable, or summable |R,n+1,1| almost everywhere
in (a, b).

We ([1]) showed that condition (1.4) is also necessary and sufficient that series
(1.3) for every orthonormal system {¢@,(x)} be absolute (C, o)-summable with o=>1/2
almost everywhere. In [1] we also gave conditions implying the absolute (C, 1/2)-
and (C, «)-summability with —1<a<1/2.

The result of Tandori was generalized by F. M6ricz [3] to the absolute Riesz
summability as follows.

. Theorem A. Orthogonal series (1.3) for every orthonormal system {p.(x)}
is summable |R, P,, 1| almost everywhere if and only if

o Va1 1/2
1.5) 2{ 2 cﬁ} <o,
m=0 ln=v,+1 - :

Vm+1
where C,,,={ > c3}1/2=0 if Vyps1=Vp-

n=v,+1

Recently Y. Okuyama and T. TSUCHIKURA [4] gave a condition which is equiv-
alent to (1.5) and it does not use the concept of A(x).
More precisely they proved

Theorem B. Condition (1.5) is equivalbentbto

. : : o vz -
a9 gppﬂ{ZP% 2df <=

Usmg these theorems and some lemmas the authors of [4] also proved the
following -

Theorem C. If the series

o ' Y
an . pr 1{21’: l(ak+b2)}
converges, then almost all series-of .

(1.8) > +(a, cos nx+b, sin nx)
n=1

are summable |R, P,, 1| almost everywheré,.énd if series (1.7) diverges, then almost
all series of (1.8) are non-summable |R, P,, 1| almost everywhere.

2. In the present note we prove certain symmetrical analogues of Theorems B
and C. : :
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Theorem 1. Condition (1.5) is equivalent to

@.1) | =2°; o { _ﬁ;pk c,‘}llz <o,

By Theorem A and Theorem 1 we 1mmed1ately obtain

Corollary 1. Condition (2.1) is necessary and sufﬁciént that series (1.3)' for any
orthonormal system {¢,(x)} should be summable |R,P,,1| almost. everywhere.

Hence we get

Corollary 2. If

) o . °°P o 1/'2

then series (1.3) for every orthonormal system {@,(x)} is summable |R, P,, 1| almost
everywhere.

It is well known, by the Riesz—Fischer theorem, that series (1.3) converges in
L? to a square-integrable function f; and if EP(f) denotes the best approximation
to f in the metric of L? by means of polynomials. of ¢, ..., ¢,-1, then

’
/

w V2
v (n={3a} .
. k=n .
Thus, by Corollary 2, condition '
@.3) ZE L E® (f) <o

also implies the |R, P,, 1| _summability of (1.3) for every orthonormal system {g,} -
almost everywhere. -

If {o,} is the trigonometric system, i.e., if we con51der the following orthogonal
series

(2.4) f® ~%+"§; (a,cos nx+ Bn éin ni) = 'é; A, (%),
thel; using Corollafy 2 and tile follovs-/ing estimation (see [2], Hilfss‘atz . -
EO(D=wd (2, 1),
‘ | 3 o= o Ve
w26 = {5 ([ o247 6-20-2f o dx)arf

we also have a further
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CoroHary 3. If
‘ < D» 1
@3) Sup(L,s) <=
then series (2.4) is summable |R, P,, 1| almost everywhere.
The next theorem is the analogue of Theorem C.

Theorem 2. If the series

@) SefSamrd

converges, then all series of (1.8) are summable |R, P,, 1| almost everywhere, and
if series (2.6) diverges, then almost all series of (1.8) are non-summable |R, P,,1|
almost everywhere.

3. In order to prove our theorems we require the following lemmas.

Lemma 1 ({3]). Suppose that the set of points for which the Rademacher series
5' Catn(X) is summable |R, P,,1| is of positive measure, then condition (1.5) holds.
n=0

Lemma 2. Let
A, (x) = g,cos (nx+Q,) with g, = (a2+b2)V2.
If the series

@) 5ol S a0

converges on a set E, of positive measure, then the series

- o 1/2
(32 SolSar)
converges. Conversely, the convergence of (3.2) implies that of (3.1) for every x.

The proof of Lemma 2 follows the same line as that of an analogous lemma of
Y. OkuvamA and T. TSUCHIKURA [4]. :

Proof. First we prove the implication (3.1)=(3.2). By the assumption there
exists a set ECE, of positive measure such that

. hinsd haid ‘1/2
(3.3) I=3p {kz Prigk cosz(kx+Qk)} dx = Ku(E), .
n=1 E =n

where K denotes a positive constant and p(E) denotes the Lebesgue measure of
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E. Using the Minkowski inequality with p=1/2, we obtain that

1= 3. 3 ([Ptouloos G+ dx)2}1/2 -
n=1 =n g

(B4
= an{fPl:zei(f |COS(kx+Qk)Idx)2} "
n=1 E

k=n

Using the Riemann—Lebesgue theorem and the following estimation

flcos kx+Q)|dx = fcos2 kx+Q)dx = —%— f(1+cos 2(kx+Q,)) dx =
E E ~ E

1 1
= E-u(E)+—2-éfcos 2(kx+0,) dx

we obtain that for sufficiently large k=k,

: L1 .
(3.5) flcos (kx+Qp|dx = —Z,u(E) = A.
E
Thus, by (3.4) and (3.5), we have that
e . 12
(3.6 1=4 3 n{ Zra}
whence .

S p—2 2
2 Pilol <
=1

follows obviously, and this implies that

kg—1 o 12
37 S o S rita} <=
n=0 n

Summing up, by (3.3), (3.6) and (3.7), the implication (3.1)=(3.2) is proved.

207

Since 45(x)=¢}, the implication (3.2)=>(3.1) is trivial. Thus the proof is

completed.

4. Now we can start the proofs of the theorems.

Proofof Theorem 1. First we prove that condition (1.5) implies (2.1).

An elementary calculation shows that

eo o 12 © Vi1 oo 1/2
2 pk{ P;zc%} =2 2 pk{ZP;%ﬁ} =
k=vy+1 n=k

“.1)

o Vi1 oo . 21/2 o Vi oo L Vi1 21/2
=3 3ol 3 pral =3 % pSmn{ e =3
m=0k=v, +1 n

n=v,,+1
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Since
“.2) P, =P+ = P(A(Z‘)) = 2
thus ‘
2hs 2 E P 227°C=227'C 3 2 =
m=0k=v,+1 i=m i=0 m=0k=v,, +1
.3) = 327 $'ps rcp(aey) =2 3¢

By (4.1) and (4.3) the implication (1.5)=(2.1) is proved.
Next we prove the converse implication. It is clear.that

44 P, = P(A(2™) = 2",
thus, by (4.2) and (4.4), we have that
V1 - )
( 2 ]P"-mu Py 41— Pvm JPL =@ -2n )2l = —
k=vm_1+1 4

Using this inequality we obtain that

oo oo VY t1
>C,=4 2'( 2 pk)P.,mlﬂC
m=1

m=1\k=v,, _,+1
[ Vm+1 : Vm+1 1/2
4.5) =43 pk{ P,,'zc,z,} =3,
m=1 n=v, _,+1 n=v_+1
where

means zero if v,,=v,,,. Therefore
Vim +1

4.6 : 42' > PG (D),

B=Vmo1

where 3’ denotes that the summation runs just through such indices m which
m

" have the property V,.;=v,+1. Then

Vt+1 Vo t+1 o 1/2
> 2 new=x 3 pk{gkp;zcs} =

m k=v,, Vm-1t1
Ym+1 oo vz
@) => 3 n{Sred =
m k=v, _,+1 n=k ’
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By (4.5), (4.6) and (4.7) we have

T e o o 1/2
Sc,=8 In{Srra),
ms=1 k=0 n=k
which proves the implication (2.1)=(1.5), and this completes the proof of Theorem 1.

Proof of Theorem 2. The proof is the same as that of Theorem C, the only
difference is that we use Theorem 1 and Lemma 2 instead of Theorem B and Lemma 2
of [4]. .

The sketch of the proof is the following: By Lemmas 1 and 2 and Theorem 1
we have to follow the Paley and Zygmund argument (cf. [6, p. 214]).
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