Weighted translation semi-groups with operator weights

MARY EMBRY-WARDROP*

1. Introduction. If φ is a continuous nonzero complex-valued function on \mathscr{R}^{+}and $\left(S_{t} f\right)(x)=[\varphi(x) / \varphi(x-t)] f(x-t)$ for $x \geqq t$ and 0 otherwise, then S is a semi-group of linear transformations on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{C}\right)$. S is a strongly continuous semi-group of bounded operators if φ satisfies certain boundedness conditions. These semi-groups, called weighted translation semi-groups (w.t.s.) with symbol φ, were introduced in [4] and the subnormal w.t.s. characterized in [5].

In [4] it was shown that S is quasinormal if and only if $\varphi(x)=M a^{x}$ for some constants M and a. In this case $S_{t}=a^{t} L_{t}$, where L is the forward translation semi-group on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{C}\right)$. In [6] we proved that any strongly continuous quasinormal semi-group S on a separable Hilbert space \mathscr{H} is unitarily equivalent to the direct sum of a normal semigroup and a pure quasinormal semi-group Q on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$ for some Hilbert space \mathscr{K}. Furthermore, $Q_{\mathrm{t}}=\overline{h(t)} L_{t}$ where L is the forward translation semi-group on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right), h$ is a strongly continuous self-adjoint semi-group on \mathscr{K}, and $(\overline{h(t)} f)(x)=h(t) f(x)$ a.e. for each f in $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$. Thus, the pure quasinormal semi-groups behave like quasinormal w.t.s.

In this paper, we shall introduce w.t.s. on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$ for which the symbol φ is \mathscr{K}-operator-valued and study a few of their properties.

In Section 2, we specify which operator-valued functions φ will be allowed. This class of semi-groups gives a rich supply of easily constructed examples. In particular, every pure quasinormal semi-group is (unitarily equivalent to) a weighted translation semi-group. Section 3 is devoted to characterizing subnormal w.t.s. on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$. In Theorem 3 we show that S with symbol φ is subnormal if and only if φ^{2} is the compression of a strongly continuous self-adjoint semi-group; equivalently, there exists an operator measure on an interval $[0, a]$ such that $\varphi(x)^{2}=$

Received January 8, 1982.

[^0]$=\int_{0}^{a} r^{x} d \varrho(r)$. This last condition is precisely the characterization of subnormal w.t.s. in [5] in the numerical case $\mathscr{K}=\mathscr{C}$.

Throughout the paper, we shall assume all Hilbert spaces to be separable. $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$ is the Hilbert space of (equivalence classes of) square integrable weakly measurable functions from the nonnegative reals \mathscr{R}^{+}to the separable Hilbert space \mathscr{K}. $\mathscr{B}(\mathscr{K})$ or $\mathscr{B}\left(\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)\right)$ stands for the Banach algebra of continuous linear operators on \mathscr{K} or $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$, respectively. A function $S: \mathscr{R}^{+} \rightarrow \mathscr{B}(\mathscr{K})$ is a semi-group if $S_{0}=I$, the identity operator, and $S_{t} S_{r}=S_{t+r}$ for all r and t in \mathscr{R}^{+}. A function $\varphi: \mathscr{R}^{+} \rightarrow \mathscr{B}(\mathscr{K})$ is strongly continuous if $\lim _{t \rightarrow r}\|\varphi(t) f-\varphi(r) f\|=0$ for each f in \mathscr{K} and r in \mathscr{R}^{+}. In this case, we write $s-\lim _{t \rightarrow r} \varphi(t)=\varphi(r)$. The forward translation semi-group $L\left(\left(L_{t} f\right)(x)=f(x-t)\right.$ if $x \geqq t$ and 0 otherwise) on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$ plays a special role in ideas developed in this paper.

A semi-group S of operators is normal if $S_{t}^{*} S_{t}=S_{t} S_{t}^{*}$ for all t, quasinormal if $S_{t}\left(S_{t}^{*} S_{t}\right)=\left(S_{t}^{*} S_{t}\right) S_{t}$ for all t and subnormal if S is the restriction of a normal semi-group to an invariant subspace. An operator measure ϱ on $[a, b]$ is a function defined on the Borel sets of $[a, b]$ with values in $\mathscr{B}(\mathscr{K})$ such that $\varrho(\emptyset)=0, \varrho(E)$ is a positive Hermitian operator for each Borel set $E, \varrho(E) \ll \varrho(F)$ whenever $E \subseteq F$ and $\varrho(E)=\mathrm{s}_{n \rightarrow \infty} \lim _{i=1}^{n} \varrho\left(E_{i}\right)$ whenever E is the union of a collection of pairwise disjoint sets E_{i}. If the values of ϱ are projections and $\varrho[a, b]=I$, then ϱ is a spectral measure on $[a, b]$. Two integral representations which reoccur frequently in this paper are as follows:

1) $[8$, Theorem 22.3.1, p. 588]. If H is a strongly continuous self-adjoint semi-group of operators, there exists a spectral measure ϱ on an interval $[0, a]$ such that

$$
H_{t}=\int_{0}^{a} r^{t} d \varrho(r)
$$

2) [5, Theorem 2.1]. S is a strongly continuous subnormal semi-group if and only if there exists an operator measure ϱ on an interval $[0, a]$ such that $\varrho([0, a])=I$ and

$$
S_{t}^{*} S_{t}=\int_{0}^{a} r^{t} d \varrho(r)
$$

We shall also say that a semi-group S on \mathscr{H} is the compression of a semigroup T on \mathscr{K} if $\mathscr{H} \subseteq \mathscr{K}$ and $S_{t}=P T_{t} P$ for each t where P is the orthogonal projection of \mathscr{K} onto \mathscr{H}.
2. Weighted translation semi-groups. Let $\varphi: \mathscr{R}^{+} \rightarrow \mathscr{B}(\mathscr{K})$ have properties:
i) for each x in $\mathscr{R}^{+}, \varphi(x)$ is a one-to-one positive Hermitian operator,
ii) $\left\{\varphi(x): x \in \mathscr{R}^{+}\right\}$is abelian,
iii) φ is strongly continuous,
iv) there exist numbers M and a such that for all x and t in \mathscr{R}^{+},

$$
\varphi(x+t)^{2} \ll M^{2} a^{2 t} \varphi(x)^{2}
$$

Such a φ will be called a symbol. We are requiring $\varphi(x)$ to be positive Hermitian for simplicity. We use the other requirements to prove that the mapping $t \rightarrow \varphi(x-t)^{-1} \varphi(x)\left(L_{t} f\right)(x)$ defines a semi-group which is strongly continuous.

Conditions i) and iv) imply that if $t \leqq x$, there exists a unique element C of $\mathscr{B}(\mathscr{K})$ such that $\varphi(x)=\varphi(t) C$. In this case, we write $C=\varphi(t)^{-1} \varphi(x)$. Even if $\varphi(x)$ is not one-to-one, this factorization of $\varphi(x)$ can be obtained [2]; however, $\varphi(x)^{-1} \varphi(x)$ would be the projection onto the closure of the range of $\varphi(x)$ and the semi-group that we are interested in constructing would not have $S_{0}=I$.

Lemma 1. Let φ be a symbol on \mathscr{K}. Then
i) $\varphi(x)^{-1} \varphi(x)=I$ for all x,
ii) $\varphi(r)$ commutes with $\varphi(t)^{-1} \varphi(x)$ for all r whenever $t \leqq x$,
iii) $\varphi(t)^{-1} \varphi(x)$ commutes with $\varphi(a)^{-1} \varphi(b)$ whenever $t \leqq x$ and $a \leqq b$,
iv) $\left[\varphi(r)^{-1} \varphi(t)\right]\left[\varphi(t)^{-1} \varphi(s)\right]=\varphi(r)^{-1} \varphi(s)$ whenever $r \leqq t \leqq s$,
v) $\varphi(t)^{-1} \varphi(x)$ is one-to-one and positive Hermitian whenever $t \leqq x$ and satisfies $\left\|\varphi(t)^{-1} \varphi(x)\right\| \leqq M a^{x-t}$,
vi) $\mathrm{s}_{\boldsymbol{t} \rightarrow 0} \varphi(x)^{-1} \varphi(x+t)=I$,
vii) $\left[\varphi(x)^{-1} \varphi(x+t)\right]^{2}=\left(\varphi(x)^{2}\right)^{-1} \varphi(x+t)^{2}$ for all x and t.

Proof. i) follows immediately from definition of $\varphi(x)^{-1} \varphi(x)$. ii) by definition $\varphi(x)=\varphi(t)\left[\varphi(t)^{-1} \varphi(x)\right]$. Since $\{\varphi(s)\}$ is abelian and $\varphi(t)$ is one-to-one, $\varphi(r)$ commutes with $\varphi(t)^{-1} \varphi(x)$. Therefore, $\varphi(x)=\varphi(t)^{1 / 2}\left[\varphi(t)^{-1} \varphi(x)\right] \varphi(t)^{1 / 2}$ and v) now follows from the fact that $\varphi(x)$ and $\varphi(t)^{1 / 2}$ are one-to-one positive Hermitian operators. The inequality in v) follows from condition iv) of the definition of φ. iii) follows from ii) and the facts that each $\varphi(x)$ is one-to-one and $\{\varphi(x)\}$ is abelian. iv) $\varphi(r)^{-1} \varphi(s)$ is the unique operator satisfying $\varphi(s)=\varphi(r)\left[\varphi(r)^{-1} \varphi(s)\right]$. But $\left[\varphi(r)^{-1} \varphi(t)\right]\left[\varphi(t)^{-1} \varphi(s)\right]$ also satisfies this equation. vi) Note that for each k in \mathscr{K},

$$
\left\|\left[\varphi(x)^{-1} \varphi(x+t)-I\right] \varphi(x) k\right\|=\|\varphi(x+t) k-\varphi(x) k\| .
$$

Since φ is strongly continuous, then $\operatorname{s-lim}_{t \rightarrow 0} \varphi(x)^{-1} \varphi(x+t)=I$ on the range of $\varphi(x)$ which is dense in \mathscr{K}. Since $\left\|\varphi(x)^{-1} \varphi(x+t)-I\right\| \leqq M a^{t}+1 \leqq M_{0}$ for t in $[0,1]$, we see that $\operatorname{sim}_{t \rightarrow 0} \varphi(x)^{-1} \varphi(x+t)=I$ on all of \mathscr{K}. vii) Since $\varphi(x+t)^{2} \ll$ $\ll M^{2} a^{2 t} \varphi(x)^{2}$ and $\{\varphi(x)\}$ is abelian, then $\varphi(x+t)^{4} \ll M^{4} a^{4 t} \varphi(x)^{4}$ and $\left(\varphi(x)^{2}\right)^{-1} \varphi(x+t)^{2}$ can be defined in a fashion similar to $\varphi(x)^{-1} \varphi(x+t)$: that is, $\left(\varphi(x)^{2}\right)^{-1} \varphi(x+t)^{2}$ is the unique operator C satisfying $\varphi(x+t)^{2}=\varphi(x)^{2} C$. Since $\left[\varphi(x)^{-1} \varphi(x+t)\right]^{2}$ also satisfies this equation (using the definition of $\varphi(x)^{-1} \varphi(x+t)$ and the fact that it commutes with $\varphi(x+t)$), the proof of vii) is complete.

Now let φ be a symbol on \mathscr{K}. For each t in \mathscr{R}^{+}define the operator S_{t} on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$ by

$$
\left(S_{t} f\right)(x)= \begin{cases}\varphi(x-t)^{-1} \varphi(x) f(x-t) & \text { if } x \geqq t \tag{1}\\ 0 & \text { if } x<t\end{cases}
$$

An argument directly paralleling one in [7, p. 211] can be given to show that

$$
\begin{equation*}
\left\|S_{t}\right\|=\underset{x \in \mathscr{B}^{+}}{\operatorname{ess} \sup }\left\|\varphi(x)^{-1} \varphi(x+t)\right\| . \tag{2}
\end{equation*}
$$

Theorem 2. If φ is a symbol on \mathscr{K}, then S is a strongly continuous semigroup of operators on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$.

Proof. Note that $\left(S_{0} f\right)(x)=\varphi(x)^{-1} \varphi(x) f(x)=f(x)$ by Lemma 1 i) so that $S_{0}=I$ on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$. A straightforward computation, making use of Lemma 1 iii) and iv), shows that $S_{t+r}=S_{t} S_{r}$ for all $t, r \geqq 0$. It remains to be shown that S is strongly continuous. By equation (2) and Lemma 1 v) we have

$$
\begin{equation*}
\left\|S_{t}\right\| \leqq M a^{t} \tag{3}
\end{equation*}
$$

We argue as in [4, p. 211]. Assume first that $a=1$. Let f be a continuous function of compact support in $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$. Then

$$
\left\|S_{t} f-f\right\|^{2}=\int\left\|\varphi(x)^{-1} \varphi(x+t) f(x)-f(x+t)\right\|^{2} d x
$$

Let $b=$ ess sup $|f|$, supp $f \subseteq[0, k]$ and $g(x)=b$ if $x \in[0, k+1]$ and $g(x)=0$ otherwise. Then $g \in \mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$ and for $t \leqq 1$,

$$
\left\|\varphi(x)^{-1} \varphi(x+t) f(x)-f(x+t)\right\| \leqq(M+1) g(x)
$$

By Lemma 1 vi) and the continuity of f,

$$
\lim _{t \rightarrow 0}\left\|\varphi(x)^{-1} \varphi(x+t) f(x)-f(x+t)\right\|=0
$$

Thus, by the Lebesgue dominated convergence theorem, $\lim _{t \rightarrow 0}\left\|S_{t} f-f\right\|^{2}=0 . S$ is strongly continuous on a dense subset of $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$ and consequently on all of $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$ since S is uniformly bounded by M.

Now assume that a is arbitrary in (3) and let $T_{t}=a^{-t} S_{t}$ and $\varrho(t)=a^{-t} \varphi(t)$. Then ϱ is a symbol on \mathscr{K} and defines T by (1). Hence, the preceding result implies, that T is strongly continuous on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$; the same must be true for S.

Hereafter, if φ is a symbol on \mathscr{K} and S is the semi-group defined by (1) we shall say that (S, φ) is a weighted translation semi-group (w.t.s.) on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$. Note that $\left(S_{t}^{*} f\right)(x)=\varphi(x)^{-1} \varphi(x+t) f(x+t)$ and, consequently, by Lemma 1 for f in $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$,

$$
\begin{equation*}
\left(S_{t}^{*} S_{t} f\right)(x)=\varphi(x)^{-2} \varphi(x+t)^{2} f(x) \quad \text { a.e } \tag{4}
\end{equation*}
$$

Thus, if P_{t} is the positive square root of $S_{t}^{*} S_{t}$, then $\left(P_{t} f\right)(x)=\varphi(x)^{-1} \varphi(x+t) f(x)$ by Lemma 1 vii) and v). A straightforward argument shows that $S_{t}=L_{t} P_{t}$ and ker $L_{t}=\operatorname{ker} S_{t}$ where L is the forward translation semi-group on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$. That is, P_{t} is the positive factor and L_{t} the isometric factor in the polar decomposition of S_{t}.

The following examples give two ways in which to construct symbols and the associated w.t.s.

Example 1. Let $\varphi: \mathscr{R}^{+} \rightarrow \mathscr{B}(\mathscr{K})$ and assume that φ is one-to-one positive Hermitian-valued, nonincreasing and strongly continuous. If $\{\varphi(x)\}$ is abelian, then it follows that φ satisfies the properties of a symbol. Consequently, (S, φ) is a strongly continuous semi-group.

Example 2. Let φ be a strongly continuous self-adjoint semi-group of operators on \mathscr{K}. It follows easily that φ satisfies properties i)-iii) of a symbol. Moreover, there exists a spectral measure ϱ such that $\varphi(x)=\int_{0}^{a} r^{x} d \varrho(r)[8$, p. 588]. The inequality $\varphi(x+t)^{2} \ll a^{2 t} \varphi(x)^{2}$ readily follows. In this case, (S, φ) has a simpler form than the general w.t.s.:

$$
\left(S_{t} f\right)(x)=\varphi(x-t)^{-1} \varphi(x) f(x-t)=\varphi(t) f(x-t) \quad \text { if } \quad x \geqq t .
$$

We shall see in the following section that these are the only quasinormal w.t.s. Indeed, every pure quasinormal semi-group is unitarily equivalent to (S, φ) where φ is a strongly continuous self-adjoint semi-group (Corollary 6).

In the next section, it will be convenient to consider symbols φ for which $\varphi(0)=I$. There is no loss of generality in making this assumption for if φ is a symbol, define $\varphi_{1}(x)=\varphi(0)^{-1} \varphi(x)$. Then $\varphi_{1}(0)=I$ by Lemma 5. Furthermore, by Lemma 5 $\varphi_{1}(x)$ is a one-to-one positive Hermitian operator, $\left\{\varphi_{1}(x)\right\}$ is abelian and φ_{1} is strongly continuous. To see that $\varphi_{1}(x+t)^{2} \ll M^{2} a^{2 t} \varphi_{1}(x)^{2}$ we argue as follows. By definition of $\varphi,\|\varphi(x+t) k\| \leqq M a^{t}\|\varphi(x) k\|$ for all k in \mathscr{K}. Therefore, $\left\|\left[\varphi(0)^{-1} \varphi(x+t)\right] \varphi(0) k\right\| \leqq M a^{t}\left\|\left[\varphi(0)^{-1} \varphi(x)\right] \varphi(0) k\right\|$. Consequently, $\left\|\varphi_{1}(x) k\right\| \leqq$ $\leqq M a^{t}\left\|\varphi_{1}(x) k\right\|$ for all k in the range of $\varphi(0)$, a dense subset of \mathscr{K}. Thus, the inequality holds for all k so that φ_{1} satisfies condition iv) of the definition of a symbol.
3. Subnormal weighted translation semi-groups. Throughout this section, we assume $\varphi(0)=I$ when φ is a symbol.

Example 3. Let ϱ be an abelian operator measure on $[0, a]$ with $\varrho[0, a]=I$. Define $\varphi(x)^{2}=\int_{0}^{a} r^{x} d \varrho(r)$ where $\varphi(x) \gg 0$ for each x. It will follow from Lemma 4
that φ is a symbol. Indeed, we see in the following theorem that these are exactly the symbols which define the subnormal w.t.s.

Theorem 3. Let (S, φ) be a w.s.t. on $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$. The following statements are equivalent:
i) (S, φ) is subnormal,
ii) φ^{2} is the compression of a strongly continuous self-adjoint semi-group,
iii) there exists an operator measure ϱ on $[0, a]$ with $\varrho[0, a]=I$ such that

$$
\varphi(x)^{2}=\int_{0}^{a} r^{x} d \varrho(r)
$$

Before proving Theorem 3, we shall prove a lemma which includes the equivalence of ii) and iii).

Lemma 4. Let \mathscr{K} be a Hilbert space and $h: \mathscr{R}^{+} \rightarrow \mathscr{B}(\mathscr{K})$. The following are equivalent:

1. h is a compression of a strongly continuous self-adjoint semi-group,
2. there exists an operator measure on a finite interval $[0, a]$ such that $\varrho[0, a]=I$ and

$$
h(x)=\int_{0}^{a} r^{x} d \varrho(r)
$$

3. h satisfies the following four conditions:
i) $h(0)=I$,
ii) h is strongly continuous,
iii) there exists a number a such that $h(x+t) \ll a^{t} h(x)$ for all x and t in \mathscr{R}^{+},
iv) $\sum_{i, j=0}^{n}\left\langle h\left(x_{i}+x_{j}\right) k_{i}, k_{j}\right\rangle \geqq 0$ for all finite collections $\left\{x_{0}, \ldots, x_{n}\right\}$ in \mathscr{R}^{+}and $\left\{k_{0}, \ldots, k_{n}\right\}$ in \mathscr{K}.

Proof. We shall show that $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$.
$1 \Rightarrow 2$. Assume that $h(t)=P H(t) P$ where P is the projection of a larger Hilbert space onto \mathscr{K} and H is a strongly continuous self-adjoint semi-group on the larger space. There exists a spectral measure [8, p. 588] on an interval $[0, a]$ such that $H(t)=\int_{0}^{a} r^{t} d \mu(r)$. Consequently, $h(t)=\int_{0}^{a} r^{t} d P \mu(r) P$ and $P \mu P$ is an operator measure on \mathscr{K} with $(P \mu P)[0, a]=I$ on \mathscr{K}.
$2 \Rightarrow 3$. Assume 2 holds. 3 i) and iii) are immediate. 3 ii) follows from an application of the monotone convergence theorem. To see that 3 iv) holds, observe that if E is any measurable subset of $[0, a]$, then

$$
\sum_{i, j=0}^{n} r^{x_{i}+x_{j}}\left\langle\varrho(E) k_{i}, k_{j}\right\rangle=\left\langle\varrho(E) \sum_{i=0}^{n} r^{x_{i}} k_{i}, \sum_{j=0}^{n} r^{x_{j}} k_{j}\right\rangle \geqq 0
$$

and consequently,

$$
\sum_{i, j=0}^{n} \int_{0}^{a} r^{x_{i}+x_{j}}\left\langle d \varrho(r) k_{i}, k_{j}\right\rangle \geqq 0
$$

$3 \Rightarrow 1$. The techniques used in this part of the proof are standard and will only be outlined. They are patterned after proofs in [1] and [3]. Assume that h satisfies the properties given in 3 . Let M be the set of all functions $f: \mathscr{R} \rightarrow \mathscr{K}$ such that $f(x)=0$ except possibly for a finite number of real x. If f and g are in M, define

$$
(f, g)=\sum_{a, b}\langle h(a+b) f(a), g(b)\rangle
$$

(See [3, p. 1254] for details.) Since $(f, f) \geqq 0$ by hypothesis, it is easily checked that (,) is a semi-inner product on M. Let $M_{0}=\{f:(f, f)=0\}$ and $H_{0}=M / M_{0}$. Let (,) also be the inner product on H_{0} induced by (,) on M and let \mathscr{H} be the completion of H_{0}.

For each t in \mathscr{R}^{+}define $H(t): M \rightarrow M$ by $(H(t) f)(x)=f(x-t)$. Then H is a semi-group and for f and g in M

$$
\begin{aligned}
(H(t) f, g) & =\sum_{a, b}\langle h(a+b) f(a-t), g(b)\rangle= \\
& =\sum_{a, b}\langle h(a+b+t) f(a), g(b)\rangle=(f, H(t) g)
\end{aligned}
$$

It follows from the Cauchy-Schwarz inequality that M_{0} is invariant under $H(t)$; consequently $H(t)$ induces a self-adjoint semi-group of linear transformations on H_{0}. If we can show that $H(t)$ is a bounded transformation, then $H(t)$ can be extended continuously to \mathscr{H}.

To prove that $H(t)$ is bounded, we need to show that there exists K such that $(H(t) f, H(t) f) \leqq K(f, f)$ for all f in M. Equivalently,

$$
\sum_{a, b}\langle h(a+b+2 t) f(a), f(b)\rangle \leqq K \sum_{a, b}\langle h(a+b) f(a), f(b)\rangle .
$$

The argument given by Bram [1, p. 76] can be duplicated in this situation to show that this inequality holds with $K=a^{2 t}$ (we use condition iii) here).

Thus, H is a semi-group of self-adjoint operators on \mathscr{H}. We next show that H is strongly continuous. Let $f \in M$ and compute

$$
(H(t) f-f, H(t) f-f)=\operatorname{Re} \sum_{a, b}\langle[h(a+b+2 t)-2 h(a+b+t)+h(a+b)] f(a), f(b)\rangle .
$$

Since \dot{h} is strongly continuous on \mathscr{K}, the right-hand side converges to 0 as $t \rightarrow 0$. We conclude that H is strongly continuous on \mathscr{H}.

We complete the proof by identifying \mathscr{K} with a subspace of \mathscr{H} and h with the compression of H to that subspace. For each k in \mathscr{K} define $(U k)(x)=k$ if $x=0$ and $(U k)(x)=0$ otherwise. Then $U k \in M, U$ is linear, and $(U k, U k)=$
$=\langle h(0) k, k\rangle=\|k\|^{2}$ by condition i). Therefore, we may consider $U k$ to be an element of M / M_{0} and consequently of \mathscr{H}. $\|U k\|_{\mathscr{H}}=\|k\|_{\mathscr{H}}$ so that U is an isometry from \mathscr{K} onto a subspace of $\mathscr{H} . U U^{*}$ is the projection P of \mathscr{H} onto that subspace. We complete the proof by showing that $U^{*} P H(t) P U=h(t)$, so that h is unitarily equivalent to this compression of the strongly continuous selfadjoint semi-group H. For k and j in \mathscr{K},

$$
\begin{aligned}
\left\langle U^{*} P H(t) P U k, j\right\rangle & =\left\langle U^{*} H(t) U k, j\right\rangle=(H(t) U k, U j)= \\
& =\sum_{a, b}\langle h(a+b)(U k)(a-t),(U j)(b)\rangle=\langle h(t) k, j\rangle
\end{aligned}
$$

and $h(t)=U^{*} P H(t) P U$, as desired.
Remark. If h satisfies Lemma 4.2, then $h(x)=P H(x) P$ where P is a projection and H a self-adjoint semi-group. Therefore, if $h(x) k=0$, then $H(x / 2) P k=0$ and $h(x / 2) k=0$. Consequently, we can construct a sequence $x_{n} \rightarrow 0$ for which $h\left(x_{n}\right) k=0$. Since h is strongly continuous and $h(0)=I$, then $k=0$ and we see that $h(x)$ is one-to-one. Indeed, we see that h satisfies all of the properties of a symbol except possibly $\{h(x)\}$ being abelian.

Proof of Theorem 3. ii) \Leftrightarrow iii) by Lemma 4.
Assume that i) holds and (S, φ) is subnormal. By [5, Theorem 2.1] there exists an operator measure ϱ in $\mathscr{B}\left(\mathscr{L}^{2}(\mathscr{R}+\mathscr{K})\right)$ such that $\varrho[0, a]=I$ and

$$
S_{t}^{*} S_{t}=\int_{0}^{a} r^{t} d \varrho(r)
$$

By equation (4) then for each f in $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$,

$$
\varphi(x)^{-2} \varphi(x+t)^{2} f(x)=\int_{0}^{a} r^{t}(d \varrho(r) f)(x)
$$

except on a set of measure zero. We conclude then that for a given finite collection f_{0}, \ldots, f_{n} of elements of $\mathscr{L}^{2}\left(\mathscr{R}^{+}, \mathscr{K}\right)$ and all positive rational numbers t this equation holds except on a set E of measure zero. In particular, if k_{0}, \ldots, k_{n} are elements of \mathscr{K} and for $i=0, \ldots, n, f_{i}(x)=k_{i}$ for x in $[0,1]$ and zero otherwise, then

$$
\varphi(x)^{-2} \varphi(x+t)^{2} k_{i}=\int_{0}^{a} r^{t}\left(d \varrho(r) f_{i}\right)(x)
$$

for t rational and x in $[0,1] \cap E$. Consequently, if t_{0}, \ldots, t_{n} are rational and $x \in[0,1] \cap E$, then

$$
\sum_{i, j=0}^{n}\left\langle\varphi(x)^{-2} \varphi\left(x+t_{i}+t_{j}\right)^{2} k_{i}, k_{j}\right\rangle=\sum_{i, j=0}^{n} \int_{0}^{a} r^{t_{i}+t_{j}}\left\langle d\left(\varrho(r) f_{i}\right)(x), f_{j}(x)\right\rangle .
$$

We argue as in the proof of Lemma 4 to see that the right-hand side of the last equation is nonnegative. Therefore,

$$
\sum_{i, j=0}^{n}\left\langle\varphi(x)^{-2} \varphi\left(x+t_{i}+t_{j}\right)^{2} k_{i}, k_{j}\right\rangle \geqq 0
$$

for all x in E. Using arguments similar to those in Lemma 1, we can show that $s_{x \rightarrow 0} \lim _{x \rightarrow 0} \varphi(x)^{-2} \varphi(x+t)^{2}=\varphi(t)^{2}$ for all real t. Consequently,

$$
\sum_{i, j=0}^{n}\left\langle\varphi\left(t_{i}+t_{j}\right)^{2} k_{i}, k_{j}\right\rangle \geqq 0
$$

for all finite collections k_{0}, \ldots, k_{n} in \mathscr{K} and t_{0}, \ldots, t_{n} in the rationals (and hence, in the reals since φ^{2} is strongly continuous). We now apply Lemma 4 to φ^{2} and see that iii) holds.

Conversely, assume that iii) holds: ϱ_{0} is an operator measure on $[0, a]$ such that $\varrho_{0}[0, a]=I$ and

$$
\begin{equation*}
\varphi^{2}(x)=\int_{0}^{a} r^{x} d \varrho_{0}(r) . \tag{5}
\end{equation*}
$$

Note that for each Borel set $E,\left(\int_{E} r^{x} d \varrho_{0}(r)\right)^{2} \ll \varphi(x)^{4}$, so by the factorization theorem [2] $\varphi(x)^{-2} \int_{E} r^{x} d \varrho_{0}(r)$ is the unique operator C on \mathscr{K} satisfying $\varphi(x)^{2} C=\int_{E} r^{x} d \varrho_{0}(r)$, ker $C=\operatorname{ker} \int_{E} r^{x} d \varrho_{0}(r), C(\mathscr{K}) \subseteq \varphi(x)^{2}(\mathscr{K})^{-}$and $\|C\| \leqq 1$. Thus, we can define

$$
\begin{equation*}
\varrho(E, x)=\varphi(x)^{-2} \int_{E} r^{x} d \varrho_{0}(r) \tag{6}
\end{equation*}
$$

for all x in \mathscr{R}^{+}. Since $\{\varphi(x)\}$ is abelian, so is ϱ_{0} and it follows that $\varrho(E, x)$ is positive Hermitian and further, that if $F \subseteq E$,

$$
\varphi(x)[\varrho(E, x)-\varrho(F, x)] \varphi(x)=\int_{E-F} r^{x} d \varrho_{0}(r) .
$$

Since $\varphi(x)$ is one-to-one, $\varrho(E, x)$ is a monotone $\mathscr{B}(\mathscr{K})$-valued function on the Borel sets of $[0, a]$. Further, if

$$
\begin{gathered}
E=\bigcup_{n} E_{n}, E_{j} \cap E_{i}=\emptyset \text { for }(i \neq j), \text { then } \\
\varphi(x)^{2} \varrho(E, x)=\int_{E} r^{x} d \varrho_{0}(r)=s-\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \int_{E_{i}} r^{x} d \varrho_{0}(r)=s-\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \varphi(x)^{2} \varrho\left(E_{i}, x\right) .
\end{gathered}
$$

Thus, $\sum_{i=1}^{n} \varrho\left(E_{i}, x\right)$ converges strongly to $\varrho(E, x)$ on the dense set $\varphi(x)^{2}$ and consequently, on \mathscr{K} since $\left\|\sum_{i=1}^{n} \varrho\left(E_{i}, x\right)\right\| \leqq 1$. Finally, observe that $\varrho(\emptyset, x)=0$ and $\varrho([0, a], x)=I$ for all x.

Dcfine the sct function ϱ with values in $\mathscr{B}\left(\mathscr{L}^{2}\left(\mathscr{R}^{-1}, \mathscr{K}\right)\right)$ by $(\varrho(E) f)(x)=$ $=\varrho(E, x) f(x)$. From our previous remarks concerning $\varrho(E, x)$, it follows that ϱ is monotone, $\varrho(\emptyset)=0$ and $\varrho([0, a])=I$. Using an argument similar to that used in Theorem $2 \varrho(E)=\operatorname{sim}_{n \rightarrow+\infty} \sum_{l=1}^{n} \varrho\left(E_{l}\right)$ when $E=\cup_{n} E_{l}, E_{i} \cap E_{J}=\emptyset$ (for $i \nexists^{\prime}-j$). Thereforc, ϱ defines an operator measure. Finally, from (6) and (5), we have

$$
\varphi(x)^{2} \int_{0}^{a} s^{t} d \varrho(s, x)=\int_{0}^{a} s^{x+1+t} d \varrho_{0}(s)=\varphi(x+t)^{2}
$$

Therefore,

$$
\varphi(x)^{-2} \varphi(x+t)^{2}=\int_{0}^{a} s^{t} d \varrho(s, x)
$$

We combine the last equation with equation (4) to conclude that

$$
S_{t}^{*} S_{t}=\int_{0}^{a} s^{t} d \varrho(s)
$$

Once again, we invoke [5, Theorem 2.1] and conclude that S is subnormal.
In [8, Theorem 22.3.1], it is shown that if T is a strongly continuous semigroup of self-adjoint operators, then T has a holomorphic extension whose maximal domain of analyticity is either the whole plane or the right half-plane. It follows immediately from Theorem 3 that the symbol φ of a subnormal w.t.s. has a holomorphic extension. Therefore, if two such symbols φ_{1} and φ_{2} agree on an infinite set with cluster point in their common domain of analyticity, they must agree everywhere.

Prior to characterizing quasinormal w.t.s., we restate a general characterization of quasinormal semi-groups [6, Theorem 6] in the w.t.s. terminology.

Theorem 5. Let Q be a strongly continuous semi-group on a separable Hilbert space $\mathscr{H} . Q$ is quasinormal if and only if Q is unitarily equivalent to the direct sum of a strongly continuous normal semi-group N and a w.t.s. (S, φ) where φ is a strongly continuous self-adjoint semi-group.

A quasinormal semi-group is pure if there exists no nontrivial invariant subspace on which it is normal.

Corollary 6. Every strongly continuous pure quasinormal semi-group is unitarily equivalent to a w.t.s. (S, φ) where φ is a strongly continuous self-adjoint semi-group.

Corollary 7. Let (S, φ) be a w.t.s. The following are equivalent:
i) (S, φ) is quasinormal,
ii) φ is a strongly continuous self-adjoint semi-group,
iii) there exists a spectral measure ϱ on $[0, a]$ such that

$$
\varphi(x)=\int_{0}^{a} r^{x} d \varrho(r)
$$

Proof. Observe first that if (S, φ) is any w.t.s., then (S, φ) has no normal part. If $S_{t}^{*} S_{t} f=S_{t} S_{t}^{*} f$ for all t, then $\varphi(x)^{-2} \varphi(x+t)^{2} f(x)=0$ for $0 \leqq x \leqq t$ and for all t. But $\varphi(x)^{-2} \varphi(x+t)^{2}$ is one-to-one so that $f=0$. The equivalence of i) and ii) now follows immediately from Theorem 5. The equivalence of ii) and iii) can either be derived from Theorem 5 or from [8, p. 588].

Example 4. Let s be a strongly continuous subnormal semi-group on a separable Hilbert space \mathscr{K}. Let $\varphi(x)=\left(s_{x}^{*} s_{x}\right)^{1 / 2}$. By [5, Theorem 2.1], there exists an operator measure ϱ on $[0, a]$ with $\varrho[0, a]=I$ and $\varphi(x)^{2}=\int_{0}^{a} r^{x} d \varrho(r)$. We noted in the remark after Lemma 4 that φ satisfies all properties of a symbol except $\{\varphi(x)\}$ being abelian. If we assume $\{\varphi(x)\}$ abelian, then φ is a symbol and it follows from Theorem 3 that (S, φ) is a subnormal w.t.s.

During the development of the material in this paper, several questions arose which remain unanswered.

1. If φ is the symbol of a subnormal w.t.s. (S, φ), does there exist a strongly continuous semi-group s such that $\varphi(x)=\left(s_{x}^{*} s_{x}\right)^{1 / 2}$? In the last example, we saw that if φ is of this type, it does generate a subnormal w.t.s. However, if we start with a subnormal (S, φ), then by Theorem $3 \varphi(x)^{2}=\int_{0}^{a} r^{t} d \varrho(r)$. Thus, by [5, Theorem 2.1] φ acts like the positive part of some subnormal semi-group. The trick is to construct a function $u: \mathscr{R}^{+} \rightarrow \mathscr{B}(\mathscr{K})$ such that each $u(x)$ is an isometry and $u \varphi$ is a strongly continuous semi-group.
2. More generally, we can ask whether each of the functions $h(x)=\int_{0}^{a} r^{x} d \varrho(r)$ in Lemma 4 is the square of the positive part of some strongly continuous subnormal semi-group. (Here, we do not require $\{h(x)\}$ to be abelian as we do for symbols.)
3. When are two w.t.s. (S, φ) and (T, ψ) unitarily equivalent or similar? In [5] it was shown in the numerical case, $\mathscr{K}=\mathscr{C}$, that similarity occurs if and only if there exist constants m and M such that $0<m \leqq|\varphi(x) / \psi(x)| \leqq M<\infty$ for all x in \mathscr{R}^{+}and in [4], it was shown that (T, ψ) is unitarily equivalent to (S, φ) if and only if $|\varphi(x) / \psi(x)|$ is constant on \mathscr{R}^{+}. Other questions were answered in [4] and [5] for the numerical case which may have interesting analogues in the operator case.

References

[1] J. Bram, Subnormal Operators, Duke Math. J., 22 (1955), 75-94.
[2] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413-415.
[3] N. Dunford and J. T. Schwartz, Linear Operators, Part II, Interscience (New York, N. Y., 1963).
[4] M. R. Embry and A. Lambert, Weighted translation semigroups, Rocky Mountain J. of Math., 7 (1977), 333-344.
[5] M. R. Embry and A. Lambert, Subnormal weighted translation semi-groups, J. Funct. Anal., 24 (1977), 268-275.
[6] M. Embry-Wardrop, Semi-groups of quasinormal operators, Pacific J. Math., 101 (1982), 103-113.
[7] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand (Princeton, N. J., 1967).
[8] E. Hille and S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. (Providence, R. I., 1957).

[^0]: * This research was supported in part by a Research Professorship at Central Michigan University.

