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Characterizations and invariant subspaces of 
composition operators 

D. K. GUPTA and B. S. KOMAL 

1. Preliminaries. Let (X , £ f , X) be a c-finite measure space and let T be a 
non-singular measurable transformation from X into itself. Then the composi-
tion transformation CT from L\jI) into the space of all complex-valued functions 
on X is defined by 

CTf=foT for every f£Lp(A). 

If CT happens to be a bounded operator on Lp{).), then we call it a composition 
operator induced by T. 

Let X=N, the set of all non-zero positive integers and £f=P(N), the power 
set of N. Then we can define the measure X on P(N) by 

H E ) = 2 w n for every E£P(N), 
n(E 

where w={w„} is a sequence of strictly positive real numbers. If p=2, then 
LP(X) is a Hilbert space with the inner product defined by 

</. s) = 2 w„f(n)g(nj 
for all / , g£Lp{X). This Hilbert space is denoted by and is called a weighted 
sequence space. By B(l%) we mean the Banach algebra of all bounded linear oper-
ators on 1%. Let {<?„} be the sequence defined by e„(p)=5np, the Kronecker 
delta. If CT is a composition operator, then C*T, the adjoint of CT, is given by 

(Ci / ) (n) = 4 " / fdX (cf. [4]). 
vv" r - 4 ) ) 

In the present note certain criteria for a bounded operator to be a composition 
operator are obtained. It is also shown that every composition operator on ¡I, 
has an invariant subspace. This generalizes a result of SINGH and KOMAL [5] to the 
weighted sequence spaces. 
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2. Criteria for a bounded operator to be a composition operator. In this section 
we obtain two different criteria for a bounded operator to be a composition operator. 

Theorem 2.1. Let AÇ.Bfâ). Then A is a composition operator if and only 
if for every n£N, there exists mÇN such that A*e'n = e'm, where e'n — e„/w„. 

Proof. The proof follows from NORDGREN [2]. Here e'„'s play the role of 
kernel functions. 

Theorem 2.2. Let AÇ.B(PW). Then A is a composition operator if and only 
if there exists a partition {£„} of N such that Ae„=XE , where XE denotes the 
characteristic function of a set E. 

Proof. Suppose A is a composition operator. Then A—CT for some mapping 
T:N—N. The choice T'\{n})—En clearly suits our requirements. 

Conversely, if A satisfies the condition of the theorem, then we may define 
a mapping T:N—N by T(m)=n for m£En. Now Ae„=CTen and so Ae„lfw„ = 
—CrenlVw~n for every n£N. Thus A and CT agree on the basis vectors of 1%. 
It is easy to show that CT is a bounded operator. Hence Af=CTf for every f£l%. 
This completes the proof. 

Theorem 2.3. Let T :N—N be a surjective mapping such that CT(zB(ll,) 
and let A£B(PW). Then CTA is a composition operator if and only if A is a compo-
sition operator. 

Proof. The proof is an immediate consequence of Theorem 2.1. Indeed if 
CTA=CS then A*Cj=C*s, i.e., A*e'Tm=A*CTe'k=C*se'k=e'sm for every k£N. 
Since T(N)=N, for every m£N there exists ndN such that A*e'm=e'„. 

Theorem 2.4, Let T : N—N be an injection and let CT, A£B(li). Then 
ACT is a composition operator if and only if A is a composition operator. 

Proof. Suppose ACT is a composition operator. Then there is a mapping 
S: N—N such that ACT=CS. Now Ae„=ACreT(n)=CseT(n)=XE , where En = 
=1S,-1({T(n)}). By Theorem 2.2, {En} is a partition of N. Hence A is a composi-
tion operator. The proof of the sufficient part of the theorem is straight forward. 

Theorem 2.5. Let AdB(ll,). Then A is a unitary composition operator if 
and only if 

{Ae'„: nZN} = {e'n: n€JV}= {A*e'n: n£N}. 

Proof. Assume A is a unitary composition operator. Then by Theorem 2.1 

{A*e'„: n£N} Ç. {e'n: n^N) = {AA*e'n: n£N) <g {Ae'n: n£N}. 
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From Theorem 3.1 of [6], A* is a composition operator and hence also the converse 
inclusions hold. 

If the conditions of the theorem are true, then by Theorem 2.1 both A and 
A* are composition operators. Hence by Theorem 3.1 of [6] A is a unitary composi-
tion operator. 

3. Invariant subspaces. Def in i t ion . Let T : N—N be a mapping. Then two 
integers m and n are said to be in the same orbit of T if each can be reached from 
the other by composing T and 7 1 - 1 (T~1 means a multivalued function) sufficiently 
many times. 

Def in i t ion . A closed subspace M of a Hilbert space is called.an invariant 
subspace of A if AMQM. 

One of the most outstanding unsolved problems of operator theory is the In-
variant Subspace Problem. The problem is simple to state: Does every operator 
on an infinite dimensional separable Hilbert space have a non-trivial invariant 
subspace? The answer is not yet known. Recently SINGH and KOMAL [5] obtained 
that every composition operator on /2 has a non-trivial invariant subspace. In the 
following theorem we generalize this result to the weighted sequence spaces. 

Theorem 3.1. Let CT£B(PW). Then CT has a non-trivial invariant subspace. 

Proof. Suppose CT is a composition operator induced by a mapping T: TV—TV-
Then either T is invertible or T is not invertible. First assume that T is invertible. 
Then take n£N. Now either the orbit of n is equal to N or it is not equal to N. 
Suppose o(ri)=N, where o(n) is the orbit of n. Then let 

If / | =span {e'm: m£E„}, then clearly / | is invariant under CT. Next, if o(n)^TV, 
then / | =span {e'm: m£o(n)} is an invariant subspace of CT. 

Further, suppose T is not invertible. Then, either T is not an injection or 
T is not a surjection. If T is not an injection, then CT has not dense range and 
hence ran CT is invariant under CT. And, if T is not a surjection, then CT has 
a non-trivial kernel and hence kerCT is invariant under CT. This completes 
the proof. 
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