Weighted translation semi-groups with operator weights

MARY EMBRY-WARDROP*

1. Introduction. If φ is a continuous nonzero complex-valued function on \mathscr{R}^+ and $(S_t f)(x) = [\varphi(x)/\varphi(x-t)] f(x-t)$ for $x \ge t$ and 0 otherwise, then S is a semi-group of linear transformations on $\mathscr{L}^2(\mathscr{R}^+, \mathscr{C})$. S is a strongly continuous semi-group of bounded operators if φ satisfies certain boundedness conditions. These semi-groups, called weighted translation semi-groups (w.t.s.) with symbol φ , were introduced in [4] and the subnormal w.t.s. characterized in [5].

In [4] it was shown that S is quasinormal if and only if $\varphi(x) = Ma^x$ for some constants M and a. In this case $S_t = a^t L_t$, where L is the forward translation semi-group on $\mathscr{L}^2(\mathscr{R}^+, \mathscr{C})$. In [6] we proved that any strongly continuous quasinormal semi-group S on a separable Hilbert space \mathscr{H} is unitarily equivalent to the direct sum of a normal semigroup and a pure quasinormal semi-group Q on $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$ for some Hilbert space \mathscr{K} . Furthermore, $Q_t = \overline{h(t)}L_t$ where L is the forward translation semi-group on $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$, h is a strongly continuous self-adjoint semi-group on \mathscr{K} , and $(\overline{h(t)}f)(x) = h(t)f(x)$ a.e. for each f in $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$. Thus, the pure quasinormal semi-groups behave like quasinormal w.t.s.

In this paper, we shall introduce w.t.s. on $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$ for which the symbol φ is \mathscr{K} -operator-valued and study a few of their properties.

In Section 2, we specify which operator-valued functions φ will be allowed. This class of semi-groups gives a rich supply of easily constructed examples. In particular, every pure quasinormal semi-group is (unitarily equivalent to) a weighted translation semi-group. Section 3 is devoted to characterizing subnormal w.t.s. on $\mathcal{L}^2(\mathcal{R}^+, \mathcal{K})$. In Theorem 3 we show that S with symbol φ is subnormal if and only if φ^2 is the compression of a strongly continuous self-adjoint semi-group; equivalently, there exists an operator measure on an interval [0, a] such that $\varphi(x)^2 =$

Received January 8, 1982.

^{*} This research was supported in part by a Research Professorship at Central Michigan University.

 $= \int_{0}^{r} r^{x} d\varrho(r).$ This last condition is precisely the characterization of subnormal w.t.s. in [5] in the numerical case $\mathscr{K} = \mathscr{C}.$

Throughout the paper, we shall assume all Hilbert spaces to be separable. $\mathscr{L}^{2}(\mathscr{R}^{+}, \mathscr{K})$ is the Hilbert space of (equivalence classes of) square integrable weakly measurable functions from the nonnegative reals \mathscr{R}^{+} to the separable Hilbert space \mathscr{K} . $\mathscr{B}(\mathscr{K})$ or $\mathscr{B}(\mathscr{L}^{2}(\mathscr{R}^{+}, \mathscr{K}))$ stands for the Banach algebra of continuous linear operators on \mathscr{K} or $\mathscr{L}^{2}(\mathscr{R}^{+}, \mathscr{K})$, respectively. A function $S: \mathscr{R}^{+} \rightarrow \mathscr{B}(\mathscr{K})$ is a semi-group if $S_{0}=I$, the identity operator, and $S_{t}S_{r}=S_{t+r}$ for all r and t in \mathscr{R}^{+} . A function $\varphi: \mathscr{R}^{+} \rightarrow \mathscr{B}(\mathscr{K})$ is strongly continuous if $\lim_{t\to r} ||\varphi(t)f - \varphi(r)f|| = 0$ for each f in \mathscr{K} and r in \mathscr{R}^{+} . In this case, we write $s-\lim_{t\to r} \varphi(t) = \varphi(r)$. The forward translation semi-group $L((L_{t}f)(x)=f(x-t))$ if $x \ge t$ and 0 otherwise) on $\mathscr{L}^{2}(\mathscr{R}^{+}, \mathscr{K})$ plays a special role in ideas developed in this paper.

A semi-group S of operators is normal if $S_t^*S_t = S_tS_t^*$ for all t, quasinormal if $S_t(S_t^*S_t) = (S_t^*S_t)S_t$ for all t and subnormal if S is the restriction of a normal semi-group to an invariant subspace. An operator measure ϱ on [a, b] is a function defined on the Borel sets of [a, b] with values in $\mathscr{B}(\mathscr{K})$ such that $\varrho(\emptyset)=0, \varrho(E)$ is a positive Hermitian operator for each Borel set $E, \varrho(E) \ll \varrho(F)$ whenever $E \subseteq F$ and $\varrho(E) = \underset{n \to \infty}{\text{s-lim}} \sum_{i=1}^{n} \varrho(E_i)$ whenever E is the union of a collection of pairwise disjoint sets E_i . If the values of ϱ are projections and $\varrho[a, b]=I$, then ϱ is a spectral measure on [a, b]. Two integral representations which reoccur frequently in this paper are as follows:

1) [8, Theorem 22.3.1, p. 588]. If H is a strongly continuous self-adjoint semi-group of operators, there exists a spectral measure ρ on an interval [0, a] such that

$$H_t = \int_0^a r^t \, d\varrho(r),$$

2) [5, Theorem 2.1]. S is a strongly continuous subnormal semi-group if and only if there exists an operator measure ρ on an interval [0, a] such that $\rho([0, a]) = I$ and

$$S_t^* S_t = \int_0^a r^t d\varrho(r).$$

We shall also say that a semi-group S on \mathcal{H} is the compression of a semigroup T on \mathcal{K} if $\mathcal{H} \subseteq \mathcal{H}$ and $S_t = PT_tP$ for each t where P is the orthogonal projection of \mathcal{H} onto \mathcal{H} .

2. Weighted translation semi-groups. Let $\varphi: \mathscr{R}^+ \to \mathscr{B}(\mathscr{K})$ have properties:

- i) for each x in \mathscr{R}^+ , $\varphi(x)$ is a one-to-one positive Hermitian operator,
 - ii) $\{\varphi(x): x \in \mathcal{R}^+\}$ is abelian,

- iii) φ is strongly continuous,
- iv) there exist numbers M and a such that for all x and t in \mathcal{R}^+ ,

$$\varphi(x+t)^2 \ll M^2 a^{2t} \varphi(x)^2.$$

Such a φ will be called a *symbol*. We are requiring $\varphi(x)$ to be positive Hermitian for simplicity. We use the other requirements to prove that the mapping $t \rightarrow \varphi(x-t)^{-1}\varphi(x)(L_t f)(x)$ defines a semi-group which is strongly continuous.

Conditions i) and iv) imply that if $t \le x$, there exists a unique element C of $\mathscr{B}(\mathscr{K})$ such that $\varphi(x) = \varphi(t)C$. In this case, we write $C = \varphi(t)^{-1}\varphi(x)$. Even if $\varphi(x)$ is not one-to-one, this factorization of $\varphi(x)$ can be obtained [2]; however, $\varphi(x)^{-1}\varphi(x)$ would be the projection onto the closure of the range of $\varphi(x)$ and the semi-group that we are interested in constructing would not have $S_0 = I$.

Lemma 1. Let φ be a symbol on \mathcal{K} . Then

i) $\varphi(x)^{-1}\varphi(x) = I$ for all x,

ii) $\varphi(r)$ commutes with $\varphi(t)^{-1}\varphi(x)$ for all r whenever $t \leq x$,

iii) $\varphi(t)^{-1}\varphi(x)$ commutes with $\varphi(a)^{-1}\varphi(b)$ whenever $t \le x$ and $a \le b$,

iv) $[\varphi(r)^{-1}\varphi(t)][\varphi(t)^{-1}\varphi(s)] = \varphi(r)^{-1}\varphi(s)$ whenever $r \le t \le s$,

v) $\varphi(t)^{-1}\varphi(x)$ is one-to-one and positive Hermitian whenever $t \leq x$ and satisfies $\|\varphi(t)^{-1}\varphi(x)\| \leq Ma^{x-t}$,

vi) s-lim
$$\varphi(x)^{-1}\varphi(x+t) = I$$
,

vii) $[\varphi(x)^{-1}\varphi(x+t)]^2 = (\varphi(x)^2)^{-1}\varphi(x+t)^2$ for all x and t.

Proof. i) follows immediately from definition of $\varphi(x)^{-1}\varphi(x)$. ii) by definition $\varphi(x) = \varphi(t)[\varphi(t)^{-1}\varphi(x)]$. Since $\{\varphi(s)\}$ is abelian and $\varphi(t)$ is one-to-one, $\varphi(r)$ commutes with $\varphi(t)^{-1}\varphi(x)$. Therefore, $\varphi(x) = \varphi(t)^{1/2}[\varphi(t)^{-1}\varphi(x)]\varphi(t)^{1/2}$ and v) now follows from the fact that $\varphi(x)$ and $\varphi(t)^{1/2}$ are one-to-one positive Hermitian operators. The inequality in v) follows from condition iv) of the definition of φ . iii) follows from ii) and the facts that each $\varphi(x)$ is one-to-one and $\{\varphi(x)\}$ is abelian. iv) $\varphi(r)^{-1}\varphi(s)$ is the unique operator satisfying $\varphi(s) = \varphi(r)[\varphi(r)^{-1}\varphi(s)]$. But $[\varphi(r)^{-1}\varphi(t)][\varphi(t)^{-1}\varphi(s)]$ also satisfies this equation. vi) Note that for each k in \mathcal{K} ,

$$\|[\varphi(x)^{-1}\varphi(x+t) - I]\varphi(x)k\| = \|\varphi(x+t)k - \varphi(x)k\|.$$

Since φ is strongly continuous, then $s \lim_{t \to 0} \varphi(x)^{-1} \varphi(x+t) = I$ on the range of $\varphi(x)$ which is dense in \mathscr{K} . Since $\|\varphi(x)^{-1}\varphi(x+t) - I\| \leq Ma^t + 1 \leq M_0$ for t in [0, 1], we see that $s \lim_{t \to 0} \varphi(x)^{-1} \varphi(x+t) = I$ on all of \mathscr{K} . vii) Since $\varphi(x+t)^2 \ll \mathscr{M}^2 a^{2t} \varphi(x)^2$ and $\{\varphi(x)\}$ is abelian, then $\varphi(x+t)^4 \ll M^4 a^{4t} \varphi(x)^4$ and $(\varphi(x)^2)^{-1} \varphi(x+t)^2$ can be defined in a fashion similar to $\varphi(x)^{-1} \varphi(x+t)$: that is, $(\varphi(x)^2)^{-1} \varphi(x+t)^2$ is the unique operator C satisfying $\varphi(x+t)^2 = \varphi(x)^2 C$. Since $[\varphi(x)^{-1} \varphi(x+t)]^2$ also satisfies this equation (using the definition of $\varphi(x)^{-1} \varphi(x+t)$) and the fact that it commutes with $\varphi(x+t)$), the proof of vii) is complete.

Now let φ be a symbol on \mathscr{K} . For each t in \mathscr{R}^+ define the operator S_t on $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$ by

(1)
$$(S_t f)(x) = \begin{cases} \varphi(x-t)^{-1}\varphi(x)f(x-t) & \text{if } x \ge t \\ 0 & \text{if } x < t. \end{cases}$$

An argument directly paralleling one in [7, p. 211] can be given to show that

(2)
$$\|S_t\| = \operatorname{ess\,sup}_{x \in \mathcal{R}^+} \|\varphi(x)^{-1}\varphi(x+t)\|.$$

Theorem 2. If φ is a symbol on \mathcal{K} , then S is a strongly continuous semigroup of operators on $\mathcal{L}^2(\mathcal{R}^+, \mathcal{K})$.

Proof. Note that $(S_0 f)(x) = \varphi(x)^{-1}\varphi(x)f(x) = f(x)$ by Lemma 1 i) so that $S_0 = I$ on $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$. A straightforward computation, making use of Lemma 1 iii) and iv), shows that $S_{t+r} = S_t S_r$ for all $t, r \ge 0$. It remains to be shown that S is strongly continuous. By equation (2) and Lemma 1 v) we have

$$\|S_t\| \leq Ma^t.$$

We argue as in [4, p. 211]. Assume first that a=1. Let f be a continuous function of compact support in $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$. Then

$$\|S_t f - f\|^2 = \int \|\varphi(x)^{-1} \varphi(x+t) f(x) - f(x+t)\|^2 dx.$$

Let $b = \operatorname{ess sup} |f|$, $\operatorname{supp} f \subseteq [0, k]$ and g(x) = b if $x \in [0, k+1]$ and g(x) = 0 otherwise. Then $g \in \mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$ and for $t \leq 1$,

$$\|\varphi(x)^{-1}\varphi(x+t)f(x)-f(x+t)\| \le (M+1)g(x).$$

By Lemma 1 vi) and the continuity of f,

$$\lim_{t \to 0} \|\varphi(x)^{-1}\varphi(x+t)f(x) - f(x+t)\| = 0.$$

Thus, by the Lebesgue dominated convergence theorem, $\lim_{t\to 0} ||S_t f - f||^2 = 0$. S is strongly continuous on a dense subset of $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$ and consequently on all of $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$ since S is uniformly bounded by M.

Now assume that a is arbitrary in (3) and let $T_t = a^{-t}S_t$ and $\varrho(t) = a^{-t}\varphi(t)$. Then ϱ is a symbol on \mathscr{K} and defines T by (1). Hence, the preceding result implies, that T is strongly continuous on $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$; the same must be true for S.

Hereafter, if φ is a symbol on \mathscr{K} and S is the semi-group defined by (1) we shall say that (S, φ) is a weighted translation semi-group (w.t.s.) on $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$. Note that $(S_t^*f)(x)=\varphi(x)^{-1}\varphi(x+t)f(x+t)$ and, consequently, by Lemma 1 for f in $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$,

(4)
$$(S_t^* S_t f)(x) = \varphi(x)^{-2} \varphi(x+t)^2 f(x)$$
 a.e.

Thus, if P_t is the positive square root of $S_t^*S_t$, then $(P_tf)(x) = \varphi(x)^{-1}\varphi(x+t)f(x)$ by Lemma 1 vii) and v). A straightforward argument shows that $S_t = L_t P_t$ and ker $L_t = \ker S_t$ where L is the forward translation semi-group on $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$. That is, P_t is the positive factor and L_t the isometric factor in the polar decomposition of S_t .

The following examples give two ways in which to construct symbols and the associated w.t.s.

Example 1. Let $\varphi: \mathscr{R}^+ \rightarrow \mathscr{R}(\mathscr{K})$ and assume that φ is one-to-one positive Hermitian-valued, nonincreasing and strongly continuous. If $\{\varphi(x)\}$ is abelian, then it follows that φ satisfies the properties of a symbol. Consequently, (S, φ) is a strongly continuous semi-group.

Example 2. Let φ be a strongly continuous self-adjoint semi-group of operators on \mathscr{K} . It follows easily that φ satisfies properties i)—iii) of a symbol. Moreover, there exists a spectral measure ϱ such that $\varphi(x) = \int_{0}^{a} r^{x} d\varrho(r)$ [8, p. 588]. The inequality $\varphi(x+t)^{2} \ll a^{2t} \varphi(x)^{2}$ readily follows. In this case, (S, φ) has a simpler form than the general w.t.s.:

$$(S_t f)(x) = \varphi(x-t)^{-1}\varphi(x)f(x-t) = \varphi(t)f(x-t) \quad \text{if} \quad x \ge t.$$

We shall see in the following section that these are the only quasinormal w.t.s. Indeed, every pure quasinormal semi-group is unitarily equivalent to (S, φ) where φ is a strongly continuous self-adjoint semi-group (Corollary 6).

In the next section, it will be convenient to consider symbols φ for which $\varphi(0) = I$. There is no loss of generality in making this assumption for if φ is a symbol, define $\varphi_1(x) = \varphi(0)^{-1}\varphi(x)$. Then $\varphi_1(0) = I$ by Lemma 5. Furthermore, by Lemma 5 $\varphi_1(x)$ is a one-to-one positive Hermitian operator, $\{\varphi_1(x)\}$ is abelian and φ_1 is strongly continuous. To see that $\varphi_1(x+t)^2 \ll M^2 a^{2t} \varphi_1(x)^2$ we argue as follows. By definition of φ , $\|\varphi(x+t)k\| \leq Md^{t}\|\varphi(x)k\|$ for all k in \mathscr{K} . Therefore, $\|[\varphi(0)^{-1}\varphi(x+t)]\varphi(0)k\| \leq Md^{t}\|[\varphi(0)^{-1}\varphi(x)]\varphi(0)k\|$. Consequently, $\|\varphi_1(x)k\| \leq Md^{t}\|\varphi_1(x)k\|$ for all k in the range of $\varphi(0)$, a dense subset of \mathscr{K} . Thus, the inequality holds for all k so that φ_1 satisfies condition iv) of the definition of a symbol.

3. Subnormal weighted translation semi-groups. Throughout this section, we assume $\varphi(0)=I$ when φ is a symbol.

Example 3. Let ϱ be an abelian operator measure on [0, a] with $\varrho[0, a] = I$. Define $\varphi(x)^2 = \int_0^a r^x d\varrho(r)$ where $\varphi(x) \gg 0$ for each x. It will follow from Lemma 4 that φ is a symbol. Indeed, we see in the following theorem that these are exactly the symbols which define the subnormal w.t.s.

Theorem 3. Let (S, φ) be a w.s.t. on $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$. The following statements are equivalent:

- i) (S, φ) is subnormal,
- ii) φ^2 is the compression of a strongly continuous self-adjoint semi-group,
- iii) there exists an operator measure ρ on [0, a] with $\rho[0, a] = I$ such that

$$\varphi(x)^2 = \int_0^a r^x \, d\varrho(r)$$

Before proving Theorem 3, we shall prove a lemma which includes the equivalence of ii) and iii).

Lemma 4. Let \mathscr{K} be a Hilbert space and $h: \mathscr{R}^+ \rightarrow \mathscr{B}(\mathscr{K})$. The following are equivalent:

1. h is a compression of a strongly continuous self-adjoint semi-group,

2. there exists an operator measure on a finite interval [0, a] such that $\varrho[0, a] = I$ and

$$h(x) = \int_0^a r^x d\varrho(r),$$

3. h satisfies the following four conditions:

i) h(0) = I,

ii) h is strongly continuous,

iii) there exists a number a such that $h(x+t) \ll a^t h(x)$ for all x and t in \mathcal{R}^+ ,

iv) $\sum_{\substack{i,j=0\\i,j=0}}^{n} \langle h(x_i+x_j)k_i, k_j \rangle \ge 0$ for all finite collections $\{x_0, ..., x_n\}$ in \mathcal{R}^+ and $\{k_0, ..., k_n\}$ in \mathcal{K} .

Proof. We shall show that $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$.

 $1\Rightarrow2$. Assume that h(t)=PH(t)P where P is the projection of a larger Hilbert space onto \mathscr{K} and H is a strongly continuous self-adjoint semi-group on the larger space. There exists a spectral measure [8, p. 588] on an interval [0, a] such that $H(t)=\int_{0}^{a}r^{t}d\mu(r)$. Consequently, $h(t)=\int_{0}^{a}r^{t}dP\mu(r)P$ and $P\mu P$ is an operator measure on \mathscr{K} with $(P\mu P)[0, a]=I$ on \mathscr{K} .

 $2\Rightarrow3$. Assume 2 holds. 3 i) and iii) are immediate. 3 ii) follows from an application of the monotone convergence theorem. To see that 3 iv) holds, observe that if E is any measurable subset of [0, a], then

$$\sum_{i,j=0}^{n} r^{x_i+x_j} \langle \varrho(E)k_i, k_j \rangle = \left\langle \varrho(E) \sum_{i=0}^{n} r^{x_i}k_i, \sum_{j=0}^{n} r^{x_j}k_j \right\rangle \ge 0$$

and consequently,

$$\sum_{i, j=0}^{n} \int_{0}^{a} r^{x_{i}+x_{j}} \langle d\varrho(r) k_{i}, k_{j} \rangle \geq 0$$

 $3\Rightarrow1$. The techniques used in this part of the proof are standard and will only be outlined. They are patterned after proofs in [1] and [3]. Assume that h satisfies the properties given in 3. Let M be the set of all functions $f: \mathcal{R} \rightarrow \mathcal{K}$ such that f(x)=0 except possibly for a finite number of real x. If f and g are in M, define

$$(f, g) = \sum_{a,b} \langle h(a+b) f(a), g(b) \rangle.$$

(See [3, p. 1254] for details.) Since $(f, f) \ge 0$ by hypothesis, it is easily checked that (,) is a semi-inner product on M. Let $M_0 = \{f: (f, f) = 0\}$ and $H_0 = M/M_0$. Let (,) also be the inner product on H_0 induced by (,) on M and let \mathscr{H} be the completion of H_0 .

For each t in \mathscr{R}^+ define $H(t): M \rightarrow M$ by (H(t)f)(x) = f(x-t). Then H is a semi-group and for f and g in M

$$(H(t)f,g) = \sum_{a,b} \langle h(a+b)f(a-t),g(b)\rangle =$$

= $\sum_{a,b} \langle h(a+b+t)f(a),g(b)\rangle = (f,H(t)g).$

It follows from the Cauchy—Schwarz inequality that M_0 is invariant under H(t); consequently H(t) induces a self-adjoint semi-group of linear transformations on H_0 . If we can show that H(t) is a bounded transformation, then H(t) can be extended continuously to \mathcal{H} .

To prove that H(t) is bounded, we need to show that there exists K such that $(H(t)f, H(t)f) \leq K(f, f)$ for all f in M. Equivalently,

$$\sum_{a,b} \langle h(a+b+2t)f(a), f(b) \rangle \leq K \sum_{a,b} \langle h(a+b)f(a), f(b) \rangle.$$

The argument given by BRAM [1, p. 76] can be duplicated in this situation to show that this inequality holds with $K = a^{2t}$ (we use condition iii) here).

Thus, H is a semi-group of self-adjoint operators on \mathcal{H} . We next show that H is strongly continuous. Let $f \in M$ and compute

$$\left(H(t)f-f, H(t)f-f\right) = \operatorname{Re}\sum_{a,b} \langle [h(a+b+2t)-2h(a+b+t)+h(a+b)]f(a), f(b) \rangle.$$

Since h is strongly continuous on \mathscr{K} , the right-hand side converges to 0 as $t \to 0$. We conclude that H is strongly continuous on \mathscr{H} .

We complete the proof by identifying \mathscr{K} with a subspace of \mathscr{H} and h with the compression of H to that subspace. For each k in \mathscr{K} define (Uk)(x)=k if x=0 and (Uk)(x)=0 otherwise. Then $Uk \in M$, U is linear, and (Uk, Uk)=

 $=\langle h(0)k, k \rangle = \|k\|^2$ by condition i). Therefore, we may consider Uk to be an element of M/M_0 and consequently of \mathcal{H} . $\|Uk\|_{\mathcal{H}} = \|k\|_{\mathcal{H}}$ so that U is an isometry from \mathcal{H} onto a subspace of \mathcal{H} . UU^* is the projection P of \mathcal{H} onto that subspace. We complete the proof by showing that $U^*PH(t)PU=h(t)$, so that h is unitarily equivalent to this compression of the strongly continuous selfadjoint semi-group H. For k and j in \mathcal{H} ,

$$\langle U^* PH(t) PUk, j \rangle = \langle U^* H(t) Uk, j \rangle = (H(t) Uk, Uj) =$$
$$= \sum_{a,b} \langle h(a+b)(Uk)(a-t), (Uj)(b) \rangle = \langle h(t)k, j \rangle$$

and $h(t) = U^* PH(t) PU$, as desired.

Remark. If h satisfies Lemma 4.2, then h(x)=PH(x)P where P is a projection and H a self-adjoint semi-group. Therefore, if h(x)k=0, then H(x/2)Pk=0 and h(x/2)k=0. Consequently, we can construct a sequence $x_n \to 0$ for which $h(x_n)k=0$. Since h is strongly continuous and h(0)=I, then k=0 and we see that h(x) is one-to-one. Indeed, we see that h satisfies all of the properties of a symbol except possibly $\{h(x)\}$ being abelian.

Proof of Theorem 3. ii)⇔iii) by Lemma 4.

Assume that i) holds and (S, φ) is subnormal. By [5, Theorem 2.1] there exists an operator measure ϱ in $\mathscr{B}(\mathscr{L}^2(\mathscr{R}^+, \mathscr{K}))$ such that $\varrho[0, a] = I$ and

$$S_t^* S_t = \int_0^a r^t \, d\varrho(r).$$

By equation (4) then for each f in $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$,

$$\varphi(x)^{-2}\varphi(x+t)^{2}f(x) = \int_{0}^{a} r^{t} \left(d\varrho(r)f\right)(x)$$

except on a set of measure zero. We conclude then that for a given finite collection f_0, \ldots, f_n of elements of $\mathscr{L}^2(\mathscr{R}^+, \mathscr{K})$ and all positive rational numbers *t* this equation holds except on a set *E* of measure zero. In particular, if k_0, \ldots, k_n are elements of \mathscr{K} and for $i=0, \ldots, n, f_i(x)=k_i$ for x in [0, 1] and zero otherwise, then

$$\varphi(x)^{-2}\varphi(x+t)^{2}k_{i} = \int_{0}^{a} r^{t} \left(d\varrho(r)f_{i}\right)(x)$$

for t rational and x in $[0, 1] \cap E$. Consequently, if $t_0, ..., t_n$ are rational and $x \in [0, 1] \cap E$, then

$$\sum_{i,j=0}^{n} \langle \varphi(x)^{-2} \varphi(x+t_{i}+t_{j})^{2} k_{i}, k_{j} \rangle = \sum_{i,j=0}^{n} \int_{0}^{a} r^{t_{i}+t_{j}} \langle d(\varrho(r)f_{i})(x), f_{j}(x) \rangle.$$

We argue as in the proof of Lemma 4 to see that the right-hand side of the last equation is nonnegative. Therefore,

$$\sum_{j=0}^{n} \left\langle \varphi(x)^{-2} \varphi(x+t_i+t_j)^2 k_i, \, k_j \right\rangle \ge 0$$

for all x in E. Using arguments similar to those in Lemma 1, we can show that $s-\lim_{x\to 0} \varphi(x)^{-2} \varphi(x+t)^2 = \varphi(t)^2$ for all real t. Consequently,

$$\sum_{i,j=0}^{n} \left\langle \varphi(t_i + t_j)^2 k_i, k_j \right\rangle \ge 0$$

for all finite collections $k_0, ..., k_n$ in \mathcal{H} and $t_0, ..., t_n$ in the rationals (and hence, in the reals since φ^2 is strongly continuous). We now apply Lemma 4 to φ^2 and see that iii) holds.

Conversely, assume that iii) holds: ϱ_0 is an operator measure on [0, a] such that $\varrho_0[0, a] = I$ and

(5)
$$\varphi^2(x) = \int_0^a r^x d\varrho_0(r).$$

ł

Note that for each Borel set E, $\left(\int_{E} r^{x} d\varrho_{0}(r)\right)^{2} \ll \varphi(x)^{4}$, so by the factorization theorem [2] $\varphi(x)^{-2} \int_{E} r^{x} d\varrho_{0}(r)$ is the unique operator C on \mathscr{K} satisfying $\varphi(x)^{2}C = \int_{E} r^{x} d\varrho_{0}(r)$, ker $C = \ker \int_{E} r^{x} d\varrho_{0}(r)$, $C(\mathscr{K}) \subseteq \varphi(x)^{2} (\mathscr{K})^{-}$ and $||C|| \leq 1$. Thus, we can define (6) $\varrho(E, x) = \varphi(x)^{-2} \int_{E} r^{x} d\varrho_{0}(r)$

for all x in \mathscr{R}^+ . Since $\{\varphi(x)\}$ is abelian, so is ϱ_0 and it follows that $\varrho(E, x)$ is positive Hermitian and further, that if $F \subseteq E$,

$$\varphi(x)[\varrho(E, x) - \varrho(F, x)]\varphi(x) = \int_{E-F} r^x d\varrho_0(r).$$

Since $\varphi(x)$ is one-to-one, $\varrho(E, x)$ is a monotone $\mathscr{B}(\mathscr{K})$ -valued function on the Borel sets of [0, a]. Further, if

$$E = \bigcup_{n} E_{n}, \ E_{j} \cap E_{i} = \emptyset \quad \text{for } (i \neq j), \text{ then}$$
$$\varphi(x)^{2} \varrho(E, x) = \int_{E} r^{x} d\varrho_{0}(r) = s - \lim_{n \to \infty} \sum_{i=1}^{n} \int_{E_{i}} r^{x} d\varrho_{0}(r) = s - \lim_{n \to \infty} \sum_{i=1}^{n} \varphi(x)^{2} \varrho(E_{i}, x).$$

Thus, $\sum_{i=1}^{n} \varrho(E_i, x)$ converges strongly to $\varrho(E, x)$ on the dense set $\varphi(x)^2$ and consequently, on \mathscr{K} since $\left\|\sum_{i=1}^{n} \varrho(E_i, x)\right\| \leq 1$. Finally, observe that $\varrho(\emptyset, x) = 0$ and $\varrho([0, a], x) = I$ for all x.

Define the set function ϱ with values in $\mathscr{B}(\mathscr{L}^2(\mathscr{R}^+,\mathscr{K}))$ by $(\varrho(E)f)(x) = = \varrho(E, x)f(x)$. From our previous remarks concerning $\varrho(E, x)$, it follows that ϱ is monotone, $\varrho(\emptyset) = 0$ and $\varrho([0, a]) = I$. Using an argument similar to that used in Theorem 2 $\varrho(E) = s-\lim_{n\to\infty} \sum_{l=1}^{n} \varrho(E_l)$ when $E = \bigcup_n E_l, E_l \cap E_j = \emptyset$ (for $i \neq j$). Therefore, ϱ defines an operator measure. Finally, from (6) and (5), we have

$$\varphi(x)^{2} \int_{0}^{a} s^{t} d\varrho(s, x) = \int_{0}^{a} s^{x+t} d\varrho_{0}(s) = \varphi(x+t)^{2}.$$

Therefore,

$$\varphi(x)^{-2}\varphi(x+t)^2 = \int_0^a s^t d\varrho(s, x).$$

We combine the last equation with equation (4) to conclude that

$$S_t^* S_t = \int_0^a s^t \, d\varrho(s).$$

Once again, we invoke [5, Theorem 2.1] and conclude that S is subnormal.

In [8, Theorem 22.3.1], it is shown that if T is a strongly continuous semigroup of self-adjoint operators, then T has a holomorphic extension whose maximal domain of analyticity is either the whole plane or the right half-plane. It follows immediately from Theorem 3 that the symbol φ of a subnormal w.t.s. has a holomorphic extension. Therefore, if two such symbols φ_1 and φ_2 agree on an infinite set with cluster point in their common domain of analyticity, they must agree everywhere.

Prior to characterizing quasinormal w.t.s., we restate a general characterization of quasinormal semi-groups [6, Theorem 6] in the w.t.s. terminology.

Theorem 5. Let Q be a strongly continuous semi-group on a separable Hilbert space \mathcal{H} . Q is quasinormal if and only if Q is unitarily equivalent to the direct sum of a strongly continuous normal semi-group N and a w.t.s. (S, φ) where φ is a strongly continuous self-adjoint semi-group.

A quasinormal semi-group is *pure* if there exists no nontrivial invariant subspace on which it is normal.

Corollary 6. Every strongly continuous pure quasinormal semi-group is unitarily equivalent to a w.t.s. (S, φ) where φ is a strongly continuous self-adjoint semi-group.

Corollary 7. Let (S, φ) be a w.t.s. The following are equivalent:

i) (S, φ) is quasinormal,

ii) φ is a strongly continuous self-adjoint semi-group,

Weighted translation semi-groups with operator weights

iii) there exists a spectral measure ϱ on [0, a] such that

$$\varphi(x) = \int_0^a r^x \, d\varrho(r).$$

Proof. Observe first that if (S, φ) is any w.t.s., then (S, φ) has no normal part. If $S_t^*S_t f = S_t S_t^* f$ for all t, then $\varphi(x)^{-2}\varphi(x+t)^2 f(x) = 0$ for $0 \le x \le t$ and for all t. But $\varphi(x)^{-2}\varphi(x+t)^2$ is one-to-one so that f=0. The equivalence of i) and ii) now follows immediately from Theorem 5. The equivalence of ii) and iii) can either be derived from Theorem 5 or from [8, p. 588].

Example 4. Let s be a strongly continuous subnormal semi-group on a separable Hilbert space \mathscr{K} . Let $\varphi(x) = (s_x^* s_x)^{1/2}$. By [5, Theorem 2.1], there exists an operator measure ϱ on [0, a] with $\varrho[0, a] = I$ and $\varphi(x)^2 = \int_0^a r^x d\varrho(r)$. We noted in the remark after Lemma 4 that φ satisfies all properties of a symbol except $\{\varphi(x)\}$ being abelian. If we assume $\{\varphi(x)\}$ abelian, then φ is a symbol and it follows from Theorem 3 that (S, φ) is a subnormal w.t.s.

During the development of the material in this paper, several questions arose which remain unanswered.

1. If φ is the symbol of a subnormal w.t.s. (S, φ) , does there exist a strongly continuous semi-group s such that $\varphi(x) = (s_x^* s_x)^{1/2}$? In the last example, we saw that if φ is of this type, it does generate a subnormal w.t.s. However, if we start with a subnormal (S, φ) , then by Theorem 3 $\varphi(x)^2 = \int_{0}^{a} r^t d\varrho(r)$. Thus, by [5, Theorem 2.1] φ acts like the positive part of some subnormal semi-group. The trick is to construct a function $u: \mathcal{R}^+ \to \mathcal{R}(\mathcal{K})$ such that each u(x) is an isometry and $u\varphi$ is a strongly continuous semi-group.

2. More generally, we can ask whether each of the functions $h(x) = \int_{0}^{a} r^{x} d\varrho(r)$

in Lemma 4 is the square of the positive part of some strongly continuous subnormal semi-group. (Here, we do not require $\{h(x)\}$ to be abelian as we do for symbols.)

3. When are two w.t.s. (S, φ) and (T, ψ) unitarily equivalent or similar? In [5] it was shown in the numerical case, $\mathscr{K} = \mathscr{C}$, that similarity occurs if and only if there exist constants m and M such that $0 < m \le |\varphi(x)/\psi(x)| \le M < \infty$ for all x in \mathscr{R}^+ and in [4], it was shown that (T, ψ) is unitarily equivalent to (S, φ) if and only if $|\varphi(x)/\psi(x)|$ is constant on \mathscr{R}^+ . Other questions were answered in [4] and [5] for the numerical case which may have interesting analogues in the operator case. 260 Mary Embry-Wardrop: Weighted translation semi-groups with operator weights

References

- [1] J. BRAM, Subnormal Operators, Duke Math. J., 22 (1955), 75-94.
- [2] R. G. DOUGLAS, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413-415.
- [3] N. DUNFORD and J. T. SCHWARTZ, Linear Operators, Part II, Interscience (New York, N. Y., 1963).
- [4] M. R. EMBRY and A. LAMBERT, Weighted translation semigroups, Rocky Mountain J. of Math., 7 (1977), 333-344.
- [5] M. R. EMBRY and A. LAMBERT, Subnormal weighted translation semi-groups, J. Funct. Anal., 24 (1977), 268-275.
- [6] M. EMBRY-WARDROP, Semi-groups of quasinormal operators, Pacific J. Math., 101 (1982), 103-113.

[7] P. R. HALMOS, A Hilbert Space Problem Book, Van Nostrand (Princeton, N. J., 1967).

[8] E. HILLE and S. PHILLIPS, Functional Analysis and Semi-Groups, Amer. Math. Soc. (Providence, R. I., 1957).

DEPARTMENT OF MATHEMATICS CENTRAL MICHIGAN UNIVERSITY MT. PLEASANT, MICHIGAN 48859, U.S.A.