Note on operators of class $C_0(1)$

SHLOMO ROSENOER

1. Introduction. Let H be a separable Hilbert space and B(H) the algebra of all bounded linear operators on H. The ultraweak topology on B(H) is the weak topology relative to the family of functionals φ of the form

(1)
$$\varphi(T) = \sum_{n=1}^{\infty} (Tx_n, y_n)$$

where $\{x_n\}, \{y_n\} \subset H$ and $\sum_{n=1}^{\infty} (||x_n||^2 + ||y_n||^2) < \infty$.

The following theorem occurs in HADWIN and NORDGREN [1].

Theorem 1. Let \mathscr{L} be an ultraweakly closed subspace of B(H) and φ an ultraweakly continuous linear functional on \mathscr{L} with $\|\varphi\| \leq 1$. Then for every $\varepsilon > 0$ there is an extension of φ to B(H) which is a functional of the form (1) with

$$\left(\sum_{n=1}^{\infty} \|x_n\|^2\right)^{1/2} \left(\sum_{n=1}^{\infty} \|y_n\|^2\right)^{1/2} < 1 + \varepsilon.$$

Let \mathscr{A} be a unital ultraweakly closed subalgebra of B(H). We say that \mathscr{A} has property $D_{\sigma}(1)$ if every ultraweakly continuous linear functional φ on \mathscr{A} can be represented in the form $\varphi(T) = (Tx, y)$ with some x, y in H. If in addition $r \ge 1$ and, for every s > r, x and y can be chosen so that $\varphi(T) = (Tx, y)$ for all T in \mathscr{A} and $||x|| ||y|| \le s ||\varphi||$, then we say that \mathscr{A} has property $D_{\sigma}(r)$. An operator T is said to have property D_{σ} or $D_{\sigma}(r)$ if $\mathscr{A}(T)$ has the respective property, where $\mathscr{A}(T)$ denotes the unital ultraweakly closed algebra generated by T.

The main purpose of this note is to show that the operators of the class $C_0(1)$ have property $D_{\sigma}(1)$. From this we deduce that the commutant of the Volterra operator V defined by $(Vf)(x) = \int_{0}^{x} f(y) dy$ in $L^2(0, 1)$ is the minimal unital ultra-weakly closed algebra with linearly ordered invariant subspace lattice containing V.

Received December 1, 1980.

In conclusion we prove that a contraction with sufficiently large spectra cannot be reductive.

2. Main result. For any subset \mathscr{G} of B(H), \mathscr{G}' denotes its commutant, lat \mathscr{G} the collection of closed subspaces in H invariant under every operator in \mathscr{G} , and alg lat \mathscr{G} the algebra of all operators in B(H) leaving each element of lat \mathscr{G} invariant. \mathscr{G} is called *reflexive* if $U(\mathscr{G})=$ alg lat \mathscr{G} , where $U(\mathscr{G})$ is the weakly closed unital algebra generated by \mathscr{G} .

Let N be a positive integer. The class $C_0(N)$ of operators is defined as the set of completely non-unitary contractions $T \in B(H)$ for which $T^n \to 0$, $T^{*n} \to 0$ (strongly) and dim $(I - T^*T)(H) = \dim (I - TT^*)(H) = N$. The operators of class $C_0(1)$ admit the following description [2]. Let U be the canonical unilateral shift, that is the operator of multiplication by the independent variable λ in H^2 , and let $m(\lambda)$ be an inner function. Denote by H(m) the subspace $H^2 \ominus mH^2$ and define the operator S(m) in H(m) by

$$S(m) = P_{H(m)}U.$$

Then every operator of class $C_0(1)$ is unitarily equivalent to S(m) for an appropriate inner function m. Alternatively, one can view the operators of class $C_0(1)$ as restrictions of the backward shift U^* to its invariant subspaces.

Theorem 2. Every operator of the class $C_0(1)$ has property $D_a(1)$.

Proof. By virtue of the preceding remark, it is enough to show that if U is a (cyclic) unilateral shift in H and $L \in \operatorname{lat} U^*$, then $T = U^* | L$ has property $D_{\sigma}(1)$. Suppose φ is an ultraweakly continuous functional on $\mathscr{A}(T)$ with $\|\varphi\| \leq 1$, and $\varepsilon > 0$. By Theorem 1, we may assume that for every $S \in \mathscr{A}(T)$,

$$\varphi(S) = \sum_{n=1}^{\infty} (Sx_n, y_n).$$

where $\{x_n\}, \{y_n\} \subset L$ and $\left(\sum_{n=1}^{\infty} ||x_n||^2\right)^{1/2} \left(\sum_{n=1}^{\infty} ||y_n||^2\right)^{1/2} < 1+\varepsilon$. Let H denote the infinite Hilbert sum $H \oplus H \oplus ... \oplus H \oplus ...$. Then the vectors $\mathbf{x} = x_1 \oplus x_2 \oplus ... \oplus ... \oplus x_n \oplus ...$ and $\mathbf{y} = y_1 \oplus y_2 \oplus ... \oplus y_n \oplus ...$ are in H and the operator $\mathbf{U} = U \oplus U \oplus ... \oplus U \oplus ...$ is in $B(\mathbf{H})$. Let $M = \bigvee_{n=1}^{\infty} \mathbf{U}^n \mathbf{y}$. Since $\mathbf{U} \mid M$ is a cyclic completely non-unitary isometry, it is unitarily equivalent to U. Hence there is an isometry W from H into H such that W(H) = M and

$$WU = UW.$$

Let $T_n = P_n W$, where P_n is the projection in **H** onto the *n*th coordinate

subspace. Clearly $T_n \in B(H)$ and for every $x \in H$,

$$Wx = T_1 x \oplus T_2 x \oplus \ldots \oplus T_n x \oplus \ldots$$

From (2) and (3) it follows that $T_n U = UT_n$ for every *n*. Let $y_0 = W^* y$. Then $T_n y_0 = y_n$ and $||y_0||^2 = ||y||^2 = \sum_{n=1}^{\infty} ||y_n||^2$. Since

$$(W^*\mathbf{x}, z) = (\mathbf{x}, Wz) = \sum_{n=1}^{\infty} (x_n, T_n z) = \sum_{n=1}^{\infty} (T_n^* x_n, z),$$

for every $z \in H$, we can assert that the series $\sum_{n=1}^{\infty} T_n^* x_n$ converges weakly to some $x_0 \in H$ and

$$||x_0|| = ||W^*\mathbf{x}|| \le ||\mathbf{x}|| = \left(\sum_{n=1}^{\infty} ||x_n||^2\right)^{1/2}.$$

Moreover, since L is a hyperinvariant subspace of U^* , x_0 is actually in L. Now for every $S \in \mathscr{A}(T)$,

$$\varphi(S) = \sum_{n=1}^{\infty} (Sx_n, y_n) = \sum_n (Sx_n, T_n y_0) = \sum_n (T_n^* Sx_n, y_0) =$$
$$= \sum_n (ST_n^* x_n, y_0) = (S(\sum_n T_n^* x_n), y_0) = (Sx_0, y_0) = (Sx_0, Py_0),$$

where P denotes the projection in H onto L. Finally,

$$\|x_0\| \|Py_0\| \le \|x_0\| \|y_0\| \le \left(\sum_{n=1}^{\infty} \|x_n\|^2\right)^{1/2} \left(\sum_{n=1}^{\infty} \|y_n\|^2\right)^{1/2} < 1+\varepsilon,$$

which completes the proof.

The proofs of the assertions of Corollary 3 below are either obvious or can be found in [1] (if we note that by [2, Corollary VI. 4.3.7], for every operator T of class $C_0(1)$ we have $\{T\}' = \mathscr{A}(T)$). For the definitions of an attainable family and direct integral see also [1].

Corollary 3. Let (X, μ) be a measure space and $\{\mathscr{A}(T_x)\}_{x \in X}$ an attainable family of algebras, where T_x is an operator of class $C_0(1)$ for every $x \in X$. Denote by \mathscr{A} the direct integral of the algebras $\mathscr{A}(T_x): \mathscr{A} = \int_x^{\oplus} \mathscr{A}(T_x) d\mu(x)$. Let \mathscr{A}_1 be a unital ultraweakly closed subalgebra of \mathscr{A} . Then,

(a) the weak and ultraweak topologies coincide on \mathcal{A} ,

(b) \mathscr{A}_1 has property $D_{\sigma}(1)$,

(c) if \mathscr{A}_2 is a unital ultraweakly closed subalgebra of \mathscr{A} and lat $\mathscr{A}_1 \subseteq \operatorname{lat} \mathscr{A}_2$, then $\mathscr{A}_1 \supseteq \mathscr{A}_2$, (d) if \mathscr{A}_1 is reflexive, then every unital ultraweakly closed subalgebra of \mathscr{A}_1 is reflexive,

(e) if T_x reflexive for almost every $x \in X$, then \mathscr{A}_1 is reflexive,

- (f) $\mathscr{A}_1 = \mathscr{A}_1'' \cap \text{alg lat } \mathscr{A}_1$,
- (g) $\mathscr{A}_1^{(2)} = \{ S \oplus S \mid S \in \mathscr{A}_1 \}$ is reflexive.

We now give two examples to illustrate Theorem 2.

Corollary 4. For every positive integer n, let H_n be a finite dimensional Hilbert space and J_n a Jordan cell in $B(H_n)$ (with respect to some orthonormal basis in H_n). If $T_nJ_n=J_nT_n$ and $T=T_1\oplus T_2\oplus\ldots\oplus T_n\oplus\ldots$ is a bounded operathen $\mathscr{A}(T)=\{T\}'\cap alg \text{ lat } T$.

Proof. It suffices to note that, by a theorem of BRICKMAN and FILLMORE [3], for any operator S in a finite dimensional space, $\mathscr{A}(S) = \{S\}' \cap \text{alg lat } S$, and then we apply corollary 3 (f).

Next we consider the Volterra operator V defined by $(Vf)(x) = \int_{0}^{x} f(y) dy$ in $L^{2}(0, 1)$. It is well known that V is quasinilpotent and unicellular. FOIAŞ and WILLIAMS [7] gave an example of a unicellular operator in $\{V\}'$ whose spectrum contains more than one point. Here we prove that every unicellular operator commuting with V is an ultraweak generator of the commutant of V.

Corollary 5. Suppose \mathcal{B} is an ultraweakly closed unital algebra strictly contained in $\{V\}'$. Then lat \mathcal{B} is not a chain. In particular, if T commutes with V and T is unicellular, then $\mathcal{A}(T) = \{V\}'$.

Proof. SARASON [4] pointed out that V commutes with the operator S(m)where $m(\lambda) = \exp \{(\lambda+1)/(\lambda-1)\}$. Since $\{S(m)\}' = \mathscr{A}(S(m)), V \in \mathscr{A}(S(m))$. On the other hand, by [5], the commutant of V is the weak closure of the polynomials of V, so that $\{V\}' = \mathscr{A}(V) \subseteq \mathscr{A}(S(m))$. Now suppose lat \mathscr{B} is a chain. Since lat V is a maximal chain, lat $V = \operatorname{lat} \mathscr{B}$. By Corollary 3 (c), \mathscr{B} coincides with $\{V\}'$. The obtained contradiction proves the assertion.

Now we note that Theorem 2 yields the following factorization theorem. By H_0^1 we denote the subspace of H^1 consisting of the functions vanishing at 0.

Theorem 6. Let m be an inner function, $f, g \in H(m) = H^2 \ominus mH^2$ and inf $\{\|f\bar{g}-h\|_1 \mid h \in H_0^1\} \leq 1$. Then for every $\varepsilon > 0$, there exist $f_1, g_1 \in H(m)$ such that $\|f_1\|_2 \|g_1\|_2 < 1+\varepsilon$ and $f\bar{g}-f_1\bar{g}_1 \in H_0^1$.

Proof. Let T = PU | H(m), where P is the projection onto H(m), and denote by φ the functional on $\mathscr{A}(T)$ defined by $\varphi(X) = (Xf, g)$. Choose $X \in \mathscr{A}(T)$ with ||X|| = 1. Then, by [2, Corollary VI. 4.3.7], there exists an analytic Toeplitz

operator Y, ||Y|| = 1, such that PY | H(m) = X. Since L^1/H_0^1 is the pre-dual of H^{∞} ,

$$|\varphi(X)| = |(Xf, g)| = |(Yf, g)| \le 1,$$

so that $\|\varphi\| \le 1$. By Theorem 2, φ can be represented in the form $\varphi(X) = (Xf_1, g_1)$ where $f_1, g_1 \in H(m)$ and $\|f_1\|_2 \|g_1\|_2 < 1 + \varepsilon$. But then, for every $Y \in \{U\}'$,

$$(Yf_1, g_1) = (PYf_1, g_1) = (PYf, g) = (Yf, g),$$

so that $f\bar{g} - f_1\bar{g}_1 \in H^1_0$.

In Proposition 7 below we shall prove that for certain operator algebras the possibility of such "factorization" implies property $D_{\sigma}(r)$. BC(H) denotes the ideal of compact operators in B(H). $\omega_{x,y}$ is a functional on B(H) defined by $\omega_{x,y}(T) = (Tx, y)$.

Proposition 7. Let \mathscr{A} be a unital ultraweakly closed operator algebra. Suppose that \mathscr{A}' has a cyclic vector and that $\mathscr{A} \cap BC(H)$ is ultraweakly dense in \mathscr{A} . Then \mathscr{A} has property $D_{\sigma}(r)$ if and only if for every $\varepsilon > 0$ and every pair $x, y \in H$ such that $\|\omega_{x,y}| \mathscr{A}\| \leq 1$ there are $\xi, \eta \in H$ such that $\|\xi\| \|\eta\| < r + \varepsilon$ and $\omega_{x,y} = \omega_{\xi,\eta}$ on \mathscr{A} .

Proof. The "only if" part is obvious. Let us prove the "if" part. Choose an arbitrary $\varepsilon > 0$ and let φ be an ultraweakly continous functional on \mathscr{A} with $\|\varphi\| \leq 1$. By Theorem 1, φ can be represented in the form $\varphi(T) = \sum_{n=1}^{\infty} (Tx_n, y_n)$ where $\left(\sum_{n=1}^{\infty} \|x_n\|^2\right)^{1/2} \left(\sum_{n=1}^{\infty} \|y_n\|^2\right)^{1/2} < 1 + \varepsilon$. Choose a number N such that $\sum_{n=N+1}^{\infty} (\|x_n\|^2 + \|y_n\|^2) < \varepsilon$. If x_0 is a cyclic vector for \mathscr{A}' , there exist $\{T_i\}_{i=1}^N$ in \mathscr{A}' satisfying the inequalities

$$||T_i x_0 - x_i|| < \varepsilon/2 \left(\sum_{i=1}^N ||y_i||\right)^{-1} \quad (i = 1, 2, ..., N).$$

Then for every $T \in \mathscr{A}$ with $||T|| \leq 1$,

$$\begin{aligned} \left| \varphi(T) - \left(Tx_0, \sum_{i=1}^{N} T_i^* y_i \right) \right| &\leq \left| \sum_{i=1}^{N} (Tx_i, y_i) - \left(Tx_0, \sum_{i=1}^{N} T_i^* y_i \right) \right| + \left| \sum_{i=N+1}^{\infty} (Tx_i, y_i) \right| \leq \\ &\leq \left| \sum_{i=1}^{N} \left(T(x_i - T_i x_0), y_i \right) \right| + \left| \sum_{i=N+1}^{\infty} (Tx_i, y_i) \right| \leq \\ &\leq \sum_{i=1}^{N} \left\| x_i - T_i x_0 \right\| \left\| y_i \right\| + \sum_{i=N+1}^{\infty} \left\| x_i \right\| \left\| y_i \right\| < \varepsilon/2 + \varepsilon/2 = \varepsilon. \end{aligned}$$

Hence it follows that the set of functionals $\omega_{x,y}$ is norm-dense in the family of all ultraweakly continuous functionals on \mathscr{A} . Let ω_{x_x,y_x} be a sequence converg-

19*

ing to φ in the norm topology. We may assume that $\|\omega_{x_n, y_n}| \mathscr{A}\| < 1+\varepsilon$. Choose ξ_n, η_n in H such that $\omega_{x_n, y_n} = \omega_{\xi_n, \eta_n}$ on \mathscr{A} and $\|\xi_n\| = \|\eta_n\| < r^{1/2}(1+\varepsilon)^{1/2}$. Passing to subsequences, we may suppose that $\xi_n \xrightarrow{w} \xi, \eta_n \xrightarrow{w} \eta$ for some ξ, η in H. If $K \in \mathscr{A} \cap BC(H), \varphi(K) = \lim (K\xi_n, \eta_n)$. On the other hand,

$$\begin{aligned} |(K\xi_n,\eta_n)-(K\xi,\eta)| &\leq |(K(\xi_n-\xi),\eta_n)|+|(K\xi,\eta_n-\eta)| \leq \\ &\leq r^{1/2}(1+\varepsilon)^{1/2} ||K(\xi_n-\xi)||+|(K\xi,\eta_n-\eta)| \to 0, \end{aligned}$$

so that $\varphi(K) = (K\xi, \eta)$. Now if $T \in \mathscr{A}$ and if $\{K_{\alpha}\}$ is a net of compact operators in \mathscr{A} which converges ultraweakly to T, then $\varphi(T) = \lim_{\alpha} \varphi(K_{\alpha}) = \lim_{\alpha} (K_{\alpha}\xi, \eta) =$ $= (T\xi, \eta)$. Finally, since the norm on any Hilbert space is lower semicontinuous, we have $\|\xi\| \|\eta\| \le r(1+\varepsilon)$.

3. Reductive contractions with rich spectra. The properties D_{σ} or $D_{\sigma}(r)$ might be very useful in applications to various problems on invariant subspaces. Let us introduce the following definition. If G is an open non-empty subset of the complex plane, we say that $\sigma \subseteq C$ is rich in G if for every h in $H^{\infty}(G)$,

$$\sup_{z \in G} |h(z)| = \sup_{z \in \sigma \cap G} |h(z)|$$

where $H^{\infty}(G)$ denotes, as usual, the algebra of bounded functions analytic in G.

Recently, BROWN, CHEVREAU and PEARCY [8] proved that if T is contraction in B(H) whose spectrum $\sigma(T)$ is rich in the open unit disk D, then lat T is not trivial. Recall that an operator T is called *reductive* if lat $T = \text{lat } T^*$. Here we show that if $\sigma(T)$ is sufficiently large, then T cannot be reductive.

Theorem 8. Let $T \in B(H)$ be a contraction. Suppose that $\sigma(T)$ has the following property: if $\sigma(T) = \sigma_1 \cup \sigma_2$ where σ_1 and σ_2 are closed subsets of cl D, then either there exists a non-empty open set G such that σ_1 is rich in G, or σ_2 is rich in D. Then T is not reductive.

Proof. Clearly we may assume that T is completely non-unitary. Suppose T is reductive. Let H_1 denote the subspace of H spanned by all eigenvectors of T. Then $H_1 \in \operatorname{lat} T$, so that $H_2 = H_1^{\perp} \in \operatorname{lat} T$. Then $T = T_1 \oplus T_2$, where $T_i = T \mid H_i$. Clearly $\sigma(T) = \sigma(T_1) \cup \sigma(T_2)$. We claim that T_1 is normal. Indeed, since T is reductive, so is T_1 , and every eigenvector of T_1 is also an eigenvector of T_1^* . Thus, if x_1, x_2, \ldots, x_n is any finite set of eigenvectors of T_1 (and T_1^*), then $T_1 T_1^* \left(\sum_{k=1}^n \alpha_k x_k\right) = T_1^* T_1 \left(\sum_{k=1}^n \alpha_k x_k\right)$ for all scalars $\alpha_1, \alpha_2, \ldots, \alpha_n$. Since H_1 is spanned by eigenvectors, we conclude that $T_1 T_1^* = T_1^* T_1$, that is T_1 is normal. Now T_1 is a normal reductive operator whose set of eigenvectors is total in H_1 . By SARASON [6], there is no non-empty open set G such that $\sigma(T_1)$ is rich in G.

By assumption $\sigma(T_2)$ is rich in *D*. Now T_2 is a reductive completely non-unitary contraction with rich spectrum in *D*. Then $\sigma(T_2)$ coincides with the left essential spectrum of T_2 , for otherwise, as pointed out in [8], T_2 or T_2^* (and therefore both of them) has an eigenvector, which contradicts the definition of H_1 . Now by [8], T_2 has property D_{σ} and there exist a non-zero multiplicative ultraweakly continuous functional φ on $\mathscr{A}(T_2)$. Let

$$\varphi(S) = (Sx, y), \quad S \in \mathscr{A}(T_2).$$

Let \mathscr{I} denote the null-space of φ . Then \mathscr{I} is an ideal in $\mathscr{A}(T_2)$ such that the subspace $M = \operatorname{cl} \mathscr{I}_X = \operatorname{cl} \{S_X, S \in \mathscr{I}\}$ is in lat T_2 . On the other hand, x is not in M, for $y \in M^{\perp}$, but $\varphi(I) = (x, y) \neq 0$. If we denote by N the subspace spanned by x and M, then $N \in \operatorname{lat} T_2$ and dim $(N \oplus M) = 1$. Since T_2 is reductive, $N \oplus M \in \operatorname{lat} T_2$, which again contradicts the definition of H_1 . This contradiction leads to the desired conclusion.

Corollary 9. If T is a contraction and $\sigma(T)$ is an annulus $\{z \mid r \leq |z| \leq 1\}, 0 \leq r < 1$, then T is not reductive.

Proof. Suppose $\sigma(T) = \sigma_1 \cup \sigma_2$ with $\sigma_1, \sigma_2 \subseteq cl D$ and σ_2 not rich in D. Then there are $\lambda \in \mathbb{C}$, $|\lambda| = 1$ and $\varepsilon, 0 < \varepsilon < 1 - r$ such that $\{z \mid |z - \lambda| < \varepsilon\} \cap \sigma_2 = \emptyset$. But then $G = \{z \mid |z - \lambda| < \varepsilon\} \cap D \subseteq \sigma_1$, so that σ_1 is rich in G, which completes the proof.

Of course, an example of a rich subset of D not satisfying the conditions of Theorem 8 can be easily constructed.

References

- [1] D. HADWIN and E. NORDGREN, Subalgebras of reflexive algebras, preprint.
- [2] B. Sz.-NAGY and C. FOIAŞ, Harmonic analysis of operators on Hilbert space, Akadémiai Kiadó, (Budapest), North-Holland (Amsterdam), American Elsevier (New York) (1970).
- [3] L. BRICKMAN and P. FILLMORE, The invariant subspace lattice of a linear transformation, Canad. J. Math., 19 (1967), 810-822.
- [4] D. SARASON, A remark on the Volterra operator, J. Math. Anal. Appl., 12 (1965), 244-246.
- [5] D. SARASON, Generalized interpolation in H[®], Trans. Amer. Math. Soc., 127 (1967), 179-203.
- [6] D. SARASON, Weak-star density of the polynomials, J. Reine Angew. Math., 252 (1972), 1-15.
- [7] C. FOIAŞ and J. WILLIAMS, Some remarks on the Volterra operators, Proc. Amer. Math. Soc., 31 (1972), 177-184.
- [8] S. BROWN, B. CHEVREAU and C. PEARCY, Contractions with rich spectra have invariant subspaces, J. Operator Theory, 1 (1979), 123–136.

BOL'SHAYA SERPUHOVSKAYA 31, KORPUS 6, APT. 229A, 113093 MOSCOW, U.S.S.R.