Characterizations and invariant subspaces of composition operators

D. K. GUPTA and B. S. KOMAL

1. Preliminaries. Let $(X, \mathcal{S}, \lambda)$ be a σ -finite measure space and let T be a non-singular measurable transformation from X into itself. Then the composition transformation C_T from $L^p(\lambda)$ into the space of all complex-valued functions on X is defined by

$$C_T f = f \circ T$$
 for every $f \in L^p(\lambda)$.

If C_T happens to be a bounded operator on $L^p(\lambda)$, then we call it a composition operator induced by T.

Let X=N, the set of all non-zero positive integers and $\mathscr{G}=P(N)$, the power set of N. Then we can define the measure λ on P(N) by

$$A(E) = \sum_{n \in E} w_n$$
 for every $E \in P(N)$,

where $w = \{w_n\}$ is a sequence of strictly positive real numbers. If p=2, then $L^p(\lambda)$ is a Hilbert space with the inner product defined by

$$\langle f, g \rangle = \sum w_n f(n) \overline{g(n)}$$

for all $f, g \in L^p(\lambda)$. This Hilbert space is denoted by l_w^2 , and is called a weighted sequence space. By $B(l_w^2)$ we mean the Banach algebra of all bounded linear operators on l_w^2 . Let $\{e_n\}$ be the sequence defined by $e_n(p) = \delta_{np}$, the Kronecker delta. If C_T is a composition operator, then C_T^* , the adjoint of C_T , is given by

$$(C_T^*f)(n) = \frac{1}{w_n} \int_{T^{-1}(\{n\})} f d\lambda$$
 (cf. [4]).

In the present note certain criteria for a bounded operator to be a composition operator are obtained. It is also shown that every composition operator on l_w^2 has an invariant subspace. This generalizes a result of SINGH and KOMAL [5] to the weighted sequence spaces.

Received August 10, 1981, and in revised form March 27, 1982.

284 D. K. Gupta and B. S. Komal

2. Criteria for a bounded operator to be a composition operator. In this section we obtain two different criteria for a bounded operator to be a composition operator.

Theorem 2.1. Let $A \in B(l_w^2)$. Then A is a composition operator if and only if for every $n \in N$, there exists $m \in N$ such that $A^*e'_n = e'_m$, where $e'_n = e_n/w_n$.

Proof. The proof follows from NORDGREN [2]. Here e'_n 's play the role of kernel functions.

Theorem 2.2. Let $A \in B(l_w^2)$. Then A is a composition operator if and only if there exists a partition $\{E_n\}$ of N such that $Ae_n = X_{E_n}$, where X_E denotes the characteristic function of a set E.

Proof. Suppose A is a composition operator. Then $A=C_T$ for some mapping $T: N \rightarrow N$. The choice $T^{-1}(\{n\})=E_n$ clearly suits our requirements.

Conversely, if A satisfies the condition of the theorem, then we may define a mapping $T: N \rightarrow N$ by T(m) = n for $m \in E_n$. Now $Ae_n = C_T e_n$ and so $Ae_n / \sqrt[4]{w_n} = C_T e_n / \sqrt[4]{w_n}$ for every $n \in N$. Thus A and C_T agree on the basis vectors of l_w^2 . It is easy to show that C_T is a bounded operator. Hence $Af = C_T f$ for every $f \in l_w^2$. This completes the proof.

Theorem 2.3. Let $T: N \rightarrow N$ be a surjective mapping such that $C_T \in B(l_w^2)$ and let $A \in B(l_w^2)$. Then $C_T A$ is a composition operator if and only if A is a composition operator.

Proof. The proof is an immediate consequence of Theorem 2.1. Indeed if $C_T A = C_S$ then $A^* C_T^* = C_S^*$, i.e., $A^* e'_{T(N)} = A^* C_T^* e'_k = C_S^* e'_k = e'_{S(K)}$ for every $k \in N$. Since T(N) = N, for every $m \in N$ there exists $n \in N$ such that $A^* e'_m = e'_n$.

Theorem 2.4. Let $T: N \rightarrow N$ be an injection and let C_T , $A \in B(l_w^2)$. Then AC_T is a composition operator if and only if A is a composition operator.

Proof. Suppose AC_T is a composition operator. Then there is a mapping $S: N \rightarrow N$ such that $AC_T = C_S$. Now $Ae_n = AC_T e_{T(n)} = C_S e_{T(n)} = X_{E_n}$, where $E_n = S^{-1}(\{T(n)\})$. By Theorem 2.2, $\{E_n\}$ is a partition of N. Hence A is a composition operator. The proof of the sufficient part of the theorem is straight forward.

Theorem 2.5. Let $A \in B(l_w^2)$. Then A is a unitary composition operator if and only if

$$\{Ae'_n: n \in N\} = \{e'_n: n \in N\} = \{A^*e'_n: n \in N\}.$$

Proof. Assume A is a unitary composition operator. Then by Theorem 2.1

$$\{A^*e'_n: n \in N\} \subseteq \{e'_n: n \in N\} = \{AA^*e'_n: n \in N\} \subseteq \{Ae'_n: n \in N\}.$$

From Theorem 3.1 of [6], A^* is a composition operator and hence also the converse inclusions hold.

If the conditions of the theorem are true, then by Theorem 2.1 both A and A^* are composition operators. Hence by Theorem 3.1 of [6] A is a unitary composition operator.

3. Invariant subspaces. Definition. Let $T: N \rightarrow N$ be a mapping. Then two integers m and n are said to be in the same orbit of T if each can be reached from the other by composing T and $T^{-1}(T^{-1})$ means a multivalued function) sufficiently many times.

Definition. A closed subspace M of a Hilbert space is called an invariant subspace of A if $AM \subseteq M$.

One of the most outstanding unsolved problems of operator theory is the Invariant Subspace Problem. The problem is simple to state: Does every operator on an infinite dimensional separable Hilbert space have a non-trivial invariant subspace? The answer is not yet known. Recently SINGH and KOMAL [5] obtained that every composition operator on l^2 has a non-trivial invariant subspace. In the following theorem we generalize this result to the weighted sequence spaces.

Theorem 3.1. Let $C_T \in B(l_w^2)$. Then C_T has a non-trivial invariant subspace.

Proof. Suppose C_T is a composition operator induced by a mapping $T: N \rightarrow N$. Then either T is invertible or T is not invertible. First assume that T is invertible. Then take $n \in N$. Now either the orbit of n is equal to N or it is not equal to N. Suppose o(n)=N, where o(n) is the orbit of n. Then let

$$E_n = \{ (T^m)^{-1}(\{n\}) \colon m \in N \}.$$

If $l_{E_n}^2 = \text{span} \{ e'_m : m \in E_n \}$, then clearly $l_{E_n}^2$ is invariant under C_T . Next, if $o(n) \neq N$, then $l_{E_n}^2 = \text{span} \{ e'_m : m \in o(n) \}$ is an invariant subspace of C_T .

Further, suppose T is not invertible. Then, either T is not an injection or T is not a surjection. If T is not an injection, then C_T has not dense range and hence $\overline{\operatorname{ran} C_T}$ is invariant under C_T . And, if T is not a surjection, then C_T has a non-trivial kernel and hence ker C_T is invariant under C_T . This completes the proof.

Acknowledgement. The authors wish to thank the referee for several helpful comments and suggestions. They are also thankful to Dr. R. K. Singh for guidance and advice during the preparation of this paper.

References

- [1] P. R. HALMOS, A Hilbert Space Problem Book, Van Nostrand (Princeton-Toronto-London, 1967).
- [2] E. A. NORDGREN, Composition operators on Hilbert spaces, in: Hilbert Space Operators (Proceedings, Univ. of California, Long Beach, 1977), Lecture Notes in Math., No. 693 (Springer-Verlag, 1978); pp. 37-63.
- [3] R. K. SINGH, Composition operators induced by rational functions, Proc. Amer. Math. Soc., 59 (1976), 329-333.
- [4] R. K. SINGH and D. K. GUPTA, Normal and invertible composition operators, Bull. Austral. Math., Soc., 18 (1978), 45-54.
- [5] R. K. SINGH and B. S. KOMAL, Composition operator on l^p and its adjoint, Proc. Amer. Math. Soc., 70 (1978), 21-25.
- [6] R. K. SINGH and A. KUMAR, Characterizations of invertible, unitary and normal composition operators, Bull. Austral. Math. Soc., 19 (1978), 81-95.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF JAMMU JAMMU-180001, INDIA