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Lr inequalities for Walsh series, 0<r< 1 

WILLIAM R. WADE 

1. Introduction. Let iv0, u^, ... denote the Walsh—Paley functions (see [5]). 
Thus, for each integer k^O and each point x belonging to the unit interval [0, 1], 
the identity 

(1) wk (x) = j j exp (iKXj+i kj) 
j= 0 

holds, where the numbers Xj and k} are either 0 or 1 and come from the binary 
expansions of x and k: 

x= Zxj2~J, k= ZkjV. 
j=i J=o 

(When x€[0,1) is a dyadic rational the finite binary expansion is used.) 

Given any Walsh series W = 2 akwk > denote its n-th partial sums by 
k = 1 

n — 1 
Wn = 2 akWk, fc = l 

its n-th partial Cesaro sums by 

k-l \ n) 
and its n-th layer by 

2 ak*>k, 
fc = 2 " - x 

for n=1, 2, ... . Notice that the Walsh series W has no constant term, and thus 
0 0 

that W = 2 • This has been done for convenience to avoid writing a separate 
n = l 

constant term in each of the inequalities derived below. It does not affect the 
generality of our results. 

In Section 2 a basic inequality is derived which is a Walsh series analogue for 
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Lr norms, 0 < r < 1, of a trigonometric result for Lp norms, 1 < p < due to 
MARCINKIEWICZ [7]. In Section 3 we shall apply this basic inequality to estimate 
the Lr norms of the following three series: 

s-U^r^r 
(3) S . = ( ¿ ( » V - « * ) " ) , 

and 

(4) 5 3 = ( J z l „ 2 ) 1 2 . 

The results of Section 3 are summarized as follows. 

Theorem. Let 0«=r<l. There is an absolute constant a, depending only 
on r such that given any Walsh series W the following three inequalities hold: 

(5) I I S J ^ a J ^ I L x , 

(6) 115,11^ S a J S a l l t i , 
and 
(7) I I S B k r S a J S J i i . 

In the case that W is a trigonometric series and l < r < ° ° , the theorem above 
was obtained by ZYGMUND [13]. SUNOUCHI [11] used Zygmund's techniques to show 
that for Walsh series, the Lp norms of the series S2, and S3 are equivalent, 
for each 1 

In Section 4 we apply the theorem above to obtain some inequalities relating 
a Walsh series to its term by term dyadic derivative. The surprising thing is that 
under suitable hypotheses, there is a direct relationship between the Hr norm of 
a function / and the growth of the partial sums of the formal dyadic derivative 
of the Walsh series representing / . 

It should be pointed out that if the series and S s are replaced by 
appropriate maximal functions, then equivalence in Lr norms, 0<r-=l , can be 
restored. In connection with this remark see BURKHOLDER and GUNDY [2] , especially 
Section 5. We do not proceed in this manner because the maximal function form of 
the theorem above proves intractable for studying the term by term dyadic derivative. 

2. The basic inequality. Given a Walsh series W, denote its maximal func-
tion by 

W* = sup {Wrl 

BURKHOLDER and GUNDY [2] have shown that given ()</•«= °° there exist constants 
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ar and A, depending only on r such that 

(8) a, \\W*\\Lr si I J J2)' á A, \\W*\\Lr 

holds for all Walsh series W. 
Given any function / , integrable over the interval [0, 1], denote its Walsh— 

Fourier series by W[f]. Denote the partial Cesaro sums of W[f] by a„[f] and the 
и-th layer of W[f] by An[f] n — 1,2, .... It is well-known (see[5]) that if 4-
represents dyadic addition then 

(9) f / ( ' ) Í *2 ^ ( * + O) dt 

for x€[0, 1] and / 2 = 1 , 2 , . . . . 
Our main goal in this section is to sketch a proof of the following inequality. 

Lemma. Let 0 < r < 1 and suppose that plt p2, ... is a sequence of integers 
which diverges to There exists a constant depending only on r, such that 

\r /2 1/r 1 í °° ч ! ^ 

j ^ M
 dx\ ^ V U - H ^ 

holds for any sequence f i , f , ••• offunctions which belong to /ДО, 1]. 

To prove this lemma set <?(JC)—^ 2/n(x)j ' > for X£[0, 1], and assume without 

loss of generality that «pCL^O, 1]. Let r2, ..., denote the Rademacher functions, 
i.e., r„ = w2n-i for и=1 ,2 , ..., and consider the series 

F(x, y) = ¿ rn(y)f„(x), x, уф, 1]. 
n=1 

We claim that the assumption (p^L^O, 1] guarantees that for a.e. 1] some 
subsequence of the series F(x, j>) converges in the L1 (dx) norm. In fact, according 
to Khinchin's inequality there exist constants br and Br, for 0 < r < ° ° , such that 

(10) br ||cp\\rLr * f f IF{x, y)\' dx dy s Br \\<p\\r
Lr 

о 0 

In particular, for r= 1 we have that 

( " ) I f 
о 0 

By the Lebesgue dominated convergence theorem the left-hand-side of (11) converges 
to zero, as n, m — T h e r e f o r e F(x, y) converges in the L1 norm on the unit 

2>-ЛУШХ) k=a ЛЧ1/2 

2ЯШ dx k=n > 
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square [O, 1]X[0, 1]. In particular, for a.e. }>€[0, 1] there exists a subsequence 

«!<m2<... such that ¿ rn(y)fn-^-F{ •, y) in Z-^O, 1] norm, as and the 
n = l 

claim is established. It follows from (9) that 

(12) A{H-,y))= 2rn(y)Ak(fn) 
n=1 

holds for a.e. ^€[0,1] and for all fcsl. 
Next, we show that there exist constants cr and C,, depending only on r, 

such that 

(13) c,ML' ^ { / [ ¿ & l\fn, xfdx}1' ^ Cr \\cp\\L1 

holds for 0 < r < l . Toward this let I denote the middlé term of (13) and apply the 
two-dimensional version of Khinchin's inequality (see p. 84 of [7]) to I r . Follow 
up by applying Khinchin's inequality to the inner-most integral of the resulting 
triple integral. What eventuates is that there exist constants dr and Dr, depending 
only on r, such that . 

i I f » / « , \¡¡W2 

d r j f{2i{2irn(y)A[fn,x'\) J dydx ii 

f f ( J ( J rn(y)Ak [fn, *]) J dydx. 
Continuing, we apply (12) and the Burkholder—Gundy inequality (8) to conclude that 

(14) ardr f J \F*(x, y)\rdxdy s /' ^ ArDr f J \F\x,y)\< dxdy, 
. 0 0 0 0 

where F*(x,y) represents the maximal function sup \W2„[F{ •, y), x]| for each 
n>0 

x, 1]. However, since for a.e. y the function F(- ,y) is integrable, it is easy 
to see that 

/ / |F(x, y)\- dx dy =S / / \F*(x, y)\' dx dy S y, f f |F(x, y)\ dx dy 
o o 

for 1. (The constant yr either follows from known martingale inequalities 
or from a weak type (1, 1) estimate of YANO [12]. In connection with this see the 
comment on p. 734 in [1].) Consequently, inequality (13) follows from (14) and (10) 
with cr=arbrdr and Cr=yrArBrDr. 
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To complete the proof of the lemma, observe by SUNOUCHI [11] (pp. 7 — 8 ) that 
corresponding to each p„ there are numbers e$n)£{0, 1} (J, n=\, 2, ...) such that 

(15) ™PWPn[fn]= 
j=i 

It follows from (13), then, that 

/ ( J Wl [/„, x f dx = / ( J ( J s"j Aj [wp„/„, ^ f dx 

лM =O y'2 
2 „ / . > * ] d x . 

u n = l / = l > 

In particular, another application of (13) results in the following inequality: 

/ ( J n , [ / n > ^])r2 dx S c r - ' C r
+ ' ( / ( J K J * ) / „ ( x ) | 2 ) 1 / 2 r f x ) r . 

The proof of the lemma is now complete with J? r=C r/c, since |wpJ = l for all 
integers n. 

3. A proof of the theorem. To prove (5), set pk=k and 

AW = jajWj(x), 
j=o 

k-1 
for 2"-1=sA:<2", x€[0, 1], and observe that trJ^A;-1 2 jajWj. It follows 

j=o 
from the lemma proved in Section 2 that 

f } ( ~ 2"-l Y ft—i \ 2 V / 2 l i / ' } / » 

Since /¡f is dominated by 

(16) 8 • 2 - 3 " ( ̂ ¿ w l = 8 • 2-"(W2n-ff2nf, 
Vj=o / 

for 2"~1^A:<2n, it follows that (5) holds with ar=l/8" /?r. 
B - l 

To verify (6) begin by observing that W„—an=n^1 2 holds for 
j = i 

any integer k£1. It follows from the Schwarz inequality that 

Z G T r - a * 2 2 - " 2 2 1 ( W ^ - W j f . 
n = l n = 0 t = l j = 2

k

-
1 
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If we set 

G = ¿2"»2 

n=o t = i 

we have by (3) and the lemma that 
(17) llSallr- ^ Pr f[G(x)]ll2dx. 

o 

Here we have used the lemma on a connected block of terms of a Walsh series instead 
of partial sums of Walsh series. This application is justified since such blocks are 
differences of partial sums of Walsh series. 

Continuing, observe that 

\Wr-W+-i\*\Ak\ + \Ak+1\ + ... + \Aa\ 

holds and write Aj=2J,i-2~J,iAj for each ji[k,n]. Hence another application of 
the Schwarz inequality followed by a routine calculation results in the inequalities: 

G s 2 2~" 2 2k i 2 2~-'/2) i 2 2m ^ 3 )[2 2 2"" 2 2"12 i 2 2;/2 • 
n=0 *=1 \j=k ' \J=k ' n=0 k=1 \j=k ' 

Reverse the two inner-most sums, and sum 2k/2 from k=l to k=j to verify that 

GS6 22-" 22JAJ-
11=0 j=1 

Now, interchange the order of summation again, and sum 2~" from n=j to n—°= 
to conclude that 

j—o 

Finally, combine this inequality with (17) to verify that (6) holds with ar=6/?P. 
To establish (7) begin with the trivial identity 

W2n-W2«-i = (W2n -c2n) + (<r 2" - o> - 0+(^2" -1 - - 0 

which holds for «=1 ,2 , ..., and apply the Schwarz inequality to conclude that 

(18) • 

Let Si represent the second term on the right hand side of (18). Correcting a 
misprint which appears on p. 9 of [11], it is known that 

l/T , | ! < 1 2 'V 1 l ^ * - 0 * ! 2 
. I c v — c t 2 I — ^ 2 i • 
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Indeed, 

K» S y \ak+1-ak\ [ k(<jk+1-<rkT . ] / 2 ^ ^ 
f Ic^Z"-1 r A=2"-1 

mfiy 
r fc^"-1 r fc=2"-i /C 

It follows that SA^ Moreover, by Jensen's inequality it is known that 
HSJ^ I ISJ i - i - In particular, 

(19) I I S Y ^ ^ H S J I X . 

2"-l 
To estimate ST, observe that 2 J~ a a n d therefore by (16) that 

J=2"-> 

\Wr-oA2 - i "l H f ¿ ^ 1 . 

A final application of the lemma proved in Section 2 yields the following inequality: 

Л~ 2» - l j |2\ 1/2 
2 2 r 3 dx = prm#- . „ n = l j = 2 " - 1 i=1 | ' 

Hence by (18) and (19), we conclude that 

||S,lit (2^+2^)11^11^. 

Inequality (7) therefore holds with ar=(2pr
r+2rl2)l/r. 

4. An application. BUTZER and WAGNER [3] introduced the following definition. 
A function / defined at points x, x+2~k (k=l, 2, ...) on the unit interval is said 
to have a dyadic derivative df at x if the following limit exists: 

df(x) = lim 2 2k-1[f(x)-fix + 2~k)]. 

It is not difficult to prove that dwk(x)=kwk(x) for every x£[0, 1] and every integer 
oo 

ftsO. Thus given a Walsh series W = 2 akwki its t e r m by term dyadic derivative 
4 = 1 

is given by 

W{x)= 2kakwk(x). 
k=1 

Notice that 

(20) WN = 2 kak wk = N(Wn- aN) 
k=1 

holds for all integers N ^ 1. 
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Let ()</•=1 and let W be a Walsh series. We shall use the following measure-
ments of how rapidly k~3l2Wk and 2~2 fV2 k decay: 

(Jp-*»wfV 
In spite of the suggestive notation, neither' of these measurements are norms; the 
triangle inequality fails to hold. Observe by Jensen's inequality that 

\W\\%r^ ZWt/k*\\Li and ¿ 1 1 2 - ^ 1 1 ^ . 
k=l k=l 

Thus \\WWy and || W are both finite when W is a Walsh—Fourier series. 
Recall that given a Walsh series W, the partial sums {W^, H^O} form a 

dyadic martingale. Hence if S3 is given by (4), then the dyadic Hr norm of W is 
given by \\W\\H = | | 1 | L r (see [6], especially the remarks on p. 193). Moreover, 
by the Burkholder—Gundy inequality (8), it follows that W belongs to dyadic 
H, if and only if W*£Lr. In particular, since 

we have that || is finite when W belongs to dyadic Hr. 
It is now easy to see that for 0 < r < l there exists an absolute constant a, 

(depending only on r) such that 

(21) . I l t f l k ^ «,11^11^, 

(22) \ \ m u r ^ « , \ \ w \ \ g i , 

and 

(23) \\W\\Br^ ol^WU,. 

Indeed, by (20) ||tf'||,r=||<S'illf and | |^IU p=| |5 2 | | t r so inequalities (21), (22), and 
(23) are restatements of inequalities (5), (6), and (7). 

Inequalities (22) and (23) are most useful. According to inequality (22), if 
W is the Walsh—Fourier series of some function / belonging to dyadic Hx, then 
Htf'll^ <oo for all 0 < r < l . In the case when df=W (see [8], [9], or [10]) we have 
that df can be represented by a convergent Walsh series whose partial sums are 
reasonably well-behaved. According to inequality (23), if the partial sums of W are 
suitably well-behaved, then the original Walsh series must belong to dyadic Hr. 

In particular, if j ? W^I^WL^00, then W belongs to dyadic H„ 0 < r < l . 

I l ^ l k - ( ¿ № l) \ W \ \ •Wr 
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