Approximation in L^{1} by Kantorovich polynomials

V. TOTIK

1.

This paper is a continuation of two earlier ones [11, 12]. Let

$$
K_{n}(f ; x)=\sum_{k=0}^{n}\left((n+1) \int_{k /(n+1)}^{(k+1) /(n+1)} f(u) d u\right) b_{n, k}(x), \quad b_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}
$$

be the Kantorovich-variant of the Bernstein operator. A series of papers contains results for the approximation properties of $K_{n}(f)$ in integral metrics (for references see the survey article [3]). However, the analogue of the well-known equivalence theorem of Berens and Lorentz [5] or that of Lorentz and Schumaker [7] and Ditzian [6] is not known for them. The problem is the characterization of $\| K_{n}(f)-$ $-f \|_{L^{1}(0,1)}=O\left(n^{-\alpha}\right)(0<\alpha<1)$ in terms of a certain modulus of smoothness, and the aim of this paper is to give this characterization.

For $f \in L^{p}(0,1), p>1$ we proved in [12]
Theorem A. If $1<p<\infty, 0<\alpha<1$ and $f \in L^{p}(0,1)$ then
(i) $\left\|K_{n}(f)-f\right\|_{L^{p}}=O\left(n^{-\alpha}\right)$
and
(ii) $(\alpha)\left\|\Delta_{h \sqrt{x(1-x)}}^{*}(f ; x)\right\|_{L^{p}\left(h^{2}, 1-h^{2}\right)}=O\left(h^{2 \alpha}\right)$, (β) $\|f(\cdot+h)-f(\cdot)\|_{L^{p}(0,1-h)}=O\left(h^{\alpha}\right)$
are equivalent.
Here

$$
\Delta_{h}^{*}(f ; x)=f(x-h)-2 f(x)+f(x+h)
$$

(we deviate from the custom and write $\|f(x)\|_{L^{p}}$ instead of $\|f(\cdot)\|_{L^{p}}$ if the former is more suggestive).

[^0]For the saturation case $\alpha=1$ we have (see [9, 10, 4, 12])
Theorem B. If $1<p<\infty$ and $f \in L^{p}(0,1)$ then the following are equivalent:
(i) $\left\|K_{n}(f)-f\right\|_{L^{p}}=O\left(n^{-1}\right)$,
(ii) f has an absolutely continuous derivative with $x(1-x) f^{\prime \prime}(x) \in L^{p}(0,1)$
(iii) $\left\|\left(x(1-x) \Delta_{h}^{*}(F ; x)\right)^{\prime}\right\|_{L^{p}(h, 1-h)}=O\left(h^{2}\right)$,
(iv) $\left\|x(1-x) \Delta_{h}^{*}(f ; x)\right\|_{L^{P}(h, 1-h)}=O\left(h^{2}\right)$;
(v) $\left\|\Delta_{h \sqrt{x(1-x)}}^{*}(f ; x)\right\|_{L^{p}\left(h^{2}, 1-h^{2}\right)}=O\left(h^{2}\right)$.

Here $F(x)=\int_{0}^{x} f(u) d u$ and naturally (ii) means that " f coincides a.e. with a function which has absolutely continuous derivative".

Turning to L^{1} let us mention the saturation result (see $[8,2]$):
Theorem C. For $f \in L^{1}(0,1)$ the following conditions are equivalent:
(i) $\left\|K_{n}(f)-f\right\|_{L^{1}}=O\left(n^{-1}\right)$,
(ii) f is absolutely continuous and $x(1-x) f^{\prime}(x)$ is of bounded variation,
(iii) $\left\|x(1-x) \Delta_{h}^{*}(F, x)\right\|_{B V+L^{\infty}(h, 1-h)}=O\left(h^{2}\right)$

Here $B V+L^{\infty}$ denotes the sum of the two norms: total variation and ess. supremum. Examples show that Theorem B does not hold for L^{1}, i.e., the $B V$-norm in Theorem C seems to be the appropriate one and we cannot hope in replacing it by an L^{1}-norm. The difference between Theorems B and C suggests also that we should exchange the L^{p}-norm in Theorem A for a $B V$-norm or something like that to obtain a correct result in L^{1} (see also the conjecture in [3]). Thus, it is rather surprising that Theorem A holds word for word when $p=1$:

Theorem 1. If $0<\alpha<1$ and $f \in L^{1}(0,1)$ then
(i) $\left\|K_{n}(f)-f\right\|_{L^{1}}=O\left(n^{-\alpha}\right)$
and
(ii) $(\alpha)\left\|\Delta_{h \sqrt{x(1-x)}}^{*}(f ; x)\right\|_{L^{1}\left(h^{2}, 1-h^{2}\right)}=O\left(h^{2}\right)$,
(β) $\|f(\cdot+h)-f(\cdot)\|_{L^{1}(0,1-h)}=O\left(h^{\alpha}\right)$
are equivalent.
Let us mention that although (ii) \Rightarrow (i) holds also for $\alpha=1$, neither (ii) (α). nor (ii) (β) is necessary for (i) in the case $\alpha=1$. This is shown by the function $f(x)=$ $=\log x(x \in(0,1))$.

The first result with the modulus of smootheness $\sup _{0<h \leq \delta}\left\|\Delta_{h \gamma}^{*} \overline{x(1-x)}(f, x)\right\|_{L^{p}\left(h^{2}, 1-h^{2}\right)}$ (more precisely with its analogue) was proved in [11] for the Szász-Kantorovich operators:

$$
M_{n}(f ; x)=\sum_{k=0}^{\infty}\left(n \int_{k / n}^{(k+1) / n} f(u) d u\right) p_{n, k}(x), \quad p_{n . k}(x)=e^{-n x} \frac{(n x)^{k}}{k!}, \quad x \geqq 0 .
$$

Theorem D. For $1<p<\infty, 0<\alpha<1$ and $f \in L^{p}(0, \infty)$ the following conditions are equivalent:
(i) $\left\|M_{n}(f)-f\right\|_{L P(0, \infty)}=O\left(n^{-\alpha}\right)$,
(ii) (α) $\left\|\Delta_{h \sqrt{x}}^{*}(f ; x)\right\|_{L^{p}\left(h^{2}, \infty\right)}=O\left(h^{2 \alpha}\right)$
(β) $\|f(\cdot+h)-f(\cdot)\|_{L^{p}(0, \infty)}=O\left(h^{\alpha}\right)$,
This is true just as well for $p=1$:
Theorem 2. Theorem D holds also when $p=1$.
We shall prove only Theorem 2, but our method works also for K_{n} (the technical details are somewhat easier for M_{n}); we refer to [12] for the necessary changes in the proof (observe that [12] relates to [11] about as Theorem 1 relates to Theorem 2). The only point in our proof which might not be obvious for K_{n} is the delicate formula (2.5) but the analogue of this was given in [12, (4.5)].

Although Theorems A and 1 (D and 2) have the same form, here we have to use a different method since in the case $p>1$ the proof rested heavily on the maximal inequality. Nevertheless, the roots of the proofs of the inverse parts are the same: the so called elementary method of inverse results developed by Berens and Lorentz [5], and Becker and Nessel [1].

2. Proof of Theorem 2

I. Proof of $($ ii $) \Rightarrow$ (i). First we derive from (ii) three further inequalities. Inequality 1.

$$
\int_{0}^{h} \int_{0}|f(x)-f(y)| d x d y=2 \int_{0}^{h} d \varepsilon \int_{0}^{h-\varepsilon}|f(x+\varepsilon)-f(x)| d x \leqq K \int_{0}^{h} \varepsilon^{\alpha} d \varepsilon \leqq K h^{\alpha+1}
$$

Inequality 2.

$$
A(f, h) \stackrel{\text { def }}{=}\left\|\frac{1}{x} \int_{0}^{h \sqrt{x}}|f(x \pm \tau)-f(x)| d \tau\right\|_{L^{1}\left(h^{2}, \infty\right)} \leqq K h^{2 x} \quad(h \geqq 0)
$$

Proof. For any $f \in L^{1}(0, \infty)$,

$$
\begin{gathered}
\int_{h^{2}}^{\infty} \frac{1}{x} \int_{0}^{h \sqrt{x}}|f(x+\tau)| d \tau d x \leqq K h^{-2} \iint_{0}^{2 h^{2}}|f(x+u)| d u d x+ \\
+K \int_{2 h^{2}}^{\infty}|f(u)| \frac{h \sqrt{u}}{u} d u \leqq K\|f\|_{L^{1}}
\end{gathered}
$$

and if f is absolutely continuous with $f^{\prime} \in L_{1}$ then

$$
\begin{aligned}
& A(f, h) \leqq \int_{h^{2}}^{\infty} \frac{1}{x} \int_{0}^{h \sqrt{x}} d \tau\left|\int_{0}^{ \pm \tau}\right| f^{\prime}(x+u)|d u| d x \leqq \\
\leqq & \int_{h^{2}}^{\infty} \frac{1}{x} \int_{0}^{h \sqrt{x}}(h \sqrt{x}-|u|)\left|f^{\prime}(x \pm u)\right| d u d x \leqq K h^{2}\left\|f^{\prime}\right\|_{L^{1}}
\end{aligned}
$$

Let now $f \in L^{1}$ be arbitrary for which (ii) (β) holds, and let

$$
g_{h}(x)=\frac{1}{h^{2}} \int_{0}^{h^{2}} f(x+\tau) d \tau
$$

For this

$$
\left\|f-g_{h}\right\|_{L^{1}} \leqq h^{-2} \int_{0}^{h^{2}}\|f(\cdot+\tau)-f(\cdot)\|_{L^{1}} d \tau \leqq K h^{-2} \int_{0}^{h^{2}} \tau^{\alpha} d \tau \leqq K h^{2 a}
$$

and

$$
\left\|g_{h^{\prime}}^{\prime}\right\|_{L^{1}}=h^{-2}\left\|f\left(\cdot+h^{2}\right)-f(\cdot)\right\|_{L^{1}} \leqq K h^{2 \alpha-2}
$$

by which

$$
A(f, h) \leqq A\left(f-g_{h}, h\right)+A\left(g_{h}, h\right) \leqq K\left(\left\|f-g_{h}\right\|_{L^{1}}+h^{2}\left\|g_{h}^{\prime}\right\|_{L^{1}}\right) \leqq K h^{2 \alpha}
$$

Inequality 3.

$$
\begin{gathered}
\left\|\frac{1}{h \sqrt{x}} \int_{0}^{h \sqrt{x}}\left|\Delta_{\tau}^{*}(f ; x)\right| d \tau\right\|_{\left.L^{1} h^{2}, \infty\right)}=\left\|\frac{1}{h} \int_{0}^{h}\left|\Delta_{u \sqrt{x}}^{*}(f ; x)\right| d u\right\|_{L^{1}\left(h^{2}, \infty\right)} \leqq \\
\leqq \frac{1}{h} \int_{0}^{h}\left\|\Delta_{u \sqrt{x}}^{*}(f ; x)\right\|_{L^{1}\left(h^{2}, \infty\right)} d u \leqq K \frac{1}{h} \int_{0}^{h} u^{2 x} d u \leqq K h^{2 x} .
\end{gathered}
$$

Now the analogous inequalities for L^{p} were the only tools used at the proof of $(\mathrm{ii}) \Rightarrow(\mathrm{i})$ in [11, Theorem 1], and this proof equally holds, using Inequalities $1-3$, for $p=1$. For the details see [11].
II. Proof of $(\mathrm{i}) \Rightarrow(\mathrm{ii})(\beta)$. Let

$$
v(f ; \delta)=v(f)=\sup _{0 \leq h \leq \delta}\|f(\cdot+h)-f(\cdot)\|_{L^{1}(0, \infty)}
$$

It is sufficient to prove that for $0<h \leqq 1, n \geqq 1$,

$$
v(h) \leqq K\left(n^{-\alpha}+n h v\left(\frac{1}{n}\right)\right)
$$

see [1, Lemma 2.1].
But

$$
v(f ; h) \leqq v\left(f-M_{n}(f) ; h\right)+v\left(M_{n}(f) ; h\right)
$$

and here, by (i),

$$
v\left(f-M_{n}(f) ; h\right) \leqq 2\left\|f-M_{n}(f)\right\|_{L^{1}} \leqq K n^{-\alpha}
$$

By

$$
M_{n}^{\prime}(f ; x)=n \sum_{k=0}^{\infty}\left(n \int_{0}^{1 / n}\left(f\left(\frac{k}{n}+u\right)-f\left(\frac{k+1}{n}+u\right)\right) d u\right) p_{n, k}(x)
$$

we have

$$
\begin{gathered}
v\left(M_{n}(f) ; h\right) \leqq \int_{0}^{\infty} d x \int_{0}^{h}\left|M_{n}^{\prime}(f ; x+u)\right| d u \leqq \int_{0}^{h}\left\|M_{n}^{\prime}(f)\right\|_{L^{1}} d u \leqq \\
\leqq h n \sum_{k=0}^{\infty} \int_{0}^{1 / n}\left|f\left(\frac{k}{n}+u\right)-f\left(\frac{k+1}{n}+u\right)\right| d u \int_{0}^{\infty} n p_{n, k}(x) d x= \\
=h n \sum_{k=n}^{\infty} \int_{0}^{1 / n}\left|f\left(\frac{k}{n}+u\right)-f\left(\frac{k+1}{n}+u\right)\right| d u=h n\left\|f\left(\cdot+\frac{1}{n}\right)-f(\cdot)\right\|_{L^{1}} \leqq h n v\left(\frac{1}{n}\right),
\end{gathered}
$$

and the proof is complete.
For later application let us prove also the inequality

$$
\begin{equation*}
I(f ; \delta)=\left\|\frac{\delta}{\sqrt{x}}(f(x+\delta \sqrt{x})-f(x-\delta \sqrt{x}))\right\|_{L^{1}\left(\delta^{2}, \infty\right)} \leqq K \delta^{2 a} \tag{2.1}
\end{equation*}
$$

In fact, for the function

$$
g_{\delta}(x)=\frac{1}{\delta^{2}} \int_{0}^{\delta^{z}} f(x+u) d u
$$

we have proved above

$$
\left\|f-g_{\delta}\right\|_{L^{1}} \leqq \delta^{-2} \int_{0}^{\delta^{2}}\|f(\cdot+u)-f(\cdot)\|_{L^{1}} d u \leqq K \delta^{2 \alpha}
$$

and

$$
\left\|g_{\delta}^{\prime}\right\|_{L^{1}} \leqq \delta^{-2}\left\|f\left(\cdot+\delta^{2}\right)-f(\cdot)\right\|_{L^{1}} \leqq K \delta^{2 a-2},
$$

by which

$$
\begin{gathered}
I(f ; \delta) \leqq I\left(f-g_{\delta} ; \delta\right)+I\left(g_{\delta} ; \delta\right) \leqq \\
\leqq\left\|\left(f-g_{\delta}\right)(x+\delta \sqrt{x})\right\|_{L^{1}\left(\delta^{2}, \infty\right)}+\left\|\left(f-g_{\delta}\right)(x-\delta \sqrt{x})\right\|_{L^{1\left(\delta^{2}, \infty\right)}}+ \\
+\int_{\delta^{2}}^{i \infty} \frac{\delta}{\sqrt{x}}\left(\int_{-\delta \sqrt{x}}^{\delta \sqrt{x}}\left|g_{\delta}^{\prime}(x+u)\right| d u\right) d x \leqq K \delta^{2 x}+\int_{\delta^{2}}^{\infty} \delta \int_{-\delta}^{\delta}\left|g_{\delta}^{\prime}(x+u \sqrt{x})\right| d u d x \leqq \\
\leqq K \delta^{2 \alpha}+K \delta \int_{-\delta}^{\delta}\left\|g_{\delta}^{\prime}\right\|_{L^{1}} \leqq K\left(\delta^{2 \alpha}+\delta^{2}\left\|g_{\delta}^{\prime}\right\|_{L^{1}}\right) \leqq K \delta^{2 x}
\end{gathered}
$$

III. Proof of (i) \Rightarrow (ii) (α). First let us prove the following

Lemma. Let $0<h \leqq 1, h^{2} \leqq n^{-1} \leqq h, k=0,1,2, \ldots$. Then there is an absolute constant K for which
(1) $\int_{h^{2}}^{\infty} d x \int_{-h \sqrt{x} / 2}^{h \sqrt{x} / 2} p_{n, k}(x+u+v) d u d v \leqq K \frac{h^{2}(k+1)}{n^{2}}$,
(2) $\int_{h^{2}}^{\infty} d x \int_{-h \sqrt{\bar{x}} / 2}^{h \sqrt{x} / 2} \frac{k}{(x+u+v)^{2}} p_{n, k}(x+u+v) d u d v \leqq K h^{2}$,
(3) $\int_{h^{2}}^{\infty} d x \int_{-h \sqrt{x / 2}}^{h \sqrt{2} / x} \frac{\left(\frac{k}{n}-(x+u+v)\right)^{2}}{(x+u+v)^{2}} p_{n, k}(x+u+v) d u d v \leqq K \frac{h^{2}}{n^{2}}$
Proof. $p_{n, k}(x)$ increases on $(0, k / n)$ and decreases on $(k / n, \infty)$, hence

$$
\begin{aligned}
& \qquad \int_{-h \sqrt{x / 2}}^{h \sqrt{x} / 2} p_{n, k}(x+u+v) d u d v \leqq \\
& \leqq\left\{\begin{array}{lll}
h^{2} x p_{n, k}(x+h \sqrt{x}) & \text { for } & x \in(0, k / n-h \sqrt{k / n}), \\
h^{2} x \max _{y} p_{n, k}(y) & \text { for } & x \in(k / n-h \sqrt{k / n}, k / n+2 h \sqrt{k / n}), \\
h^{2} x p_{n, k}(x-h \sqrt{x}) & \text { for } & x \in(k / n+2 h \sqrt{k / n}, \infty) .
\end{array}\right.
\end{aligned}
$$

Since

$$
\begin{aligned}
\int_{h^{2}}^{\infty}|g(x \pm h \sqrt{x})| d x \leqq & 2 \int_{0}^{\infty} g(x) d x, \quad x p_{n, k}(x)=\frac{k+1}{n} p_{n, k+1}(x), \\
& \int_{0}^{\infty} p_{n, k}(x) d x=\frac{1}{n}
\end{aligned}
$$

and $\max _{y} p_{n, k}(y)=p_{n, k}(k / n) \leqq K / \sqrt{k+1}$ (use Stirling's formula), we obtain easily

$$
\begin{gathered}
\int_{h^{2}}^{\infty} d x \int_{-h \sqrt{x} / 2}^{h \sqrt{x} / 2} p_{n . k}(x+u+v) d u d v \leqq \\
\leqq K\left(\frac{(k+1) h^{2}}{n}\left\|p_{n, k+1}\right\|_{L^{1}}+h^{2} \frac{k}{n} \frac{1}{\sqrt{k+1}} h \sqrt{\frac{k}{n}}\right) \leqq K\left(\frac{h^{2}(k+1)}{n^{2}}\right) \quad(k=0,1,2, \ldots) .
\end{gathered}
$$

For $k \geqq 2$ inequality (2) follows from (1), since $k x^{-2} p_{n, k}(x)=\left(n^{2} /(k-1)\right) p_{n, k-2}(x)$. For $k=1$ we have

$$
\begin{gathered}
\int_{h^{2}}^{\infty} d x \int_{-h \sqrt{x / 2}}^{h \sqrt{x} / 2} n(x+u+v)^{-1} e^{-n(x+u+v)} d u d v=n \int_{h^{2}}^{\infty} d x \int_{-h \sqrt{x}}^{h \sqrt{x}} \frac{h \sqrt{x}-|\tau|}{x+\tau} e^{-n(x+\tau)} d \tau \leqq \\
\leqq 2 n \int_{h^{2}}^{\infty}\left(\frac{h}{\sqrt{x}} \int_{-h \sqrt{x}}^{h \sqrt{x}} e^{-n(x-\tau)} d \tau\right) d x \leqq K h^{2} .
\end{gathered}
$$

Finally, (3) follows from (1) for $k=0$, and for $k \geqq 1$ we have.

$$
\begin{aligned}
& \int_{h^{2}}^{\infty} d x \int_{-h \sqrt{x / 2}}^{h \sqrt{x} / 2} \frac{(k / n-(x+u+v))^{2}}{(x+u+v)^{2}} p_{n, k}(x+u+v) d u d v \leqq \\
& \leqq K \int_{h^{2}}^{2 h^{2}} d x \int_{-h \sqrt{x} / 2}^{h \sqrt{x} / 2}\left(\frac{k+1}{n(x+u+v)}\right)^{2} p_{n, k}(x+u+v) d u d v+ \\
& +K \int_{2 h^{2}}^{\infty} \frac{d x}{x^{2}} \int_{-h \sqrt{x / 2}}^{h \sqrt{x} / 2}\left(\frac{k}{n}-(x+u+v)\right)^{2} p_{n, k}(x+u+v) d u d v .
\end{aligned}
$$

Here the first term is at most $K h^{2} / n^{2}$ for $k=1$ (see (2)) and

$$
K \int_{h^{2}}^{2 h^{2}} d x \int_{-h \sqrt{x} / 2}^{h \sqrt{x} / 2} p_{n, k-2}(x+u+v) d u d v \leqq K h^{6} \leqq K h^{2} / n^{2}
$$

for $k \geqq 2$.
The second term can be estimated as we have done in inequality (1) (use that $(k / n-x)^{2} p_{n, k}(x)$ increases on $(0,(k+1) / n-\sqrt{2 k+1} / n)$ and decreases on $((k+1) / n+$ $\overline{+} \sqrt{2 k+1} / n, \infty)$ together with the facts

$$
\int_{0}^{\infty} \frac{n}{x}\left(\frac{k}{n}-x\right)^{2} p_{n, k}(x) d x=\frac{1}{n}
$$

$$
\begin{gathered}
\frac{k+1}{n}+\frac{\sqrt{2 k+1}}{n}+4 h \sqrt{\frac{k+1}{n}} \\
\max \left(\frac{k+1}{n}-\frac{\sqrt{2 k+1}}{n}-h \sqrt{\frac{k+1}{n}} h^{2}\right) \\
\int_{-h \gamma}^{x^{\prime} / 2} \\
\leqq K \frac{\sqrt{k} / 2}{n}\left(\frac{k}{n}\right)^{-2} h^{2} \frac{k}{n}\left(\frac{k}{n}-(x+u+v)\right)^{2} p_{n, k}(x+u+v) d u d v \leqq \\
\frac{1}{\sqrt{k}} \leqq K \frac{h^{2}}{n^{2}}
\end{gathered}
$$

Let us turn back to (ii) (α), and let

$$
\dot{\omega}(\dot{f} ; \delta)=\omega(\delta)=\sup _{0<h \cong \delta} \int_{h^{2}}^{\infty}\left|\Delta_{h \sqrt{x}}^{*}(f ; x)\right| d x .
$$

It is sufficient to prove that for $0<h^{2} \leqq 1 / n \leqq h \leqq 1$ we have

$$
\omega(h) \leqq K\left(n^{-\alpha}+h^{2} n\left(n^{-\alpha}+\omega\left(\frac{1}{n}\right)\right)\right),
$$

see [1, Lemma 2.1]. Since (i) yields

$$
\left\|\Delta_{h \sqrt{x}}^{*}\left(f-M_{n}(f) ; x\right)\right\|_{L^{1}\left(h^{2}, \infty\right)} \leqq K\left\|f-M_{n}(f)\right\|_{L^{1}} \leqq K n^{-x},
$$

an easy consideration shows that it is enough to prove
(2.2) $\quad\left\|\Delta_{h \sqrt{x}}^{*}\left(M_{n}(f) ; x\right)\right\|_{L^{1}\left(h^{2}, \infty\right)} \leqq K h^{2} n\left(n^{-a}+\omega\left(\frac{1}{\sqrt{n}}\right)\right) \quad\left(h^{2} \leqq \frac{1}{n} \leqq h\right)$.

Let
(2.3) $\mathscr{M}_{n}(f ; x)=\sum_{k=1}^{\infty}\left(n \int_{k / n}^{(k+1) / n} f(u) d u\right) p_{n, k}(x)=M_{n}(f ; x)-n e^{-n x} \int_{0}^{1 / n} f(u) d u$.
a) (ii) (β) (which we have proved above) gives

$$
\begin{gathered}
\left\|\left(n \int_{0}^{1 / n} f(u) d u\right) \Delta_{h \sqrt{x}}^{*}\left(e^{-n t} ; x\right)\right\|_{L^{1}\left(h^{2}, \infty\right)} \leqq K n h^{2}\left|\int_{0}^{1 / n} f(u) d u\right| \leqq \\
\leqq K n h^{2}\left\|f\left(\cdot+\frac{1}{n}\right)-f(\cdot)\right\|_{L^{1}} \leqq K n h^{2} n^{-a} .
\end{gathered}
$$

b) Let $F_{1}(x)=\int_{0}^{x} f(t) d t, F_{2}(x)=\int_{0}^{x} F_{1}(t) d t$ and

$$
\begin{gathered}
f_{\delta}(x)=\frac{1}{\delta^{2}} \int_{0}^{\delta} d u \int_{-u}^{u} f(x+v \sqrt{x}) d v=\frac{1}{\delta^{2}} \int_{0}^{\delta} d u \int_{0}^{u}(f(x+v \sqrt{x})+f(x-v \sqrt{x})) d v= \\
=\frac{1}{\delta^{2} x} \Delta_{\delta \sqrt{x}}^{*}\left(F_{2} ; x\right)
\end{gathered}
$$

We have

$$
\begin{equation*}
\left\|f-f_{\delta}\right\|_{L^{1}\left(\delta^{2}, \infty\right)} \leqq \frac{1}{\delta^{2}} \int_{0}^{\delta} d u \int_{0}^{u}\left\|\Delta_{v}^{*} \sqrt{x}(f ; x)\right\|_{L^{1}\left(\delta^{2}, \infty\right)} d v \leqq \omega(\delta) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{gathered}
f_{\delta}^{\prime \prime}(x)=\frac{2}{\delta^{2} x^{3}} \Delta_{\delta \sqrt{x}}^{*}\left(F_{2} ; x\right)-\frac{2}{\delta^{2} x^{2}} \Delta_{h \sqrt{x}}^{*}\left(F_{1} ; x\right)- \\
-\frac{5}{4 \delta x^{5 / 2}}\left(F_{1}(x+\delta \sqrt{x})-F_{1}(x-\delta \sqrt{x})\right)+\frac{1}{\delta^{2} x} \Delta_{\delta \sqrt{x}}^{*}(f ; x)+ \\
+\frac{1}{\delta x^{3 / 2}}(f(x+\delta \sqrt{x})-f(x-\delta \sqrt{x}))+\frac{1}{4 x^{2}}(f(x+\delta \sqrt{x})+f(x-\delta \sqrt{x})),
\end{gathered}
$$

and the key point in our theorem is that the latter is equal to

$$
f_{\delta}^{\prime \prime}(x)=\frac{2}{x^{2}}\left(f_{\delta}(x)-f(x)\right)-\frac{5}{4 x^{2}} \frac{1}{\delta} \int_{0}^{\delta} \Delta_{h \sqrt{x}}^{*}(f ; x) d t+
$$

$$
\begin{gather*}
+\frac{1}{4 x^{2}} \Delta_{\delta \sqrt{x}}^{*}(f ; x)+\frac{1}{\delta^{2} x} \Delta_{\delta \sqrt{x}}^{*}(f ; x)+\frac{1}{\delta x^{3 / 2}}(f(x+\delta \sqrt{x})-f(x-\delta \sqrt{x}))- \tag{2.5}\\
-\frac{2}{\delta x^{3 / 2}} \frac{1}{\delta} \int_{0}^{\delta}(f(x+t \sqrt{x})-f(x-t \sqrt{x})) d t
\end{gather*}
$$

Now

$$
\begin{gathered}
\left\|\Delta_{h \sqrt{x}}^{*}\left(\mathscr{M}_{n}(f) ; x\right)\right\|_{L^{1}\left(h^{2}, \infty\right)} \leqq \\
\leqq \| \Delta_{h \sqrt{x}}^{*}\left(\mathscr { M } _ { n } \left(f-\frac{\left.\left.f_{\frac{1}{}}\right) ; x\right)\left\|_{L^{1}\left(h^{2}, \infty\right)}+\right\| \Delta_{h \sqrt{x}}^{*}\left(\mathscr{M}_{n}\left(f_{\frac{1}{\sqrt{n}}}\right) ; x\right) \|_{L^{1}\left(h^{2}, \infty\right)}}{}\right.\right.
\end{gathered}
$$

and below we estimate the two terms on the right side separately.
c) Since

$$
\left(p_{n, k}(x)\right)^{\prime \prime}=\frac{n^{2}}{x^{2}}\left[\left(\frac{k}{n}-x\right)^{2}-\frac{k}{n^{2}}\right] p_{n, k}(x)
$$

we obtain by (2) and (3) from the Lemma, and by (2.4) that

$$
\begin{aligned}
& \int_{h^{2}}^{\infty} \left\lvert\, \Delta_{h \sqrt{x}}^{*}\left(\left.\mathscr{M}_{n}\left(f-f_{\frac{1}{\sqrt{n}}}^{\sqrt{n}} ; x\right)\left|d x=\int_{h^{2}}^{\infty} d x\right| \int_{-h \sqrt{x / 2}}^{h \sqrt{x} / 2} \mathscr{M}_{n}^{\prime \prime}\left(f-f_{\frac{1}{\sqrt{n}}} ; x+u+v\right) d u d v \right\rvert\, \leqq\right.\right. \\
& \leqq \sum_{k=1}^{\infty}\left(n \int_{k / n}^{(k+1) / n}\left|f-f_{\frac{1}{\sqrt{n}}}\right|(u) d u\right)\left\{\int_{h^{2}}^{\infty} d x \int_{-h \sqrt{x} / 2}^{h / \sqrt{x} / 2} \frac{n^{2}}{(x+u+v)^{2}}\left(\frac{k}{n}-(x+u+v)\right)^{2} \times\right. \\
& \left.\quad \times p_{n, k}(x+u+v) d u d v+\int_{h^{2}}^{\infty} d x \int_{-h}^{h \sqrt{x} / 2} \int_{\bar{x} / 2}^{h \sqrt{x} / 2} \frac{k}{(x+u+v)^{2}} p_{n, k}(x+u+v) d u\right\} \leqq \\
& \leqq K h^{2} n \sum_{k=1}^{\infty} \int_{k / n}^{(k+1) / n}\left|f-f_{\frac{1}{\sqrt{n}}}\right|(u) d u=K h^{2} n\left\|f-f_{\frac{1}{\sqrt{n}}}\right\|_{L^{1}\left(\frac{1}{n}, \infty\right)} \leqq K h^{2} n \omega\left(\frac{1}{\sqrt{n}}\right) .
\end{aligned}
$$

d) We have also

$$
\left(p_{n, k}(x)\right)^{\prime \prime}=n^{2}\left(p_{n, k-2}(x)-2 p_{n, k-1}(x)+p_{n, k}(x)\right) \quad\left(k=1,2, \ldots, p_{n-1}(x) \equiv 0\right)
$$

thus

$$
\begin{gathered}
\int_{n^{2}}^{\infty} \left\lvert\, \Delta_{h \sqrt{x}}^{*}\left(\left.\mathscr{M}_{n}\left(f_{\left.\frac{1}{\sqrt{n}}\right)}^{\sqrt{n}} ; x\right) \right\rvert\, d x=\right.\right. \\
=n^{2} \int_{n^{2}}^{\infty} d x \left\lvert\, \sum_{k=1}^{\infty}\left(n \iint_{0}^{1 / n} \int f_{\frac{1}{\sqrt{n}}}^{\prime \prime}\left(\frac{k}{n}+u+v+w\right) d u d v d w \int_{-h \sqrt{x / 2}}^{n \sqrt{x} / 2} p_{n, k}(x+s+t) d s d t+\right.\right. \\
\left.+\left(-2 n \int_{1 / n}^{3 / n} f_{\frac{1}{\sqrt{n}}}(u) d u+n \int_{2 / n}^{3 / n} f_{\frac{1}{\sqrt{n}}}(u) d u\right) \int_{-h}^{n / \int_{\bar{x} / 2}} p_{n, 0}(x+s+t) d s d t \right\rvert\, \leqq \\
\leqq K \sum_{k=1}^{\infty}\left(n \iint_{0}^{1 / n} \int\left|f_{\frac{1}{\sqrt{n}}}^{\prime \prime}\left(\frac{k}{n}+u+v+w\right)\right| d u d v d w\right) k h^{2}+ \\
+K n h^{2}\left(\left|\int_{1 / n}^{2 / n} f_{\frac{1}{\sqrt{n}}}^{\sqrt{n}}(u) d u\right|+\left|\int_{2 / n}^{3 / n} f_{\frac{1}{\sqrt{n}}}(u) d u\right|\right) \leqq \\
\leqq K n h^{2} \sum_{k=1}^{\infty} k \iint_{0}^{1 / n} \int\left|f_{\frac{1}{\sqrt{n}}}^{\prime \prime}\left(\frac{k}{n}+u+v+w\right)\right| d u d v d w+ \\
+K n h^{2}\left(n^{-\alpha}+\omega\left(\frac{1}{\sqrt{n}}\right)\right)=K n h^{2} A+K n h^{2}\left(n^{-\alpha}+\omega\left(\frac{1}{\sqrt{n}}\right)\right)
\end{gathered}
$$

where

$$
A=\sum_{k=1}^{\infty} k \iint_{0}^{1 / n} \int\left|f_{\frac{1}{\sqrt{n}}}^{\prime \prime}\left(\frac{k}{n}+u+v+w\right)\right| d u d v d w
$$

and where we used that

$$
\begin{gathered}
\left|\int_{1 / n}^{2 / n} f_{\frac{1}{\sqrt{n}}}(u) d u\right|+\left|\int_{2 / n}^{3 / n} f_{\frac{1}{\sqrt{n}}}(u) d u\right| \leqq\left\|f-f_{\frac{1}{\sqrt{n}}}\right\|_{L^{1}\left(\frac{1}{n}, \infty\right)^{+}} \\
+\left|\int_{1 / n}^{\infty} f(u) d u-\int_{2 / n}^{\infty} f(u) d u\right|+\left|\int_{2 / n}^{\infty} f(u) d u-\int_{3 / n}^{\infty} f(u) d u\right| \leqq K\left(\omega\left(\frac{1}{\sqrt{n}}\right)+n^{-\alpha}\right) .
\end{gathered}
$$

To estimate A we apply (2.5). Taking absolute value in (2.5) term by term we increase $\left|f_{\frac{1}{\sqrt{\prime}}}^{\prime \prime}(x)\right|$. Now the first term on the right of (2.5) contributes to A at $\frac{1}{\sqrt{n}}$.
most by

$$
\begin{gathered}
\sum_{k=1}^{\infty} k \iiint_{0}^{1 / n} \frac{2}{\left(\frac{k}{n}+u+v+w\right)^{2}}\left|n \int_{0}^{1 / \sqrt{n}} d s \int_{0}^{s} \Delta^{*} \sqrt{\frac{k}{n}+u+v+w}\left(f ; \frac{k}{n}+u+v+w\right) d t\right| d u d v d w \leqq \\
\leqq 2 n \int_{0}^{1 / \sqrt{n}} d s \int_{0}^{s} d t \sum_{k=1}^{\infty} \frac{n^{2}}{k} \iint_{0}^{1 / n} \int\left|\Delta_{t}^{*} \sqrt{\frac{k}{n}+u+v+w}\left(f ; \frac{k}{n}+u+v+w\right)\right| d u d v d w \leqq \\
\leqq K n \int_{0}^{1 / \sqrt{n}} d s \int_{0}^{s}\left\|\Delta_{t}^{*}(f ; x)\right\|_{L^{1}\left(\frac{1}{n}, \infty\right)} d t \leqq K \omega\left(\frac{1}{\sqrt{n}}\right) .
\end{gathered}
$$

Quite similarly the contribution of the second, third and fourth terms to A is at $\operatorname{most} K \omega\left(\frac{1}{\sqrt{n}}\right)$.

Using inequality (2.1), the fifth term contributes to A at most by

$$
\begin{aligned}
& \left.\sum_{k=1}^{\infty} k \iiint_{0}^{1 / n} \frac{\sqrt{n}}{\left(\frac{k}{n}+u+v+w\right)^{3 / 2}} \right\rvert\, f\left(\frac{k}{n}+u+v+w+\frac{1}{\sqrt{n}} \sqrt{\frac{k}{n}+u+v+w}\right)- \\
& \left.\quad-f\left(\frac{k}{n}+u+v+w-\frac{1}{\sqrt{n}} \sqrt{\frac{k}{n}+u+v+w}\right) \right\rvert\, d u d v d w \leqq \\
& \quad \leqq K \int_{1 / n}^{\infty} \frac{1}{\sqrt{n x}}\left|f\left(x+\frac{1}{\sqrt{n}} \sqrt{x}\right)-f\left(x-\frac{1}{\sqrt{n}} \sqrt{x}\right)\right| d x \leqq K n^{-z}
\end{aligned}
$$

and a similar estimate can be given for the contribution of the sixth term:

$$
\begin{aligned}
& \sum_{k=1}^{\infty} k \iint_{0}^{1 / n} \int \frac{2 \sqrt{n}}{\left(\frac{k}{n}+u+v+w\right)^{3 / 2}}\left(\sqrt{n} \int_{0}^{1 / \sqrt{n}} \left\lvert\, f\left(\frac{k}{n}+u+v+w+t \sqrt{\frac{k}{n}+u+v+w}\right)-\right.\right. \\
& \left.\left.-f\left(\frac{k}{n}+u+v+w-t \sqrt{\frac{k}{n}+u+v+w}\right) \right\rvert\, d t\right) d u d v d w \leqq \\
& \leqq \int_{0}^{1 / \sqrt{n}} \frac{1}{t}\left(\int_{1 / n}^{\infty} \frac{t}{\sqrt{x}}|f(x+t \sqrt{x})-f(x-t \sqrt{x})| d x\right) d t \leqq K \int_{0}^{1 / \sqrt{n}} t^{2 \alpha-1} d t \leqq K n^{-\alpha}
\end{aligned}
$$

Collecting our estimates from a) to d) we obtain (2.2) by which the proof is complete.

References

[1] M. Becker and R. J. Nessel, Inverse results via smoothing, in: Constructive Function Theory (Proc. Conf. Blagoevgrad, 1977), Publishing House of the Bulgarian Academy of Sciences (Sofia, 1980); pp. 231-243.
[2] M. Becker and R. J. Nessel, On global saturation for Kantorovich polynomials, in: Approximation and Function Spaces (Proc. Conf. Gdansk, 1979), pp. 89-101.
[3] M. Becker and R. J. Nessel, On the global approximation by Kantorovitch polynomials, in: Approximation Theory. III (Proc. Conf. Austin, 1980), Academic Press (New York, 1980).
[4] M. Becker, K. J. Lautner, R. J. Nessel and G. J. Worms, On global approximation by Kantorovitch polynomials in L^{p}, in: Constructive Function Theory (Proc. Conf. Varna, 1981), pp. 217-223.
[5] H. Berens and G. G. Lorentz, Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J., 21 (1972), 693-708.
[6] Z.. Ditzian, A global inverse theorem for combinations of Bernstein polynomials, J. Approx. Theory, 26 (1979), 277-292.
[7] G. G. Lorentz and L. L. Schumaker, Saturation of positive operators, J. Approx. Theory, 5 (1972), 413-424.
[8] V., Maier, The L_{1} saturation class of the Kantorovic operator, J. Approx. Theory, 22 (1978), 223-232.
[9] V. Maiter, L^{p}-approximation by Kantorovic operators, Anal. Math., 4 (1978), 289-295.
[10] S. D. Riemenschneider, The L_{p}-saturation of the Kantorovich-Bernstein polynomials, J. Approx. Theory, 23 (1978), 158-162.
[11] V. Totik, Approximation by Szász-Kantorovich operator in $L^{p}(p>1)$, Anal. Math., 9 (1983), 147-167.
[12] V. Тотік, $L^{p}(p>1)$-approximation by Kantorovich polynomials, Analysis, to appear.

[^0]: Received November 12, 1981

