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On the absolute Riesz summability of orthogonal series 

L . L E I N D L E R 

1. Let Ia„ be a given infinite series and s„ denote its nth partial sum. If 
{/?„} is a sequence of positive numbers, and 

n 

k=0 

then the nth Riesz mean R„ of Ian is defined by 

1 " 
(1-1) K 2 PkSk-

n=o 
If the series 

(1-2) 2 \R*~Rn-i\ 
Fl=l 

converges, then the series Ea„ is said to be summable \R, Pn, 1|. It is clear that 
if pk=1 then (1.1) reduces to the classical (C, l)-mean, and \R, n +1, 1| means 
that the series Ia„ is absolute (C, l)-summable. 

Let {<•/)„ (x)} be an orthonormal system defined on the finite interval (a, b). 
We consider the orthogonal series 

(1.3) 2ckcpk(x) with 
k=0 fc=0 

Furthermore let P(x) be a strictly increasing function such that P(n)=P„ 
and linear between n and n+1. We denote the inverse function of P(x) by A(x) 
and put vm=[A(2m)], where [x] denotes the integral part of x. 

K. TANDORI [5] proved that the condition 

(1.4) 2 \ 2 c*n\ <co 
m=0 ln=2m+X J 
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is necessary and sufficient that series (1.3) for every orthonormal system {<pn (x)} 
should be absolute (C, \)-summable, or summable n+1, 1| almost everywhere 
in (a, b). 

We ([1]) showed that condition (1.4) is also necessary and sufficient that series 
(1.3) for every orthonormal system {<p„(x)} be absolute (C, a)-summable with a=- 1/2 
almost everywhere. In [1] we also gave conditions implying the absolute (C, 1/2)-
and (C, oc)-summability with — 1 < a < l / 2 . 

The result of Tandori was generalized by F . MÓRICZ [3] to the absolute Riesz 
summability as follows. 

T h e o r e m A. Orthogonal series (1.3) for every orthonormal system {q>n(x)} 
is summable P„, 11 almost everywhere if and only if 

~ f vm + 1 -.1/2 
(1-5) 2 \ 2 é < » , 

m=0 *7>=v_+l J 

where C m = { 4 1 / 2 = 0 { f = 
ln=vm + l J 

Recently Y . OKUYAMA and T . TSUCHIKURA [4] gave a condition which is equiv-
alent to (1.5) and it does not use the concept of A{x). 

More precisely they proved 

T h e o r e m B. Condition (1.5) is equivalent to 

(1 .6) . i 7 r ! M i A 2 - i c i } 1 / 2 < ~ . 

Using these theorems and some lemmas the authors of [4] also proved the 
following -

T h e o r e m C. If the series 

» p f » l 1 / a 

(1-7) Z-PT— \Zfl-i(A+b$\' 

converges, then almost all series of 

(1.8) 2 ±(a„cosnx+b„sinnx) 
n = l 

are summable P„, 1| almost everywhere, .and if series (1.7) diverges, then almost 
all series of (1.8) are non-summable -P„, 1| almost everywhere. 

2. In the present note we prove certain symmetrical analogues of Theorems B 
and C. 
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Theorem 1. Condition (1.5) is equivalent to 

(2.1) 
» f » il/S 

z p A Z K ' ® < 
n=0 U = n > 

By Theorem A and Theorem 1 we immediately obtain 

Coro l l a ry 1. Condition (2.1) is necessary and sufficient that series (1.3)/or any 
orthonormal system {<?„(*)} should be summable P„, 1| almost everywhere. 

Hence we get 

Coro l l a ry 2. If 

then series (1.3) for every orthonormal system {<p„0c)} is summable Pn, 1| almost 
everywhere.. 

It is well known, by the Riesz—Fischer theorem, that series (1.3) converges in 
L2 to a square-integrable function / ; and if E ^ \ f ) denotes the best approximation 
to / in the metric of L2 by means of polynomials of (p0, ..., (p„~r, then 

also implies the Pn,\\ .summability of (1.3) for every orthonormal system {<pn} • 
almost everywhere. 

If {<?„} is the trigonometric system, i.e., if we consider the following orthogonal 
series 

(2.2) 

Thus, by Corollary 2, condition 

(2.3) ¿ - j r ^ i f ) ^ -
1=0 

(2.4) " / ( * ) ~ + 2 (a* cos nx+b„ sin nx) = 2 X 
n=1 n=0 

then using Corollary 2 and the following estimation (see [2], Hilfssatz II) 

0 0 

we also have a further 
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Coro l la ry 3. If 

(2-5) ' Z j r ^ i ^ f ) — „=0 P„ \n ) 

then series (2.4) is summable P„, 1| almost everywhere. 

The next theorem is the analogue of Theorem C. 

Theorem 2. If the series 

(2.6) ¿ p J i ^ + ^ V r 2 } 1 

B = 1 U = B > 

>1/2 

converges, then all series of (1.8) are summable \R,P„, 1| almost everywhere, and 
if series (2.6) diverges, then almost all series of (1.8) are non-summable Pn, 1| 
almost everywhere. 

3. In order to prove our theorems we require the following lemmas. 

Lemma 1 ([3]). Suppose that the set of points for which the Rademacher series 

2 cnr„(x) is summable P„, 1| is of positive measure, then condition (1.5) holds. 
»=o 

Lemma 2. Let 

A„(x) = Q„ cos (nx+Qn) with Q„ = (a„2+^)1/2-

If the series 

(3.1) i / J i ^ K x ) / 5 * - 2 } 1 

B = 1 l*=n J 

>1/2 

converges on a set E0 of positive measure, then the series 

(3.2) Z p A Z e l P ; 2 ] 
H = 1 LFC=LL ' 

converges. Conversely, the convergence of (3.2) implies that of (3.1) for every x. 

The proof of Lemma 2 follows the same line as that of an analogous lemma of 
Y . OKUYAMA a n d T . TSUCHIKURA [4]. 

Proof . First we prove the implication (3.1)=>-(3.2). By the assumption there 
exists a set EczE0 of positive measure such that 

o= ( oc -,1/2 
(3.3) 1= 2 P n f \ 2 Pk~2 Qtcos*(kx+Qk)\ dx ^ Kn(E), 

n=i i U=i> J 

where K denotes a positive constant and ¡i(E) denotes the Lebesgue measure of 
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E. Using the Minkowski inequality with p=1/2, we obtain that 
\ 1/2 

I ^ n Z P n { Z { f P^Qu |cos (kx+Qk)\ dxf^ = 

= 2pn\2n2el{( Icosikx+Q^dxf]1'2. 
» = 1 lk = n Y ' J E 

Using the Riemann—Lebesgue theorem and the following estimation 

f jcos (kx+Qk)\dx S J"cos2 (kx+Qk)dx = J ( 1 + c o s 2 ( f c x + d x •• 
E E . E 

1 1 r = —H(E)+T / cos 2(kx+Qk) dx 
Z 1 E 

we obtain that for sufficiently large k ^ k 0 

(3.5) f |cos (kx+Qk)| dx s i- /i(£) = 
E 4 

Thus, by (3.4) and (3.5), we have that 
oo f oo ll/Z 

(3.6) i^AZPn\2Pk2el\ , 
n=ko U=n J 

whence 

k=i 

follows obviously, and this implies that 

( oo i 1 / 2 t 0 - l ("CO 
(3.7) 2 Pn \ZPï2eî\ 

n = 0 k=n ' 

Summing up, by (3.3), (3.6) and (3.7), the implication (3.1)=>(3.2) is proved. 
Since AI(X)^QI, the implication (3.2)=>(3.1) is trivial. Thus the proof is 

completed. 

4. Now we can start the proofs of the theorems. 

P roof of Theorem 1. First we prove that condition (1.5) implies (2.1). 
An elementary calculation shows that 

f oo I 1 ' 2 ~ VM + 1 C -|L/2 
2 " P k \ 2 P n 2 é =s 2 2 p k \ 2 P n - 2 é ^ 

k = v0 +1 ln=/t > m=0 fc=vm+l *-n=k > 
(4.1) 

~ vm +1 f ~ I 1 ' 2 ~ vm +1 ~ f v( + l I 1 ' 2 

^ 2 2 Pk\ 2 Pn2é ^ 2 2 Pk2P;th\ 2 4 =2i-
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Since 

( 4 . 2 ) Pn+1 = P(Vi+1) ^ P(A(2')) = 2 \ 

thus 

2 j f Pk i 2 - ' C , = j ? 2 - ' c , i Pk ^ 
m = 0 * = v m + l i=m ¡=0 m=0fc = v m + l 

( 4 . 3 ) S J 2 - ' C ( 2 Pk — 2 2-iCiP(A(2'+1)) ^ 2 2 Ct. 
¡=0 fc=0 ¡=0 ¡=0 

By (4.1) and (4.3) the implication (1.5)=>(2.1) is proved. 
Next we prove the converse implication. It is clear that 

(4.4) PVm == P(A (2m)) = 2m, 

thus, by (4.2) and (4.4), we have that 

( 2 * Pk) = ^ Ç2m—2m~1)2~m~1 = 1 . 
V*=vm-1+1 7 4 

Using this inequality we obtain that 

v„+l ~ ( v m + l \ 
4 2 2 Pk)Km\cm^ 

m-1 u = l Vl=im . 1+1 ' 

(4.5) S 4 2 2 Pk\ 2 = 2 „ 

f vm + l 
C » ( p ) : = j 2 

U = v m +1 J 

means zero if vm=vm + 1 . Therefore 

(4.6) 2 2 = 4 2 ' 2 + 1 P*Cm(p), 

where 2 ' denotes that the summation runs just through such indices m which 
m 

have the property v m + 1 Sv m +l . Then 

Vm + l vm + l f „ -|l/2 
2' 2 PkCm(p) s 2' 2 M ^ - r 2 ^ ^ 
m t = v m _ ! + l m lt = v m _ 1 + l <-n=): J 

f ~ I1 '2 

(4.7) ^ 2 ' 2 A ^ 

~ r ~ 11 / 2 ~ f - 1 1 / 2 

S 2 2 2 P k \ 2 P ; * 4 ^ 2 2Pk\2P;*4 . 
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By (4.5), (4.6) and (4.7) we have 

• =o f ~ -»1/2 
z c m ^ 8 2 p k \ 2 P n 2 c ú , 

m = l * = 0 U = k > 

which proves the implication (2.1)=>-(1.5), and this completes the proof of Theorem 1. 

P roo f of Theorem 2. The proof is the same as that of Theorem C, the only 
difference is that we use Theorem 1 and Lemma 2 instead of Theorem B and Lemma 2 
of [4]. 

The sketch of the proof is the following: By Lemmas 1 and 2 and Theorem 1 
we have to follow the Paley and Zygmund argument (cf. [6, p. 214]). 

References 

[1] L. LEINDLER, Über die absolute Summierbarkeit der Orthogonalreihen, Acta Sei. Math., 22 (1961), 
243—268. 

[2] L. LEINDLER, Über verschiedene Konvergenzarten trigonometrischer Reihen, Acta Sei. Math., 25 
(1964), 233—249. 

[3] F. MÓRICZ, Über die Rieszsche Summation der Orthogonalreihen, Acta Sei. Math., 23 (1962), 
92—95. 

[4] Y. OKUYAMA and T. TSUCHIKURA, On the absolute Riesz summability of orthogonal series, 
Analysis Math., 7 (1981), 199—208. 

[5] K. TANDORI, Über die orthogonalen Funktionen. IX. Absolute Summation, Acta Sei. Math., 
21 (1960), 292—299. 

[6] A. ZYGMUND, Trigonometrie series. I, University Press (Cambridge, 1959). 

ATTILA JÓZSEF UNIVERSITY 
BOLYAI INSTITUTE 
ARADI VÉRTANÜK TERE I 
6720 SZEGED, HUNGARY 

14 


