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Weighted translation semi-groups with operator weights

MARY EMBRY-WARDROP*

1. Introduction. If ¢ is a continuous nonzero complex-valued function on
A+ and (S, )(x)=[px)/e(x—1)]f(x—t) for x=¢ and 0 otherwise, then § is
a semi-group of linear transformations on £2(#%, ¢). S is a strongly continuous
semi-group of bounded operators if ¢ satisfies certain boundedness conditions.
These semi-groups, called weighted translation semi-groups (w.t.s.) with symbol ¢,
were introduced in {4] and the subnormal w.t.s. characterized in [5].

In [4] it was shown that S is quasinormal if and only if ¢(x)=Mda* for some
constants M and a. In this case S,=d'L,, where L is the forward translation
semi-group on #*(#Z*, ¥). In [6] we proved that any strongly continuous quasi-
normal semi-group S on a separable Hilbert space s is unitarily equivalent to
the direct sum of a normal semigroup and a pure quasinormal semi-group @ on
LR+, ) for some Hilbert space . Furthermore, Q,=h(t)L, where L is
the forward translation semi-group on #2(#™*, #’), h is a strongly continuous
self-adjoint semi-group on 2, and (h(t) f)(x)=h(t)f(x) ae. for each f in
LURY, A). Thus, the pure quasinormal semi-groups behave like quasinormal
w.t.s.

In this paper, we shall introduce w.t.s. on £*(#*, #) for which the symbol
¢ is A -operator-valued and study a few of their properties.

In Section 2, we specify which operator-valued functions ¢ will be allowed.
This class of semi-groups gives a rich supply of easily constructed examples. In
particular, every pure quasinormal semi-group is (unitarily equivalent to) a weighted
translation semi-group. Section 3 is devoted to characterizing subnormal w.t.s.
on L2(AR*, ). In Theorem 3 we show that S with symbol ¢ is subnormal if
and only if ¢? is the compression of a strongly continuous self-adjoint semi-group;
equivalently, there exists an operator measure on an interval [0, a] such that ¢(x)*=
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= f r*do(r). This last condition is precisely the characterization of subnormal
0

w.t.s. in [5] in the numerical case % =%.

Throughout the paper, we shall assume all Hilbert spaces to be separable.
LR, ) is the Hilbert space of (equivalence classes of) square integrable weakly
measurable functions from the nonnegative reals #* to the separable Hilbert
space A'. B(A) or B(LAR+, H)) stands for the Banach algebra of continuous
linear operators on X or L*(AR*, ), respectively. A function S: Z+—~Z(H)
is a semi-group if S,=1I, the identity operator, and S,S,=S;;, for all r and
tin &%, Afunction ¢: % —~B(H) is strongly continuous if ltl_l}’l le@) f—o(r)f]=0
for each f in " and r in #%. In this case, we write s-lim (1) = ¢(r). The
forward translation semi-group L (L, f)(x)=f(x—1t) if x=t and O otherwise)
on Z2(R*, ") plays a special role in ideas developed in this paper.

A semi-group S of operators is normal if S7S,=S8,SF for all ¢, quasinormal
if S,(S¥S)=(S!S)S, for all ¢ and subnormal if S is the restriction of a normal
semi-group to an invariant subspace. An operator measure ¢ on [a, b] is a function
defined on the Borel sets of [a, b] with values in Z(#") such that ¢(0)=0, o(E)
is a positive Hermitian operator for each Borel set E, o(E)<go(F) whenever

ECF and ¢(E)=s-lim 2”' ¢(E;) whenever E is the union of a collection of pairwise
Awc 21

disjoint sets E;. If the values of ¢ are projections and gla, b]=1, then ¢ is
a spectral measure on [a, b]. Two integral representations which reoccur frequently
in this paper are as follows:

1) [8, Theorem 22.3.1, p. 588]). If H is a strongly continuous self-adjoint
semi-group of operators, there exists a spectral measure ¢ on an interval [0, g]
such that

H, = [ rde(),
0

2) [5, Theorem 2.1]. S is a strongly continuous subnormal semi-group if and
only if there exists an operator measure ¢ on an interval [0, a] such that ¢([0,a])=1
and

528, = [ rdo().
0

We shall also say that a semi-group § on ## is the compression of a semi-
group T on X if #So# and S,=PT,P for each ¢ where P is the orthogonal
projection of % onto #.

2. Weighted translation semi-groups. Let ¢: Z*—+%(#") have properties:
- 1) for each x in 2%, ¢(x) is a one-to-one positive Hermitian operator,
i) {p(x): x€R™*} is abelian,
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iii) ¢ is strongly continuous,
iv) there exist numbers M and @ such that forall x and ¢ in 2%,

@ (x+1)2 < M2a¥ o(x).

Such a ¢ will be called a symbol. We are requiring ¢(x) to be positive
Hermitian for simplicity. We use the other requirements to prove that the mapping
1~@p(x—1)"1o(x)(L, f)(x) defines a semi-group which is strongly continuous.

Conditions i) and iv) imply that if #=x, there exists a unique element C of
B(A) such that @(x)=¢()C. In this case, we write C=¢(f) ¢(x). Even if
@ (x) is not one-to-one, this factorization of ¢@(x) can be obtained [2]; however,
@ (x) @ (x) would be the projection onto the closure of the range of ¢(x) and the
semi-group that we are interested in constructing would not have S,=1.

Lemma 1. Let ¢ be a symbol on A . Then
D e(x)"te(x)=I for all x,
i) @(r) commutes with @(t) ‘¢ (x) for all r whenever t=x,
iii) @) re(x) commutes with @(a) 1@(b) whenever t=x and a=b,
v) [p(N e (Olle @) e I=¢ () @(s) whenever r=t=s,
v) @(t)Yo(x) is one-to-one and positive Hermitian whenever t=x and
satisfies o ()" p(x)| =Ma*~",
vi) s;limo(x) o (x+1)=1,
vil) [@(x) @ (x+1)P=(p(x))1@(x+1)* for all x and t.

Proof. i) follows immediately from definition of ¢ (x)~1¢@(x). ii) by definition
oX)=p)[e()te(x)]. Since {p(s)} is abelian and ¢(¢) is one-to-one, @(r)
commutes with @) 1@(x). Therefore, @(x)=@()"*[p() 1o (x)]@()/* and
v) now follows from the fact that ¢(x) and ¢(¢)"/® are one-to-one positive Hermitian
operators. The inequality in v) follows from condition iv) of the definition of ¢.
iii) follows from ii) and the facts that each ¢(x) is one-to-one and {¢(x)} is abelian.
iv) () le(s) is the unique operator satisfying @(s)=¢)[e()1e(s)]. But
oM Lo®lle() Lo (s)] also satisfies this equation. vi) Note that for each k in X",

o) e x+D—Ile(x)k| = lo(x+Dk—@(x)k|.

Since ¢ is strongly continuous, then S;E{)n @(x)te(x+1t)=I on the range of
¢(x) which is dense in 2. Since {@(x)lo(x+t)—I|=Md+1=M, for ¢ in
[0, 1], we see that S;E{)n @e(x)Lo(x+1t)=1I on all of . vii) Since @(x+1)*<
«M?a®p(x)* and {p(x)} is abelian, then @(x+1)'<«<M?a*p(x)* and
(p(x)))~'o(x+1)* can be defined in a fashion similar to @(x) '@ (x+1?): that is,
(p()®)1@(x+1)* is the unique operator C satisfying ¢ (x+7)?=¢(x)?C. Since
[@(x)~1p(x+1)}? also satisfies this equation (using the definition of ¢(x)~2¢@(x+1)
and the fact that it commutes with ¢(x+¢)), the proof of vii) is complete.
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Now let @ beasymbolon #. Foreach ¢ in &% define the operator S, on
LURY, A) by

0 peefpeee p
An argument directly paralleling one in [7, p. 211] can be given to show that
@ 1S4 = esssupllo() ™t @ (x+9)I.

Theorem 2. If ¢ is a symbol on X', then S is a strongly continuous semi-
group of operators on L*R*, A).

Proof. Note that (S,/)(X)=¢(x)1(x)f(x)=f(x) by Lemma 1 i) so that
So=1 on K F*(%*, A). A straightforward computation, making use of Lemma 1
iiiy and iv), shows that S,,,=3S,S, for all 7z, r=0. It remains to be shown that
S is strongly continuous. By equation (2) and Lemma 1 v) we have

3) IS = Mat.

We argue as in [4, p. 211]. Assume first that a=1. Let f be a continuous function
of compact support in F*(Z*, #). Then

1S f=f12 = [1o() 7 o x4+ f(x)—f(x+1)]12 dx.

Let b=esssup |f], supp f&[0, k] and g(x)=b if x€[0, k+1] and g(x)=0 other-
wise. Then g€ L%*(#*, #) and for t=1,

o) e (x+) f)—f(x+0ll = (M+1)g(x).
By Lemma 1 vi) and the continuity of f,

limlp(x) @ (x+Df()~f(x+9] = 0.

Thus, by the Lebesgue dominated convergence theorem, 1'1_133 IS, f—fl?=0. S is
strongly continuous on a dense subset of #*(Z*, #") and consequently on all of
LUR*, A) since S is uniformly bounded by M.

. Now assume that a is arbitrary in (3) and let T,=a~*S, and o(t)=a"o(1).
Then p is a symbol on X~ and defines T by (1). Hence, the preceding result im-
plies, that T is strongly continuous on Z*(#*, #'); the same must be true for S.

Hereafter, if ¢ is a symbol on # and S is the semi-group defined by (1)
we shall say that (S, @) is a weighted translation semi-group (w.t.s.) on L2(R*, X).
Note that (S7/)(x)=e(x)*e(x+1)f(x+¢) and, consequently, by Lemma 1 for
fin @@+, i),

@ : (SFS N =) Pe(x+ 02 f(x) ae.
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Thus, if P, is the positive square root of S}S,, then (P.f)(x)=¢(x)1o(x+2)f(x)
by Lemma 1 vii) and v). A straightforward argument shows that S,=L,P, and
ker L,=ker S; where L is the forward translation semi-group on F*&Z*, X').
That is, P, is the positive factor and L, the isometric factor in the polar decomposi-
tion of S,.

The following examples give two ways in which to construct symbols and the
associated w.t.s. '

Example 1. Let ¢: 2*~%(#") and assume that ¢ is one-to-one positive
Hermitian-valued, nonincreasing and strongly continuous. If {¢(x)} is abelian,
then it follows that ¢ satisfies the properties of a symbol. Consequently, (S, ¢)
is a strongly continuous semi-group.

Example 2. Let ¢ be a strongly continuous self-adjoint semi-group of oper-
ators on . It follows easily that ¢ satisfies properties 1)—iii) of a symbol.

Moreover, there exists a spectral measure ¢ such that ¢(x)= f r*do(r) [8, p. 588].

0
The inequality ¢ (x+?)2<«a®¢(x)? readily follows. In this case, (S, ¢) has a simpler
form than the general w.t.s.:

E:NE) =ex—DToX) fx—) = O f(x—1) if x=1

We shall see in the following section that these are the only quasinormal w.t.s.
Indeed, every pure quasinormal semi-group is unitarily equivalent to (S, ¢) where
¢ is a strongly continuous self-adjoint semi-group {Corollary 6).

In the next section, it will be convenient to consider symbols ¢ for which
@ (0)=1. There is no loss of generality in making this assumption for if ¢ is a symbol,
define ¢, (x)=¢(0) ¢ (x). Then ¢,(0)=1 by Lemma 5. Furthermore, by Lemma 5
¢.(x) is a one-to-one positive Hermitian operator, {¢,(x)} is abelian and ¢, is
strongly continuous. To see that ¢,(x+#)’<M2a”¢,(x)? we argue as follows.
By definition of ¢, o (x+1)k| = Md'||p(x)k]] for all k in 2. Therefore,
lle O e (x+1)]e )kl = Mdll[¢(0) " ¢(x)]@(0)kl. Consequently, [o,(x)kl =
=Md'|o,(x)k| for all k in the range of ¢(0), a dense subset of 2. Thus, the
inequality holds for all k& so that ¢, satisfies condition iv) of ‘the definition of
a symbol.

3. Subnormal weighted translation semi-groups. Throughout this section, we
assume ¢@(0)=I when ¢ is a symbol.

Example 3. Let g be an abelian operator measure on [0, @] with [0, a]=1.
Define ¢(x):= f r*do(r) where ¢ (x)>0 for each x. It will follow from Lemma 4

0



254 Mary Embry-Wardrop

that ¢ is a symbol. Indeed, we see in the following theorem that these are exactly
the symbols which define the subnormal w.t.s.

Theorem 3. Let (S, ¢) be aw.s.t. on LR, ). The following statements
are equivalent:
1) (S, ¢) is subnormal,
1) @? is the compression of a strongly continuous self-adjoint semi-group,
iii) there exists an operator measure ¢ on [0, a] with ¢[0, al=1I such that

o= [ r*do(r).

Before proving Theorem 3, we shall prove a lemma which includes the equi-
valence of ii) and iii).

Lemmad4. Let A be a Hilbert space and h: B+ —~B(A"). The following
are equivalent:

1. h is a compression of a strongly continuous self-adjoint semi-group,

2. there exists an operator measure on a finite interval {0, a) such that ¢l[0, a]=1I
and

h(x) = [ rido(r),
0

3. h satisfies the following four conditions:
i) W0)=1,
ii) h is strongly continuous,
iii) there exists a number a such that h(x+t)<d h(x) for all x and t in R ™,
iv) Z”' Ch(x;+x))k;, k;)=0 for all finite collections {x,, ..., x,} in #* and
i,j=0
(Ko -r k) in .
Proof. We shall show that 1=2=3=1.
1=2. Assume that h(¢)=PH(¢)P where P is the projection of a larger Hilbert
space onto 4 and H is a strongly continuous self-adjoint semi-group on the
larger space. There exists a spectral measure [8, p. 588] on an interval [0, a] such

that H(1)= [ r'du(r). Consequently, h(1)= [ r'dPu(r)P and PuP is an ope-

0 0
rator measure on X with (PuP)[0,al=I on A .
2=53. Assume 2 holds. 31i) and iii) are immediate. 3 ii) follows from an applica-
tion of the monotone convergence theorem. To see that 3 iv) holds, observe that
if E is any measurable subset of [0, a], then

P55 (o (EYy, Ky = <Q(E) 3 ek, 3 k,.> =0
j=0 i=0 Jj=0

L=
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and consequently,

a

3 [ rtlde®k, k) = 0.
i,j=0g

3=1. The techniques used in this part of the proof are standard and will only
be outlined. They are patterned after proofs in [1] and [3]. Assume that h satisfies
the properties given in 3. Let M be the set of all functions f: 24 such that
f(x)=0 except possibly for a finite number of real x. If f and g are in M, define

(fe)=2 (h(a+Db) f(a), g(b))-

(See [3, p. 1254] for details.) Since (f, f)=0 by hypothesis, it is easily checked that
(,) is a semi-inner product on M. Let My={f:(f,f)=0} and H,=M/M,.
Let ( , ) also be the inner product on H, induced by ( , ) on M and let #
be the completion of H,.
For each r in #*+ define H(t): M—~M by (H(@)f)(x)=f(x—t). Then
H is a semi-group and for f and g in M
(HOf 8) = Z;(’l(a+b)f(a—t), gd) =

a,

=2 (h(@a+b+0f(a), gB)) = (f, H®)g).

It follows from the Cauchy—Schwarz inequality that M, is invariant under H(¢);
consequently H(t) induces a self-adjoint semi-group of linear transformations
on H,. If we can show that H(¢) is a bounded transformation, then H(¢) can be
extended continuously to #.

To prove that H(¢) is bounded, we need to show that there exists K such that
(H®O L He)f)=K(f,f) forall f in M. Equivalently,

2 h(at+b+20)f(a), f(B)) =K > (h(a+Db)f(a), £ (b))

The argument given by BraAM [1, p. 76] can be duplicated in this situation to show
that this inequality holds with K =a* (we use condition iii) here).

Thus, H is a semi-group of self-adjoint operators on 5. We next show that
H is strongly continuous. Let f€M and compute

(HOSf—f, HOf-f)=Re Zb' (h(a+b+20—2h(a+b+0)+h(a+Db)]f(a), f(b)).

Since h is strongly continuous on ¢, the right-hand side converges to 0 as t—0.
We conclude that H is strongly continuous on .

‘We complete the proof by identifying # with a subspace of # and h with
the compression of H to that subspace. For each k in A define (Uk)(x)=k
if x=0 and (Uk)(x)=0 otherwise. Then UkecM, U is linear, and (Uk, Uk)=
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=(h(0)k, k)=|lk||* by condition i). Therefore, we may consider’ Uk to be an
element of M/M, and consequently of . |Uk|,=|kl, so that U is an iso-
metry from % onto a subspace of . UU* is the projection P of 2 onto
that subspace. We complete the proof by showing that U*PH (t)PU=h(t), so that
h is unitarily equivalent to this compression of the strongly continuous selfadjoint
semi-group H. For k and j in X, :

(U*PH(O)PUk, jy = (U*H() Uk, jy = (H() Uk, Uj) =
= Z,, (h(a+Db)(Uk)(a—1), (Uj)(d)) = <h()k, j)

and h(t)=U*PH(t)PU, as desired.

Remark. If h satisfies Lemma 4.2, then h(x)=PH(x)P where P is a projec-
tion and H a self-adjoint semi-group. Therefore, if h(x)k=0, then H(x/2) Pk=0
and h(x/2)k=0. Consequently, we can construct a sequence x,—0 for which
h(x,)k=0. Since h is strongly continuous and h(0)=1, then k=0 and we see that
h(x) is one-to-one. Indeed, we see that h satisfies all of the properties of a symbol
except possibly {h(x)} being abelian. .

Proof of Theorem 3. ii)«iii) by Lemma 4.
Assume that i) holds and (S, ¢) is subnormal. By [5, Theorem 2.1] there
exists an operator measure ¢ in B(L*(R*, A')) such that ¢[0,a]=1 and

a

S¢S, = [ rde@.

)]
By equation (4) then for each f in L&+, A),

a

e 2o (x+12f(x) = [ r(de()f)(®)

0
except on a set of measure zero. We conclude then that for a given finite collection
fos --s fn of elements of £3(#*, #") and all positive rational numbers ¢ this
equation holds except on a set E of measure zero. In particular, if k,, ..., k,
are elements of ¢ and for i=0, ...,n, fi(x)=k; for x in [0, 1] and zero other-
wise, then

(M) 2o (x+02k = [ 1 (de( £) (%)

for t rational and x in [0, 1]JNE. Consequently, if ¢,,...,¢, are rational and
x€[0, IINE, then

n

2 (oot trk, k)= 3 [ retu(d(e@ )0, £6).

i, j=0
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We argue as in the proof of Lemma 4 to see that the right-hand side of the last
equation is nonnegative, Therefore,

n
3 @G Gttt Ky = 0
,j=0
for all x in E. Using arguments similar to those in Lemma 1, we can show that
S;lh(}‘l o(x) 2o (x+1)2=0(¢)* for all real ¢. Consequently,
"
i,j2=,0 (@t+1)2k;, k) =0

for all finite collections kg, ..., &k, in 2 and ¢, ..., ¢, in the rationals (and hence,
in the reals since @? is strongly continuous). We now apply Lemma 4 to ¢? and
see that iii) holds.

Conversely, assume that iii) holds: g, is an operator measure on [0, a] such
that ¢,[0, a]=I and

) P*(x) = f r* doy (r).
Note that for each Borel set E, [ f r"dgo(r))2<<go (), so by thefactorization theorem
E
[2] p(x)~2 f r*dgo (r) is the unique operator C on " satisfying ¢ (x)’C = f r*doy(r),
ker C = ker f r*doo(r), C(NSe(x)*(A)~ and ||C| = 1. Thus, we can define
©) 0B, %) = ()™ [rde,(r)
E

forall x in #*. Since {p(x)} is abelian, so is g, and it follows that ¢(E, x) is
positive Hermitian and further, that if FCE,

P We(E ) —eF Do) = [ r*dey@).
ELF

Since ¢(x) is one-to-one, @(E, x) is a monotone % (X')-valued function on the
Borel sets of [0, a]. Further, if

E = UE", EjﬂEi = ﬂ for (i #j), then
o (%)2(B, x) = f rdgy () =s-lim > f r*dey(r) = s-lim Z ¢ (x)*¢ (&, x).

Thus, ﬁ' 9(E;, x) converges strongly to Q(E, x) on the dense set ¢ (x)* and con-
=1

sequently, on " since ’Z"' o(E;, x)”él. Finally, observe that o(@, x)=0 and
=1

0([0, a], x)=1I for all x.

17
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Define the sct function ¢ with values in  #(L*(Z*, #)) by (e(L)f)x)=
=9(E, x)f(x). From our previous remarks concerning ¢(F, x), it follows that
@ is monotone, ¢(@)=0 and ([0, a])=1. Using an argument similar to that uscd

in Theorem 2 Q(E)=s,—1i1n Z"' o(L) when E=U,L, L;,NLE;=0 (for i7j). There-
n-reo '3

fore, ¢ defines an operator measure. Finally, {rom (6) and (5), we have

0@ [ sdo(s, ) = [ 5+ da(s) = oG-
0 0
Therefore,

P o(x+0? = [ 5 da(s, x).
(1}
We combine the last equation with equation (4) to conclude that
SES; = [ §da(s).
0

Once again, we invoke [5, Theorem 2.1] and conclude that S is subnormal.

In [8, Theorem 22.3.1], it is shown that if T is a strongly continuous semi-
group of self-adjoint operators, then 7' has a holomorphic extension whose maximal
domain of analyticity is either the whole plane or the right half-plane. It follows
immediately from Theorem 3 that the symbol ¢ of a subnormal w.t.s. has a holo-
morphic extension. Therefore, if two such symbols ¢; and ¢, agree on an infinite
set with cluster point in their common domain of analyticity, they must agree
everywhere.

Prior to characterizing quasinormal w.t.s., we restate a general characterization
of quasinormal semi-groups [6, Theorem 6] in the w.t.s. terminology.

Theorem 5. Let Q be a strongly continuous semi-group on a separable Hilbert
space . Q is quasinormal if and only if Q is unitarily equivalent to the direct
sum of a strongly continuous normal semi-group N and a w.t.s. (S, ¢) where ¢ is
a strongly continuous self-adjoint semi-group.

A quasinormal semi-group is pure if there exists no nontrivial invariant sub-
space on which it is normal.

Corollary 6. Every strongly continuous pure quasinormal semi-group is unitarily
equivalent to aw.t.s. (S, @) where ¢ is a strongly continuous self-adjoint semi-group.

Corollary 7. Let (S, ¢) be aw.t.s. The following are equivalent:
i) (S, @) is quasinormal,
i) @ is a strongly continuous self-adjoint semi-group,
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iil) there exists a spectral measure ¢ on [0, a] such that

o) = [ r*de().

Proof. Observe first that if (S, ¢) is any w.t.s., then (S, ¢) has no normal
part. If S¥S, f=S,Syf for all ¢, then ¢(x)"2¢(x+1)?f(x)=0 for O0=x=¢ and
for all r. But ¢@(x)"2¢(x+t)? is one-to-one so that f=0. The equivalence of
i) and ii) now follows immediately from Theorem 5. The equivalence of ii) and iii)
can either be derived from Theorem 5 or from [8, p. 588].

Example 4. Let s be a strongly continuous subnormal semi-group on a
separable Hilbert space #". Let ¢(x)=(s¥s,)"/%. By [5, Theorem 2.1], there exists

an operator measure ¢ on [0,a} with ¢[0, a}]=I and ¢(x)*= f r*de(r). We noted

0
in the remark after Lemma 4 that ¢ satisfies all properties of a symbo! except
{o(x)} being abelian. If we assume {@(x)} abelian, then ¢ is a symbol and it
follows from Theorem 3 that (S, ¢) is a subnormal w.t.s.

During the development of the material in this paper, several questions arose
which remain unanswered.

1. If ¢ is the symbol of a subnormal w.t.s. (S, ¢), does there exist a strongly
continuous semi-group s such that ¢@(x)=(s%s,)"/?? In the last example, we saw
that if ¢ is of this type, it does generate a subnormal w.t.s. However, if we start

with a subnormal (S, @), then by Theorem 3 ¢(x)*= f rdo(r). Thus, by [5, Theorem

[1}
2.1] ¢ acts like the positive part of some subnormal semi-group. The trick is to
construct a function u: Z+—~%(A") such that each u(x) is an isometry and up
is a strongly continuous semi-group.

2. More generally, we can ask whether each of the functions h(x)= f r*do(r)
0

in Lemma 4 is the square of the positive part of some strongly continuous subnormal
semi-group. (Here, we do not require {h(x)} to be abelian as we do for symbols.)

3. When are two w.t.s. (S, ¢) and (7,y) unitarily equivalent or similar?
In [5] it was shown in the numerical case, o =%, that similarity occurs if and only
if there exist constants m and M such that O<=m=|pX)/Y(x)|=M < for all
x in 2% and in [4], it was shown that (T, ) is unitarily equivalent to (S, ¢)
if and only if |@(x)/¥(x)| is constant on #*. Other questions were answered in
[4] and [5] for the numerical case which may have interesting analogues in the oper-
ator case.

17
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