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Spectral properties of elementary operators 

L. A. FIALKOW1' 

1. Introduction. Let § denote an infinite dimensional complex Hilbert space 
and let £(§) denote the algebra of all bounded linear operators on § . For an 
integer i V s l , let A=(J1, ..., AN) and B=(B1, ..., BN) denote TV-tuples of 
mutually commuting operators in £(§) . The elementary operator 9l=9i(^, B) 
acting on £ ( § ) is defined by %{X)=AlXBi + ...+ANXBN (A^ £(§)). Spectral, 
metric, and algebraic properties of elementary operators have been studied from 
a variety of viewpoints [1], [2], [5], [7], [14], [18], [20], [22]. In particular, the generalized 
derivation Z(A, B) defined by 3 ' . ( X ) = A X — X B , has been analyzed in considerable 
detail, and various characterizations have been given for the cases when a genera-
lized derivation has dense range [11], or is surjective, bounded below [6], [8], 
Fredholm [9], or semi- Fredholm [10]. Analogous results are also known for the 
restriction of a generalized derivation to a norm ideal in £(§) [8], [12]. 

In the present note we extend several results concerning generalized derivations 
to an arbitrary elementary operator 91 and its restriction to a norm ideal 3-
Descriptions of the right and left spectra of 51 were determined by R. HARTE [16] 
(cf. [5]) and in section 2 we obtain qualitative refinements of these results; we show 
that SR—X is right invertible in £ (£(§) ) (and thus surjective) if its range contains 
each rank one operator, and is left invertible (hence bounded below) if its restriction 
to the set of rank one operators is bounded below. These results allow us to relate 
spectral properties of 91 to those of SR3 (Theorem 2.3, Theorem 2.8). We also 
characterize the case when 91—X has dense range, extending the characterization 
given for Z in [11]. 

In section 3 we specialize to study the elementary multiplication operator 
<3 = <3(A,B) defined by <2(X)=AXB. The essential spectrum and index function 
of <5 was determined in [12] and here we describe the semi-Fredholm domain of 
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<3 and conditions for S—). to have index equal to or — °°. Analogous 
results are given for the semi-Fredholm domain of <53. These results complement 
(but are independent of) the characterization of the semi-Fredholm domain of 
% given in [9] and [10], and we believe they will prove helpful in studying the semi-
Fredholm domain and index function of a general elementary operator. 

We conclude this section with some preliminary results and notation. Let 
91 denote a complex Banach algebra with identity 1, and let 2l(W) denote an iV-fold 
copy of 91. For a=(alt ..., aN)63i(fV), the joint left spectrum of a in the sense 
of R . HARTE [15] is defined by a,(a)= {AS(ax , ..., aN)£C(N): there exists no TV-tuple 
(bx, •••, bf¡)£2l(,V) such that a1)+. . . +bN{aN—<xN)= 1}; the joint right 
spectrum of a, or(a), is defined analogously, and the joint spectrum of a is defined 
by <T(fl)=<T1(a)Uo,

r(a) [15]. For 1, La and Ra denote, respectively, the left 
and right multiplication operators on 91 induced by a, i.e. La(x)=ax and Ra(x)= 
=xa (jt€2I). For a=(ai,..., %)€2I(iV), we set La=(LBi, ..., LaJ and Ra= 
=CRV When 9I=fi(§), A=(Alt ..., AN)£SHm, ¿nd 3 is a norm ideal 
in £(§) , we define LA | 3=(,LA1 I 3 , •••> LAk I 3)- In this case the left joint spectrum 
of A may be described in more detail as follows. 

Lemma 1.1. [15, Theorem 2.5] The following are equivalent. 
i) a€<r,(A); 

N 
ii) 2 (A¡—a¡)* (Ai—a¡) is not invertible; 

i=i 
iii) There exists a sequence of unit vectors such that 

lim = 0 . 
IT-CO I = 1 

Let 5* (§) denote the ideal of all compact operators in £(§) and let 2I(§)= 
= £(§) / f t (§) denote the Calkin algebra; for r£f l (§) , f denotes the image of T in 
9I(§) under the canonical projection. For an iV-tuple of operators T=(7\, ..., TN), 
we set f=(T1, ..., fjy) and denote the [left] [right] joint essential spectrum of T by 
[oie(T)] [<rre(T)] oe(T), i.e. cle{T) = ol{T), a„{T) = ar(T), and at{T) = o(T). 
The following result is contained in [24, Corollary 2.5, Theorem 2.6]. 

Lemma 1.2. The following are equivalent. 
i) a6(7te(r); 

N 
ii) Z(Ti~ai)*(T¡-ai) is not Fredholm; 

>=i 
iii) There exists an orthonormal sequence {c„}J= 1c§ such that 

lim J I K ^ - a ^ J = 0. 
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For refi($) ( W ) , let ap(T) = {a^Cm: there exists a unit vector x<E§ such that 
(Ti—oci)x=0, l^i^N}, the joint point spectrum of T. Lemmas 1.1 and 1.2 readily 
imply that ol(T)=ale(T)\Jap(T). For r e £ ( S ) w and a€C<*\ let T*=(T*, ..., T*N) 
and a=(a l , ..., aN). Analogues of the preceding results for right spectra follow 
from the identity <7r(r)=[(7,(:r*)]* = (a€C(iV): a€o-,(r*)}; in particular, or(T)= 
= are(T) U crp(T*)*. 

Let (3, |||. HI) denote a norm ideal in £ (§ ) in the sense of [21]. Clearly 3 is 
SR-invariant and the restriction of 5R to 3 , is in £(3). If 3 = C P 

(the Schatten p-ideal [21]), we denote 5R3 by 9ip. For x, y£&,x<g>y denotes the 
rank one operator defined by (x®y)h—{h, y)x. 3 i denotes the set of all rank one 
operators in £(§); if then | | |F| |Hli1l [21]. 

Let X denote a complex Banach space and let £(£) denote the algebra of 
bounded linear operators on X. For T££(£), let ker (T) and R(T) denote 
the kernel and range of T\ we set nul (T) — dim (ker (T)) and def (T) = 
=dim (XjR(T)~) (where R(T)~ denotes the norm closure of R(T)). T is semi-
Fredholm if R(T) is closed and either nul(T)<°° or def (T)< in this case, 
the index of T is defined by ind (r)=nul (T) -de f (T) [17]. T is Fredholm if 
R(T) is closed and both nul (T) and def (T) are finite; cre(T) = {A£C: T-X is 
not Fredholm} is the essential spectrum of T. The semi-Fredholm domain of 
T is defined by QSF(T)={X£C: T—X is semi-Fredholm}; we denote the complement 
C \ Q S F ( T ) by (TSF(T). For cc=(CC1, ..., AN) and fi=(filt ..., PN) in C(N) we set 
ccoP=aipi+... +aNPN, and for a, QCC(N\ let OOQ= {ao/?: a€cr, If N = 1, 
we abbreviate OOQ by AQ. In [12] it is proved that ae(Q(A, B))=ae(<Z:i)= 
= a(A, B) = ae(A)a(B)Ua(A)ae(B)- In the sequel we will prove that aSF(<s) = 
— ffsf("Sg) — (A)ora(B)Ua/e(A)ar(B)]n[(Tr(A)aie(B)U(Tre(A)iTl(B)] (Corollary 3.12, 
Theorem 3.14). 

2. Spectral properties of elementary operators. In this section we present several 
equivalent descriptions of the left and right spectra of elementary operators and we 
describe the elementary operators with dense range. The following result will be 
used to show that an elementary operator is surjective if its range contains each rank 
one operator: the proof is motivated by that of [8, Theorem 2.1]. 

Lemma 2.1. If X£or(A)oal(B), then the range of SR—X does not contain 
every rank one operator. 

Proof. Let a£ar(A) and ¡(B) be such that A=ao/?. We consider several 
cases for the location of a and /?. 

i) a£or(A)\are(A), (]£at(B)\ale(B). In this case there exist unit vectors 
e and / in § such that ( A - a t f f = = 0 (1 == i ^ n). Let Yx = 
= (x,e)f (xeS). If * £ £ ( § ) satisfies ( S J - l ) ^ ) = Y, then 1 = (Ye,f) = 
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N N 

= 2[(Wt-*ùX*i*>f)+(*iX(*-Pde,f)] = Z(XBte, (At-a,)*f)=0, a contra-
(=1 i=i 

diction; thus the rank one operator Y is not in the range of 5R—X. 
ii) a£are(A), f}£ale(B). (Clearly, we may assume that max {||-fl,[|}>0.) The 

following argument is based on J. G. Stampfli's proof that the range of an inner 
derivation contains no nontrivial unitarily invariant subset of £(§) [23, Theorem 2]; 
we prove a similar result for 91—X. Let Y be an operator in £ (§ ) that is not 
a scalar multiple of the identity. We will construct a unitary operator U such that 
U*YU is not in the range of 9*—X. Let {hn}T=1 denote an orthonormal seqence 
such that (Yh„,hm)^0 for [19, Theorem 2]. Let Sn=(Yh3n, h3n+1) for 
n S l . Let {/.KLi and {g , , }^ denote orthonormal sequences in § such that the 

following properties are satisfied: i) 2 IIC®i—PdfmW — \&m\lm ("i = 1); ii) 
¡ = 1 

N 
2\\(Ai-ai)*gJ<\dJlm-, iii) (/„, gm )=0 for 1 Sn ,m; iv) the subspace spanned 

by all of the vectors f„ and g„ ( « S i ) has an infinite dimensional orthocomplement 
in Using iii) and iv) we may define a unitary operator U which satisfies Ufn—h3n 

and C/g„=/i3n+1 (n^l) . If X £ £ ( § ) satisfies {<Si-X){X)=U*YU, then 

Thus ||AlS«/(max {||5(||}+max {lot,!}) for every « s i , so U*YU is not in the 
range of SR—X. The proof is completed by taking Y to be a rank one operator. 

iii) a£ffr(A)\tjre(A), P£ole(B). If f)£ap(B) we may use the same proof as in 
parti). We may thus assume that fi$op(B). Let {e„}~=1 denote an orthonormal 

sequence such that 0 < 2 ¡ № - 0 X 1 1 < I/«8 (f lSl), and set 5„=n 2IIW-^KII. 
¡=i ¡=i 

Let / be a unit vector such that (At—<xi)*f=0 (l^i^ri). Since 0<<5„< 1/m, we 
may define a rank one operator Y by the relations Ye„=8„f ( « S i ) and Yx—0 
if (x, e„)=0 for each«. If X€£(§ ) satisfies (<R-A)(Z)=r, then 

N 

¡=1 

0 < \ô.\ = \(Yh3n, h3n+1)I = \(YUf„, Ugn) I = \(U*YU/n, gn) I = 

= 2 [((Ai-^XBJ», £„) + ( « , * № - & ) / „ , g„)] S 
¡=i 

— 11-^11 [max {¡I5,1}+max {|OÎ;|}] \8„\/n. 

6. = (Yen,f) = 2 K(Ai-^XBien,f) + (aiX(Bi-P,)en,f)'] = 
¡=i 

N 

= ZfaXiBt-Pde.,/) (n S 1). 
i=i 

Thus 

This contradiction shows that Y is not in the range of 9Î—X. 
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iv) a€tr„(A), p^<T,(B)\(rlt(B). Since ae<rle(A*) and pda,(B*)\are(B*), then 

iii) implies that there exists a rank one operator Y such that ^ 2 B?X*Afj— 

—aoJiX* = Y* has no solution. Then C3i—X)(X)=Y has no solution and the 
proof is complete. 

Lemma 2.2. i) <Tr(5R |3)c<rrC4)o<xi(.B); 
ii) Or(<Si)<ZGM)°°№-

Proof. Part ii) is contained in [16, Theorem 3.4]. The proof of i) is similar. 
The argument is essentially that used in the proof of [5, Lemma 3]. We first note that 
CR(LA |3,JRB |3)c<Tr(^)Xi71(5). Indeed, suppose (a, j8 )6CxC" and a<t<rr(A). 

N 
There exists an TV-tuple of operators (R1, ..., RN) such that ^ (yif—a,)i?~ 1, 

i = l 

and thus 2(LAI\Z-AI)(LR \^)=K20), so that (a, /?)$A R (L A | 3 , RB I 3) . 
¡=i ' ' 

The proof for the case when /?(£<r¡(B) is similar. For z=(z1, ...,zN) and w= 
=(w1, ...,wN) we define the 2iV-variable polynomial p by p(z, w)=p(z1, ..., zN, 

N 
Wi, ..., wN) = 2ziwi- Since (LA | 3 , RB I 3 ) is a commutative 2TV-tuple in £(3), 

¡=i 
the spectral mapping theorem for right spectra [15], [16, Theorem 1.2] implies that 

<xr(M|3) = °r(p(LA\3, RB|3)) = p{ar{LA\3, RB|3)) c p(ar(A)Xal(B)) = 

= or(A)oa,(B). 

Theorem 2.3. For A€C and 51=51(^4, B), the following are equivalent: 
i) 91—2 is surjective; 

ii) The range of 9t—A contains each rank one operator; 
iii) X^.ar(A)o(ji(B); 
iv) 91—2 is right invertible in £(£(§)); 
v) 9l3—A is right invertible for some norm ideal 3? 

vi) 9i3—X is surjective for some norm ideal 3 ; 
vii) 9i3—X is right invertible in £ (3) for every norm ideal 3 ; 

viii) 9*3—X is surjective for every norm ideal 3-

Proof. i)=>ii) is clear, ii)=>iii) follows from Lemma 2.1, iii)=>iv) follows from 
Lemma 2.2, and iv)=>i) is clear, so i)—iv) are equivalent. Lemma 2.1 implies that 
vi)=>ii)=>-iii) and Lemma 2.2 implies that iii)=>v)=>vi), so iii), v) and vi) are equi-
valent. Similarly, we have \di)=>viii)=>ii)=>-iii)=>vi). 

We next begin our consideration of elementary operators with dense range. 

18 
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Corresponding to 5R(A, B) we define an operator B) on the Calkin algebra 

5t(S) by = Z A j B t (*€£(&)). 
1=1 

Lemma 2.4. ar(^i)czare(A)oale(B). 

Proof. The proof is similar to that of Lemma 2.2 ; as before, or(LA, Rs)a 
<z<7re(A)Xa,e(B). Let p(z, w)=p{zi, ..., zN, wlf ..., wN)=z1w1 +... +zNwN. Since 
9{=p(LI,RB) and (Lz, Rs) is a commutative 2Ar-tuple of elements of £(9l(§)), 
the spectral mapping theorem for right spectra [15] implies that 

«•rO») = or(p(Lz, Rsj) = p(a,(LA, RB)) c 

<= p(crre(A)Xale(B)) = ore(A)oole(B). 

Recall that Ct, a trace class operator K corresponds to the functional 
fK£Ct defined by fK{X)=\x (KX) [21]. Under this identification <5J,A,B)* = 
= S^B, A). Indeed, for X£Cm and we have <Z„(A, B)*(fK)(X) = 
=tr (KAXB)=tr (BKAX) = fBKA (X). Recall also that C* «£(£>), where T€£(§) 
corresponds to the functional fT£C* defined by fT(K)—tr (TK). For K£C1 

and T€£(§) , S i (5 , A)*{fT){K)=tr (TBKA)=tr (ATBK) =fATB(K), and therefore 
S j (B, A)* = <3(A, B). By linearity, we see that ft^A, B)* = A) and 
fR1(B,A)* = iH(A,B). 

Theorem 2.5. The following are equivalent for A£C. 
i) 91 (A, B) — X has norm dense range; 

ii) X^are(A)oale(B) and ^(B, A) is injective; 
iii) For £ > 0 and Y ££{$>), there exists such that ( 9 l - A ) ( Z ) - y 

is a compact operator with norm less than E. 

Proof. We first prove ii)=>iii). Suppose ii) is satisfied, let e>0, and let 
Y be in £(§) . Lemma 2.4 shows that X is surjective; thus there exists X££(%>) 
and such that ( 5 R - X ) ( X ) - Y = K . Since %(B, A)-), is injective, 
'H„(A, B)-X has dense range. Thus there exists {X„}cft(S) such that ||(9i-A)(X„)-

- 0 . Now and for sufficiently 
large n, | |X-(5R-A)(Xn)H£. 

Clearly iii)=>i), so it suffices to prove that i)=>ii). If 9 \{A,B)—X has dense 
range, then duality implies that 9^(2?, A)—X is injective. Suppose X£<rre(A)o 
oa,e(B); it suffices to prove that the range of SR(A, B)—X is not dense. Let 
a£ore(A) and f}£ole(B) satisfy X=aofi. Let {e„} and {/„} denote orthonormal 

sequences, such that ^ I K ^ - a ^ e J - O ( n - ~ ) and J | | ( B , - p j f j - 0 
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Let Y denote an operator in £ (§ ) such that Yf„=e„(nS 1). For X€£(§) , 

||(M-A)(Jr)-r|| s 2(((4i-«,)XBt+atX(.Bl-Pd)fl,,e.)-(YfH,e^ = 
¡=i 

= | [ ¿ ( W - . ^ l - ^ O + i « ! ^ ! - ^ / . , « . ) ] - ! ! S 

max{115,-11} ( i | | ( ^ i - a 1 . r e j | ) - m a x { | a i | } | | ^ | | ( f № - P d f j ) , 

and thus || (5R - A) (X) - Y || g= 1. The proof is complete. 
We conclude this section with an analogue of Theorem 2.3 for left spectra of 

elementary operators. 

Lemma 2.6. If A€<r,(A)o<Tr(B), then (SR-A) | & and (SR3-A) | & are 
not bounded below. 

Proof. Let <x£a,(A) and P£<rr(B) be such that A=ao/?. There exist sequences 
of unit vectors {jcfc}, { y t } c § such that 

lim ¿ | | ( ^ - a , . ) x j = lim f 1 1 ( ^ - ^ 1 1 = 0. 
,=i ¡=1 

Now 

^ 2l\\\U,-«d{xk®+ ||K^®^)^-ft)|||] = 
i=i 

= 2 [ I I W i - c n X * * ® ^ ! ! + |ocf| l l a J * ) ( s , - f t ) | | ] . 
i=i 

For *€$, II i || = 1, we have 

K ^ i - a , . ) ^ ® ^ ) ^ / ! = 

= | ¡ ( A i - a m t , yM ^ II-#¡11 IIAII \\(Ai — 0Ci)xk\\. 
Thus 

similarly, 

2 IK^-«^**®^!! -0 (k —); 
(=i 

i l l ( ^ < 8 ) J f c ) № - A ) | | - 0 (k-co). 

Since |||**®J'tlll = ll*,c®J'J = l, it follows that neither (9t3-A) | & nor (5R-A) | & 
is bounded below. 

18* 
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Lemma 2.7. i) a,CiR)(za,(A)oar(B); 
ii) <7,(5R3)CC7 i(^)0(7r(fi). 

Proof. The proof is similar to the proof of Lemma 2.2, but using the spectral 
mapping theorem for left spectra [16]. 

Theorem 2.8. For XÇ.C the following are equivalent. 
i) 5R—X is left invertible; 

ii) SR—X is bounded below; 
iii) (5R—X) | Si is bounded below; 
iv) X ^ a ^ o o X B ) - , 
v) 5R3—X is left invertible in £ (3) for some norm ideal 3 ; 

vi) 9l3—X is bounded below for some norm ideal 3 ; 
vii) 5R3—X is left invertible for every norm ideal 3 ; 

viii): 9Î 3 — X is bounded below for every norm ideal 3 -

Proof. The implications i)=>ii)=>iii) are trivial; iii)=>iv) follows from Lemma 
2.6, and Lemma 2.7 implies that iv)=>i); thus i)—iv) are equivalent. The implica-
tions v)=>vi)=*iv)=>v) and vii)=>-viii)=>iv)=>vii) also follow by application of 
Lemmas 2.6 and 2.7. 

Corollary 2.9. For each norm ideal 3> 

<r(Jt3(A, B)) = a(R(A, B)) = ar(A)oat(B)\Ja,(A^oar(B). 

Proof. The result follows from Theorem 2.3 and Theorem 2.8. 

Remark. The identity for <x(R) given above is due to R. HARTE [16]; our 
contribution is the identity o(Rs) — o(R). A special case of the latter identity for the 
Hilbert—Schmidt ideal C 2 was obtained by R. CURTO [ 5 , Lemma 3 ] . The main 
result of [5] presents a new description of o(R) in terms of Taylor joint spectra. 

3. The semi-Fredholm domain of S 3 . In the present section we describe the 
semi-Fredholm domain and index function of S 3 and S . To this end we define 
the following sets: 

alr = rxlr(A, B) = f / (/4)<7re(5) U ole(A)ar(B); 
<jrl = crrl(A, B) = ar(A)ale(B)Ucrre(A)al(B). 

It follows from [12, Lemma 3.2] that if X£olr and S3—X is semi-Fredholm, then 
ind (S3—X)= + oo; [12, Lemma 3.3] implies that if X£arl and S3—X is semi-
Fredholm, then ind (®3—X) — — Thus crirrio'r/c:i7Sf-(S3) and in the sequel 
we prove the reverse inclusion. We begin with the following special case. 

Propos i t ion 3.1. If XdC\orl, then &3(A,B)—X is semi-Fredholm with 
ind (S3(/4, B)—X)>— «>. 
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Proof. If A£C\<7r(v4)c-,(fi), then Theorem 2.3 implies that S3—A is sur-
jective, so the result is clear in this case. We may thus assume that A £ aT (A)al (B )\ari. 
We require the following preliminary lemmas. 

Lemma 3.2. If a^cr(A), P^a^B) and aft(£arl then a is isolated in ar(A) 
or P is isolated in at(B). 

Proof. Since a[l$orl, then (A)\ore(A) and /?6<7,(.B)\c-/e(.B). Suppose 
that a is not isolated in <rr(A) and ¡S is not isolated in at(B). Since ci$are(A), 
[10, Lemma 3.6 (i)] implies that oc£U=int(a/A)) . Similarly, since P$ole(B) and 
P is not isolated in a¡(B), then [10, Lemma 3.6 (ii)] implies that 33=int (o-,(5)). 
U and 33 are nonempty, open, bounded subsets of the plane, so [12, Lemma 2.11] 
implies that there exists / > 0 such that 

i) /a<Ebdry(U) and or 
ii) /ocell and /?//€bdry (33). 

It follows from [10, Lemma 3.6] that bdry (Ц)сс7ге(Л) and bdry (33)cc7[e(5). 
In case i), /a£bdry (U)c<7re(A) and P/ttW-czo^B), so k=aP=(ta)(P/t)£ore(A) • 
• a,(5)ccr,,, which is a contradiction. In case ii), ta^U(Zor(A) and /?//£bdry(33)c 
czale(B), so ?.=(toi)(P/t)^ar(A)(rle(B)czarl, also a contradiction; the proof is 
now complete. 

Lemma 3.3. If keor(A)al(B)\arl, then A^O and X={(a, P)ear(A)X 
Xa,(B): afi=X) is finite. 

Proof. If 0£or(A)a,(B), either 0<iar(A)' or 0£(ti(B), SO 0£<т,(А)<т1е(В) 
or 0£о-ге(Л)(т((5), and so Обе,¡; thus A^0. 

Assume that X is infinite and let {(an, /?„)}~=1 be a sequence of distinct points 
of X. It follows readily that the a„'s are distinct and the p„'s are distinct. There 
exists a convergent subsequence (a„fc, P„k)~*(a, P), and clearly oc£ar(A), P£at(B), 
and aP—k. Since a is not isolated in or(B) and p is not isolated in a¡(B), we 
have a contradiction to Lemma 3.2. 

We return to the proof of Proposition 3.1 and consider к£аг(А)<т,(В)\(тг1. 
Lemma 3.2 and Lemma 3.3 imply that and that there exist integers p and 
n, р^пшО, p>-0, distinct nonzero points ..., up£or(A)\ore(A), and distinct 
nonzero points px, ..., Pp€<ji(B)\<Jie(B) such that the following properties are 
satisfied: 

1) {(a, P)iar(A)Xc>(B): a 0 = A } = {(a,., &)}f=1; 
2) if 0, then a, is isolated in ar(A), lsi^n; 
3) if p>n, then Pi is isolated in a^B), n+l^iSp. 
If each Pi isolated in a ,(B) we may take n=0 and delete {(a1? pt), ..., (<*„,/?„)}; 

likewise, if each a; is isolated in crr(A), we may take p~n and delete {(an+1, Pn+1), 
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..., (ap, ft,)}. We assume in the sequel that 1 p, for the other cases require 
only obvious modifications of the argument for this case. 

Let and $ 2 denote copies of § with and i?££(§2). We identify 
£ (§ ) with £ (§ 2 , §1) and consider <S(A,B) as an operator on £ (§ 2 , Si)- [10, 
Corollary 2.4] implies that there exists an orthogonal decomposition S i=®t 0 ©. . . 
...®2R„ and operators A i^2(M i) (O^i^n) such that: 

4) 9Jt, is finite dimensional (1 ^ i^n) ; 
5) a(Ad={at) (1 
6) ar(A0)n { « ! , . . . , « „ } = 0 ; 
7)^4 is similar to ^ ' s ^ o f f i ^ © . . . ®/i„. 

An application of [10, Corollary 2.3] implies that there is an orthogonal de-
composition §2=ft„+iffi . . .ffiftp + i a n d operators f?,€£(ft,) (m+1^z = p + l) 
such that: 

8) ft, is finite dimensional, n + l S i ' S p ; 
9) <7(5 , )={ f t } , « + 

10) a,(JBp+1)D{ft+1,...,)?J,}=0; 
11) J5 is similar to B'=B„+1® ...®Bp+1. 

[12, Proposition 2.5] implies that to complete the proof it suffices to prove that 
6 3 ( A ' , B ' ) — X is semi-Fredholm with ind (&3(A\ B')—X)> — The argument is 
formally similar to that in the proof of [12, Theorem 3.1] so we give the outline and 
refer the reader to [12] for certain details. 

Relative to the above decompositions of and § 2 , let (X i J)0s im„ jn+1^JSp+1 

denote the operator matrix of an operator A'€£(§ )=£(§ 2 , A calculation 
(using 7) and 11)) shows that the row i, column j entry of the matrix of S'(^) = 
=A'XB'~XX is equal to AtX,jBj-AX,j, O^i^n, n + lmj^.p+1. For Z<E£(§), 
let R(X) be defined by the matrix which modifies the first row and last column of 
S'(Z) as follows: 

(A0-<xn+1)X0>n+1pn+1... (A0—a.^)X0 pPp A0X0iP+1Bp+1—XX0iP+1 

[A^jBj-ajPjXij] ; 
anXn,p + l(Sp+l — Pn) 

We first prove that R \ 3 is semi-Fredholm with ind (R \ 3 ) > — Let Ru 

be the operator on £(ft7-, §,) defined by the row z, column j entry of R(X), 
O^z'^/i, n + l ^ j ^ p + l. It follows from 1), 6), 7), 10), and 11) above that 
X$ar(A0)<rl(Bp+1), so Theorem 2.3 implies that R0tP+1=S(A0, Bp+1)—X is sur-
jective; in particular, ind(i?0.P+i)sO. Let l ^ i ^ n and n + l ^ j ^ p . Since 
<r(Ai)= {a,} (1 mi^ri) and a(BJ)={pJ) (n+lrSj^p), it follows that X=a.}Pj$ 
$o(At)o(Bj), and thus Rij=S(Ai, Bj)-X is invertible for lrSz'Sn and n+ 

[4]. 
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We next consider the operators R0J (n + l ^ j S p ) defined by R0?J(X) = 
=(A0—ctj)Xpj §„)). Since «j€aJA)\a„(A), 7) implies that 
and thus A0—oCj is semi-Fredholm and ind (A0—aj)> — » . Since dim (&,)< 
[10, Lemma 3.5] implies that R0tl is semi-Fredholm with ind (R0ij) = 
=ind (A0—oij) dim — Similarly, since is finite dimensional and 
Pi$.cru(Bp+1) (1 Si'Sn), then [10, Lemma 3.5] and [12, Lemma 2.6] imply that 
R{,p+1 is semi-Fredholm with ind (Rit p + 1)=ind ((Bp+j - /?;)*) dim (§f) > — 

It now follows exactly as in the proof of [12, Theorem 3.1] that R | 3 is semi-
Fredholm with 

ind CR|3) - 2 ind (Roj) + 2 ind (i?,.,p+1) + ind (*0 .p +i) > -
J=n+1 ¡=1 

Let KjÇ2(Rj) be invertible (n+l^j^p) and let M^fiCfflî;) be invertible 
( l s / ^ n ) . For Z € 3 , X = ( X i j ) , define T(X) by the matrix 

0 ... 0 M f ' ^ - ^ M J , , , , ^ ^ , 

0 ... 0 

Since Bj—Pj (n+l^j^p) and At—<xt (1 S / S n ) are nilpotent, appropriate 
choices of the K/s and Mt's insure that Q=R \ 3 + 7 1 is semi-Fredholm with 
ind (ô)=ind (R | 3 ) > The matrix of Q(X) (A"€3) is of the form 

AoXoin + 1 - ^ 1 , + i XXotn +1 ••• A0X0.pKp
 1BPKP — XX(jtP AoX0.p+iBp + 1 — AX0,p+i 

Mi1A1M1Xi,p + iBp + i-AX1,p + i 
[AtX.jBj-XXJ 

M-1AnM„X„,p + 1Bp+1 — AX„,p+1. 

It now follows as in [12, Theorem 3.1] that B')—X is semi-Fredholm with 
ind (<S304', B')—A)=ind ( ® > — so the proof is complete. 

Corollary 3.4. <53(A, B)—A is semi-Fredholm with ind(S3—A)=—°° if 
and only if A£C\art(A, B). 

Proof. The result follows from [12, Lemma 3.3] and Proposition 3.1. 

Corollary 3.5. <33(A,B)—A is semi-Fredholm with ind (<»3 —A) = + °=> if 
and only if A£o(A, B)\arl(A, B). 

Proof. Apply [12, Theorem 3.1] and Corollary 3.4. 

We now consider the case when A£C \a , r (A , B). 

Propos i t ion 3.6. If A£C\<7/r, then <»3—A is semi-Fredholm with 
ind (<»3—A)< + 
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The proof is completely analogous to that of Proposition 3.1; for this reason 
we omit the details and merely mention the necessary preliminary results. 

Lemma 3.7. If a€at(A), P£ar(B) and a/?$<r/r, then a is isolated in <r,(A) 
or P is isolated in or(B). 

Proof. The proof is similar to that of Lemma 3.2. 

Using Lemma 3.7, the proof of the next result is based on that of Lemma 3.3. 

Lemma 3.8. If A£crl(A)<Tr(B)\cTir(A, B), then A^O and {(a, P)£ot(A)X 
Xor(B): aj3=X} is finite. 

Using the preceding two lemmas, the proof of Proposition 3.6 follows the 
argument in the proof of Proposition 3.1, except that instead of using Theorem 2.3, 
we now use Theorem 2.8 to show that <5(A0, Bp+1)—X is bounded below. 

Corol lary 3.9. <53(A,B)—X is semi-Fredholm with ind (®3—A)< + °° if 
and only if XeC\o,r(A, B). 

Proof. . The result follows from [12, Lemma 3.2] and Proposition 3.6. 

Corollary3.10. ®3—A is semi-Fredholm with ind (S3—A)= — if and 
only if l£<r(A, B)\olr(A, B). 

Proof. The result follows from Corollary 3.9 and [12, Theorem 3.1]. 

An immediate consequence of Corollary 3.4 and Corollary 3.9 is the following 
description of the semi-Fredholm domain of <53. 

Theorem 3.11. ®3—A is semi-Fredholm if and only if A 6 C\(orl C\alr). 

Corollary 3.12. crSf(S3) = o-(.,n<T/r. 

For the case when ®3—A is Fredholm, a formula for ind(®3—A) is given 
in [12, Theorem 3.8]. The latter result, when combined with Corollary 3.5 and 
Corollary 3.10, thus gives a complete description of ind(®3—A) for A6(?SF(©3). 

Example 3.13. Consider the case when 3 is the ideal of all Hilbert—Schmidt 
operators endowed with its (separable) Hilbert space structure [4]. In this case 
<Z3(A, B) is again a Hilbert space operator; we will show that if A and B* are 
quasitriangular, then so is S 3 . By a theorem of C. APOSTOL, C. FOIAS, and 
D. VOICULESCU [3], an operator T on a separable Hilbert space is quasitriangular 
if and only if ind (T-A)^0 for every A6feF(r). 

Suppose A and B* are quasitriangular; thus ind (A—A)^0 (X£QSF(A)) and 
ind (B—A)^0 (XDQSF(B)). It follows directly from the index formula of [12, Theorem 
3.8] that ind(S3—A)^0 for every A€C\a e (S 3 ) . To complete the proof it thus 
suffices to verify that the case ind (S3—A)= — °° cannot occur. 
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Suppose to the contrary that ind (S3—A)= — from Corollary 3.10 we have 

?.i(oe{A)a(B) U a (A) <re (5))\(cr l(A)are(B) U <rle(A)a,(B)). 

We consider the case X£ae(A)a(B) and let e(A) and /?£<j(S) satisfy a/i=X. 
If fi£or{B), then a$crle(A) and thus ind (A—<x)= — a contradiction. There-
fore fi(io(B)\ar(B), so ind (5—/?)>0, which is also a contradiction. The case 
when ?.£<j(A)ffe(B) can be handled similarly, so we omit the details. 

We note that the converse of this example is false. [12] contains an example of 
operators A and В such that A, A*, B, and B* are non-quasitriangular but 
S3(/4, B) is biquasitriangular, i.e. <53 and <S3* are both quasitriangular. 

Systematic revision of the proofs of this section (replacing the norm ideal 
3 by £(§)) yields a description of the semi-Fredholm domain of <5(A, B). 

Theorem 3.14. i) aSF((Z)=<Jir{]cxrl; 
ii) <3— X is semi-Fredholm with ind (<3 — + °° if and only if XdC\olr', 
iii) <s—X is semi-Fredholm with ind(<3— A)> — °° if and only if X^C\ar 

This result, together with [12, Theorem 3.9], completes the description of 
ind(<5— A) (>-€(?sf(<3)). More generally, the present results, together with those of 
[9], [10] and [12], completely describe the semi-Fredholm domain and index function 
of the operators X, Z s , <5, and ® 3 . Corresponding results for arbitrary elementary 
operators 91, or the operators 9i3, appear to be unknown at present. Some partial 
results are known for the general case. In [12, Theorem 3.14] it is proved that 

N 
cre(m~)c 2 (trCAiJoeCBJUaeiAJcriBi)) (and similarly for the operator 91). By 

i=l 

combining the techniques of [9], [10], [12] with the multi-variate techniques used in 
section 2, it is possible to prove the following result for the general case. The proof, 
and applications, will appear elsewhere. For и-tuples of operators A and B, let 
alr(A, B) = Gle(A)oar(B)Uai(A)oore(B) and let <Jrl(A, B) = arc(A)ool(B)(Jor(A)o 
oale(B). Let 3 be an arbitrary norm ideal. 

Theorem 3.15. i) ae{A)oo(B)\Ja(A)oae(B)cae(^-, 
ii) 7 / XZalr(A, B) and 9i3—X is semi-Fredholm, then ind (9t3—X)= + <=°; 
iii) If X£ar[(A, B) and 9i3 — X is semi-Fredholm, then ind (9l3—X)= — 
iv) a„ (А, В) П orl (A, В) с aSF (9*3). 

We note that parts ii)—iv) are valid for elementary operators with arbitrary 
(non-commutative) coefficient sequences. A similar result holds.for the operator 91. 
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